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Mediterranean Forest Week of Antalya

Creating fire-smart forests
and landscapes

by Paulo M. FERNANDES

Introduction

Land use mosaics and the intensity of biomass use in the
Mediterranean Basin have constrained fire incidence in the past.
Forests have expanded in the last decades and in parallel their man-
agement has generally decreased, increasing stand-level fuel accumu-
lation and landscape-scale fuel connectivity. Contemporary fire man-
agement policies rely heavily on fire suppression and do not sufficiently
address the root of the problem, i.e. the socio-economical and land man-
agement issues behind the inception and spread of fires. The effective-
ness of fire fighting operations is greatly reduced when unfavourable
weather conditions coincide with fuel accumulation (Figure 1). In fact,
because successful fire suppression implies fuel build up, it can con-
tribute to larger and more severe fires in the future.

It is now recognized that short-term and reactive fire control policies
should be replaced by “longer-term policies aimed at acting on the
structural causes of fires and integrating fire and forest management
strategies” (EFI 2010). In order to support integrated fire management,
a stronger research effort is required in regards to landscape-scale fire
spread, mitigation of immediate fire effects (fire severity) in forest
stands, and the resilience of different forest types in relation to varia-
tion in the fire regime. Climate change projections make these topics
even more relevant, because the expected increase in fire danger will
raise burned area and CO2 emissions (THONICKE et al. 2010).
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Mediterranean forests will adapt to climate
change with difficulty and their protection
from wildfire will be important, including
large-scale fuel management through pre-
scribed burning (PARRY et al. 2007).

Proactive forest management towards
higher resistance to fire spread and
increased fire resilience, i.e. the achievement
of fire-smart forests and landscapes (HIRSCH
et al. 2004), comprehends two complemen-
tary approaches, respectively the treatment
of fuels in fire prone vegetation types and
vegetation type conversion. This paper
overviews the state of the art on these sub-
jects as it relates to Mediterranean Europe.

Goals, strategies
and know-how

The ultimate goal of fire management is to
modify the fire regime, which results from
the interaction between ignitions and the
fire environment, i.e. topography, weather
and fuels. By modifying fuels, fire-smart for-
est management is ultimately expected to
delay fire spread and expand the weather
scenarios under which wildfire control is pos-
sible, hence leading to less area burned. An
additional goal — often more relevant or
realistic (REINHARDT et al. 2008) — is to
increase tree resistance to fire and decrease
fire severity, thus diminishing damage and

increasing the ability to recover from the dis-
turbance. Differentiation between fuel man-
agement strategies considers fuel isolation
(fuel-breaks), fuel modification and fuel type
conversion (PYNE et al. 1996). Fuel isolation
and fuel modification can be viewed respec-
tively as linear and area-wide options for
treating fuels and presuppose different
expectations, respectively fire containment
and fire modification. Consequently, linear
treatments will be of limited (or null) value if
they fail to hinder fire spread, whereas area
treatments will be beneficial as long as fire
severity mitigation is apparent.

Current guidelines and practices to man-
age stands to decrease fire hazard — usually
termed “preventive silviculture” — are quan-
titatively incipient. Some published recom-
mendations even oppose empirical evidence
and inference from fire behaviour models,
especially in regards to stand density.
Learning with wildfires, experimenting with
fire or using simulation tools are the three
basic approaches that are available to refine
fire-smart prescriptions. However, the capac-
ity to develop sound prescriptions remains
limited: wildfire case studies are scarce and
provide anecdotal data, fire experimentation
involving modification of the tree canopy is
practically non-existent, and fire modelling
is not reliable enough, e.g. CrUZ &
ALEXANDER (2010).

Assessing the effectiveness
of fuel treatments

The relative role of fuel and weather in
shaping the fire regime differs by vegetation
type. If the role of fuel in controlling wildfire
incidence is minor then the rationale for
investing in fuel management programs is
weak. Weather is generally viewed as the
prevailing driver of the high-intensity fire
regimes that characterize Mediterranean
environments (e.g. KEELEY & ZEDLER 2009).
Fire frequency analysis for Portugal
(FERNANDES et al. 2010a) indicates a rela-
tively short fire-free interval (12-16 years)
but fire hazard, the probability of reburn,
grows exponentially with time since fire, as
the aging of fuels results in fuel accumula-
tion and higher flammability. Furthermore it
seems that this time-dependency of fire inci-
dence is only marginally affected by extreme
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weather, increasing the likelihood of effec-
tive fuel treatment performance under
unfavourable weather scenarios. Fire size
and maximum fire size tend respectively to
be more variable and higher in older fuels
(Fig. 1). Hence, the control of fuels over land-
scape fire spread occurs on a relatively short-
term scale but is effective, which lends sup-
port to a prominent role of fuel treatments in
fire management. The more fragmented and
human-influenced landscape might be
involved in explaining the more pronounced
role of fuel in burn probability in comparison
with other shrub-dominated Mediterranean
regions.

Linear fuel treatments are the most com-
mon option in Mediterranean Europe, but
their performance in the face of fire is uncer-
tain. In their analysis of the 2003 wildfires
in southern France, PERCHAT & RIGOLOT
(2005) found out that most fuel breaks were
crossed or transposed by high-intensity fire.
Still, they note that headfire growth was
delayed and that lateral (flank) fire spread
was generally restrained. The width, place-
ment and maintenance of fuel breaks,
together with the potential for spotting and
the resources available for fire fighting are
critical factors in the success of a fuel man-
agement strategy based on isolation.

Fire-smart silviculture modifies the fire
environment in ways that can frustrate the
treatment objective (GRAHAM et al. 2004).
Removing or modifying the fuels resulting
from pruning and thinning is mandatory, or
the decrease in crown fire potential will be
outweighed by the increase in surface fire
intensity. Although research in this topic is
surprisingly scarce, raising the tree canopy
and decreasing its density creates a drier
and windier environment. In NW Spain,
Ruiz (2007) measured a 2-3% absolute
decrease in dead fuel moisture content when
comparing unthinned (36 m? ha") and
thinned (22 m* ha) Pinus pinaster stands.

Fire modelling allows simulation of fire
characteristics for different fuel and stand
management scenarios (e.g. CRUZ et al.
2008), as well as landscape-level analysis of
fire-spread potential in response to variation
in fuels and other factors (e.g. LOUREIRO et
al. 2006). Expert knowledge can be analyzed
to relate fire hazard with stand and fuel
structure (GONZALES et al. 2007). However,
evidence of differences in fire behaviour and
severity between alternative fuel treatments

or in treated versus untreated stands can be
obtained only by actually observing fires and
their effects. Although valuable — e.g.
MCcARTHUR (1962) reported a decrease by a
factor of 3 in fire spread rate from unpruned
Pinus radiata to pruned P. pinaster stands
— the conclusions that can be drawn from
wildfire data are usually limited in scope.
Sound guidelines for treatments are more
likely to be inferred from fire-resistant forest
stands, i.e. where fire-induced tree mortality
or fire severity is mitigated to some degree.
Abundant documentation exists on the inter-
action between fire severity and stand struc-
ture in North-American continental and
mediterranean conifer forests (e.g. AGEE &
SKINNER 2005), and similar patterns seem to
occur in the Iberian Peninsula, where
mature and uneven-aged Pinus nigra (FULE
et al. 2008) and P. pinaster (VEGA 2000)
stands persist under a regime of low to mod-
erate fire severity. Fire-resilient P. pinaster
patches in northern Portugal (Picture 1) are
open, vertically discontinuous and coincide
with frequent low-intensity fires (VEGA et
al. 2010).

Experimental studies of fire behaviour and
effects in relation to fuel treatments have
been extremely scarce worldwide. In SW
Australia, GOULD et al. (2007) related fire
behaviour in eucalypt forest with time since
prescribed burning. In Portugal, a drastic
change in fire behaviour — from crowning to
relatively mild surface fire — was observed

Picture 1:
Fire-resistant Pinus
pinaster stand near
Murca, NE Portugal.

Tree density = 250 ha",
basal area = 11 m? ha'
and median fire return

interval = 6 years
Photo P.F.
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Picture 2:

Fire self-extinction

in a Betula alba stand,
Mezio, NW Portugal.
Photo P.F.

when an experimental summer fire moved
from an untreated 28-year old stand to areas
that had been prescribed burnt 2-3 years
before (FERNANDES et al. 2004). Differences in
fire characteristics between 13- and 28-year
old fuels could not be proven, but in a related
study (FERNANDES 2009a) surface fire inten-
sity was lower in prescribed burnt plots for
at least 10 years after treatment.

Assessing how different forest
types burn and recover from
fire

Forests that differ in their specific compo-
sition can represent distinct fire potentials,
due to differences in the nature, quantity
and arrangement of fuels, which provides
the rationale for cover type conversion.
Conventional wisdom assumes that some
forest types, namely deciduous broadleaves,
are effective at modifying fire behaviour and
disrupting landscape fire spread. Fire model-
ling (FERNANDES 2009b) and fire selectivity
(MOREIRA et al. 2009) studies support such
hypothesis. In NE Spain, D1Az-DELGADO et
al. (2004) report less fire incidence from pine
to evergreen broadleaved to deciduous
broadleaved forests, and GONZALES et al.
(2006) found that hardwoods (Quercus robur,

Q. ilex) and short-needled mountain pines
were less fire prone than the more flamma-
ble pine species. The fire behaviour gradient
corresponding to the transition of one vege-
tation type to another, e.g. from shrubland to
Quercus rotundifolia (AZEVEDO et al. 2009),
can be modelled by taking into account the
spatial variation in fuels and stand struc-
ture. Local weather (fuel moisture, wind
speed) and the fuel-complex are both affected
by stand structure. Consequently, stand
characteristics can minimize or offset the
cover type effect, as in the simulation study
of FERNANDES (2009b), where the range in
fire hazard was similar between and within
forest types.

The fire severity implications of changes in
cover type are expected to correlate with fire
incidence but have been poorly quantified. In
northern Portugal, FERNANDES et al. (2010b)
compared fire severity between adjacent
stands of P. pinaster and of other species
(deciduous and evergreen broadleaves and
short-needled conifers). Fire intensity was
highest in P. pinaster, followed by deciduous
broadleaved and short-needled conifer forest.
In addition to cover type, fire severity was
explained by stand characteristics (height,
density, basal area), terrain aspect, fire
spread pattern and distance to the edge
between P. pinaster and the contiguous cover
type. A faster decline in fire severity was
observed in deciduous broadleaves (Picture
2), and fire severity tended to decrease with
stand maturity and in moister aspects.
Implicit in these results is the fact that dif-
ferent cover types will not be different just in
their fuel complexes. Simultaneous measure-
ments of micrometeorological variables and
fuel moisture contents should highlight
weather-related differences in the fire envi-
ronment between forest types, provided that
the stands are contiguous and do not differ
in aspect and slope.

Fire resilience is determined by the inter-
action between fire severity and species
traits related with post fire response.
Consequently, research on post fire tree mor-
tality patterns is an important supplement
to fire severity studies. The description and
prediction of fire-induced mortality to south-
ern Europe tree species has recently gained
momentum, covering the entire fire severity
range and addressing both conifers (P.
pinaster, P. nigra) and broadleaves (Quercus
spp., Castanea sativa, Eucalyptus globulus)
(MOREIRA et al. 2007, FERNANDES et al. 2008,
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CATRY et al. 2010, VEGA et al. 2010). The
most fire-resilient types are those that
recover quickly from high-intensity fire —
species able to sprout from the crown, i.e.
Quercus suber (Picture 3) and Pinus
canariensis — and those associated to low
flammability environments (deciduous
broadleaves and mountain conifers), pro-
vided that their fire-resistance traits
(namely bark thickness) are sufficiently
developed to assure tree survival.

Conclusion

Fire policies in Mediterranean countries
are centred on fire suppression, which makes
them unsustainable and often counterpro-
ductive. Fuel management, including the
planned use of fire, deserves a more promi-
nent role in fire management. Furthermore,
and as the Mediterranean environment
becomes more fire prone, the management of
unplanned fires will have to be considered,
especially in more remote areas, and both as
a fuel treatment and an ecological process.

Fire-smart landscapes are obtained by
area-wide fuel treatments and by fuel type
conversion, rather than by fuel isolation. The
spatial features of fuel management are crit-
ical, as random patterns can locally mitigate
the effects of wildfire but have no impact on
its growth. Proactive management should
concentrate on expanding (i) less flammable
forest types, and (ii) vegetation types that
are resilient regardless of flammability, the
later being the preferred option in a climate
change context (STEPHENS et al. 2010). Both
will require minimal treatment, in contrast
to highly flammable forest plantations in
fire-prone regions where costly fuel treat-
ments are mandatory. However, it is impor-
tant to note that climate change will likely
reduce the prospects for type conversion into
more mesic forests, and will favour open dry
forests, where resistance and resilience to
fire can be promoted through relatively
undemanding fuel modifications.

P. M.F.
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