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Towards Active Physical Human-Robot Interaction:
quantifying the human state during interactions
Yue Hu, Member, IEEE, Naoko Abe, Mehdi Benallegue, Natsuki Yamanobe, Member, IEEE, Gentiane

Venture, Senior Member, IEEE, Eiichi Yoshida, Fellow, IEEE,

Abstract—Unanticipated physical actions from the robot on
humans (active pHRI) may be inevitable with the deployment
of robots in human-populated environments. However, it is still
unclear how humans would perceive such actions and how the
robot should execute them in a physically and psychologically safe
manner. The objective of this paper is to explore the possibility
of quantifying the humans’ physical and mental state during an
active physical interaction with a robot, by means of a laboratory
experiment. We hypothesize that the active robot actions could
cause measurable alterations in users’ data, which could be
related to their perceptions and personalities. In the experiment,
the user plays a visual game using the robot, which has a
hidden task that results in active physical actions on the user.
We collect data from physical and physiological sensors, and
the perceptions and personalities via questionnaires and a semi-
structured interview. Statistical analysis and clustering of the
data collected from a total of 35 participants showed relationships
between participants’ physical and physiological data and their
age, gender, perception, and personalities. Further developments
based on these exploratory outcomes can be used to implement
an active pHRI controller that can account for both the physical
and the mental state of users.

Index Terms—Physical Human-Robot Interaction, Human Fac-
tors, Human-Centered Robotics

I. INTRODUCTION

WE define active physical human-robot interaction (ac-
tive pHRI) as a type of interaction during which the

robot may take a physical action on the user without prior no-
tifications. This type of physical interactions will be inevitable
when robots will be used in close contact with humans.
If we consider environments such as the ones illustrated in
Fig. 1, where robots could be used to help humans in nursing
houses, construction sites, assembly lines, or just cooking at
home, unexpected situations may occur due to several reasons,
ranging from human errors to uncooperative behavior due to
mood changes.
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Fig. 1: Active pHRI may occur in several scenarios, in these situations the
robot should take actions based on the human state, both physical and mental,
where mental state could be predicted/inferred from measurable physical and
physiological data.

Often, in a physical interaction scenario, the focus is given
to the physical safety of the user [1], [2]. However, physical
safety and comfort do not necessarily guarantee the same from
a psychological point of view. Psychological safety and user
perception should be regarded as equally important [3], [4],
as guaranteeing a comfortable mental state is also imperative
in both working and domestic environments.

In our view, addressing both physical and psychological
safety is fundamental in achieving an optimal interaction in
an active pHRI scenario. The control of the robot should
adapt depending on different factors, including the state of the
environment, the physical and the mental state of the users,
where with mental state we refer to their perceptions of the
robot and possibly mental load and stress. Few works have
addressed the perception of users with respect to physical
actions from the robot, and even less have addressed the matter
when the action is not notified to the user beforehand.

In this paper, we are interested in conducting an exploratory
study to investigate how users perceive active pHRI, and
how these perceptions could be quantified with sensors and
information that can be acquired beforehand, such that they
can be used in an active pHRI control framework to adapt the
control not only based on environment and physical states, but
also on the mental state.

A. Related works

In the state-of-the-art, there has been interest in the hu-
man perceptions of robots related to physical interactions.
In particular, touching has been proven to increase the trust
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and comfort of human users with regard to robots [5], [6],
where often the robot touch tries to imitate the human touch.
Robot initiated touch has also been investigated with respect
to psychological stress and social bond [7], [8], as well as
in nursing situations [9]. Hugging has also seen increasing
interest from the research community as it can relieve stress
and increase comfort, where active hug from the robot has
been shown to provide good user experiences [10], though the
hugging action alone is not necessarily perceived positively
[11]. Physical interactions also occur in studies involving
robots performing exercises with the user [12], where social-
physical exercises improved user experience and engagement.
Rehabilitation robots are used to perform exercises [13], [14],
mostly coupled with games, but more focused on rehabilitation
goals rather than user perceptions. Robot-initiated actions are
considered in the case of dancing robots [15], [16], where
long-term analysis on the perception of the user shows that
adaptation of the robot increases comfort.

However, in these works, the physical contact and/or ac-
tions, even when initiated by the robot, are not unanticipated,
or when not formally pre-announced, could still be anticipated
due to the setting of the experiment (e.g. exercising and danc-
ing). Whereas in our case, we are interested in unanticipated
and not necessarily predictable physical actions from the robot.
In these situations, it is important for the robot to be able to
predict and/or measure the human state.

For instance, predicting human behavior and motions can
increase the efficiency of the task [17], [18], this adaptation
can vary according to the purpose of the task based on human
behavior measured from the cardiac activity and eye-tracking
[19]. It has also been demonstrated that human behavior can be
predicted based on their attitude towards robots [20], where
preferences could be predicted from their attitude [21] and
social cognition [22]. In Van Zoelen et al. [23], human-robot
team behavior was used to extrapolate interaction patterns by
means of an experiment performed with an indirect physical
action via a leash attached to a robot. Personality has been
demonstrated to be predictable from non-verbal movements
in a human-robot interaction scenario [24], and personality, in
general, has been demonstrated to play an important role in
HRI [25], [26].

In these works, the relationship between measurable data
and perceptions is still treated in a limited way, and most
studies are yet to be improved to target physical interactions
and real-time measurements. For instance, while Van Zoelen
et al. [23] created a model consisting of an interaction pattern
language that could be used as a library of interactions to
design human-robot interactions, it still needs further investi-
gation on the relationship between real-time measurable data
with the perception and behavior of users with respect to
active robot actions. It is, therefore, crucial to perform a study
that targets this missing piece in the context of pHRI, and to
analyze how to obtain quantifiable data so that they could be
integrated into the measurement of the human state in real-
time and to build a model that can be used in future control
frameworks of robots.

B. Objective and contributions

The objective of this paper is to carry out an exploratory
study on the human state with respect to active pHRI, with
the aim of using the outcomes to better understand the human
perception and behaviors, and towards building a human-state
model that is based on quantifiable data, so that future active
pHRI control frameworks will be able to take into account
both physical and mental state of the human from measurable
data. In particular, we are interested in the general human state
that could be explained by means of several measurements,
therefore we carry out a laboratory experiment to gather as
much data as possible from both the user and the robot to
obtain a broad insight into the human state.

This paper is based on the same hypotheses of our previ-
ous work [27], where we conducted a preliminary analysis
on the possibility of extracting interaction factors from an
active pHRI experiment, by relating the measurable data to
participants’ perceptions and personalities. The formulation
of the hypotheses has been slightly changed for the sake of
clarity, and are as follows:

H1 Unanticipated robot actions cause measurable alter-
ations in the users’ physical and physiological data;

H2 Physical and physiological data measured during the
interaction could be explained with users’ personal-
ities and perceptions of the robot.

In this context, the term unanticipated refers to an action
that the user might not be expecting or not knowing when
it is being executed. Further details will be clarified in the
description of the experiment in section II-B

In our previous study, the experiment presented several dis-
advantages: the randomness and difficulty of interpreting the
actions of the robot, and the low number of participants (23).
By taking into account the advantages and drawbacks of the
previous work, we designed a new experiment, consisting of
a simpler game, clearer robot actions, improved data analysis,
and an almost doubled number of participants (40) which
allows obtaining more solid outcomes. Furthermore, we added
a semi-structured interview of each participant after the exper-
iment that gives a qualitative insight into their perception and
understanding of the experiment. While the semi-structured
interview addresses the understanding of the robot’s actions,
the goal of this study is not to make the robot’s actions legible
and explainable (i.e. explainable artificial intelligence), rather,
we aim at understanding the human with respect to physical
actions taken by robots.

We kept the game as a task for the user, as it represents
an easy physical approach to the robot and was one of the
main advantages of the previous experiment. We measured
the same physical and physiological data as in [27]: Galvanic
Skin Resistance (GSR), which allows measuring arousal [28],
Photoplethysmography (PPG), which can be converted to
Pulse Rate Variation (PRV) and is an indicator of mental stress
[29], Eye Blinking Rate (EBR), Eye Blinking Duration (EBD),
and Pupil Diameter (PD), which are indicators of mental load
[30]. In comparison to [27], we use different questionnaires to
quantify users’ perceptions and attitudes towards robots, more
details can be found in section II-E.
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Despite being based on the same hypotheses and a similar
set of measurements, this paper represents a completely stand-
alone and in-depth study on active pHRI, with insightful
results and solid perspectives for future pHRI developments.
The contributions of this paper are:

• Active pHRI experiment that allowed to gather a large
set of data on the human state;

• Systematic analysis of the data that shows the relationship
between measurable data, personality, and perceptions;
this analysis allows to obtain a set of factors that can
be used to build a human-state model and as input of
an active pHRI controller that can predict and adapt to
human perceptions based on measured data;

• To the best of our knowledge, except for our previous
work, the only experiment targeting active pHRI and
systematic analysis of a large pool of factors.

C. Paper organization

This paper is organized as follows: in section II we describe
the details of the experiment, including the design of the game,
the control of the robot, the equipment and sensors that were
used, the full protocol of the experiment, and the recruited
participants. In section III we explain the data processing, and
in sections IV and V we illustrate the results obtained using
statistical and clustering analysis respectively. In section VI
we analyze and discuss the results with reference to our initial
hypotheses. In section VII we briefly summarize the outcomes
and illustrate possible future developments and perspectives.

II. METHOD

A. Experiment overview

We designed an active pHRI experiment that involves both
direct physical contacts between the user and the robot and
direct physical actions from the robot on the user and vice-
versa. In the experiment, the user is asked to play a visual
game, displayed on a large screen, using the robot, as shown in
Fig. 2. To play the game, the user has to move the end-effector
(EE) of the robot in space. If the user releases the end-effector,
the robot stops any movement. Therefore, a direct physical
contact is required to play the game. During the game, when
a physical contact is established, the robot can take physical
actions on the user, which are similar to push and pull motions.
The users are not informed beforehand of these actions. This
allows us to quantify the change in their perception and
behavior towards unanticipated robot motions. The reader can
see the experiment in the multimedia attachment.

All our experiments have been approved by the local
ethics committee at the National Institute of Advanced In-
dustrial Science and Technology (AIST) in Tsukuba, Japan
(N. 2019-0544). Before the experiment, participants have
received proper information and were given informed consent
to participate in the study.

B. Game and action design

In our previous work [27], the game consisted of a puzzle
game where the user had to match a puzzle piece in a

Fig. 2: Experiment setup, the user uses the robot to play a visual game.

destination that was randomly generated at every game and
had also to use the wrist rotation of the robot to match the
different orientations. The action was introduced as a push/pull
force on the user, recurring at constant time intervals. This type
of action did not have specific interpretations, and as a result,
was more similar to a disturbance. Furthermore, the necessity
of moving the piece in 2D and rotating the wrist joint at the
same time resulted in a complex motion that may have affected
the interaction more than we had expected.

In designing the new game, we considered those disadvan-
tages and focused on: simplifying the game, defining a specific
task for the robot, reducing randomness to obtain comparable
data. The new task consists of a coin-catching game where the
motion of the end-effector in 3D space is projected to move a
catcher horizontally in 1D, to catch coins falling from the top,
as can be seen in the multimedia attachment. The falling coins
have four different values: 1, 5, 10, and 20. To give additional
motivation to the users to engage in the game, the sum of the
caught coins corresponds to a real bonus payment. The coins
fall at regular time intervals, but at different speeds (1 and
5 at different speeds, 10 and 20 always at maximum speed),
i.e. there are multiple coins on the field at the same time. We
use a pre-generated sequence of coins and speeds, so every
user plays exactly the same game, which allows for a better
comparison of the collected data.

The action of the robot consists of a ”hidden” objective,
which is to catch the coins with the highest values, i.e. 10 and
20. Every time a high-value coin falls, the robot would move
its end-effector to move the catcher towards that coin, until
it is caught or falls out of the field. The action of the robot
starts immediately after the coin appears on the screen, i.e. it
happens before the participants realize that a coin of high value
has appeared. The actions are sequential, i.e. if multiple high-
value coins are present on the field, the robot would aim at the
first one that appeared, then once it disappears, it would aim at
the second one in the sequence that is still on the field, and so
on. The robot does not position the catcher at an exact point,
rather it directs the user, who has to refine the positioning. In
the experiment, a single game lasts 150 seconds. The coins
sequence consists of 86 coins, of which 15 coins of value 20,
16 of value 10, 36 of value 5, and 19 of value 1. Therefore,
the robot takes action for a total of 31 times out of the 86
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coins falling.
These actions are ”hidden” because, as explained in section

II-A, before the active session starts, the participants are com-
pletely unaware of them. This means that when the robot starts
to take physical actions, the participants are not expecting them
and do not know the meaning of the robot’s actions (intention).
After a few actions, the participants should be aware that the
robot may take actions, but the unanticipated nature of the
actions remains, as the actions happen before the participants
can realize that a coin of high value has appeared, therefore the
participant would not be able to predict when the next action is
taking place, independently from the participant understanding
the intention of the robot or not.

C. Robot control

To ensure safety, when the user comes into contact with the
end-effector of the robot, the robot is controlled in torque,
while when the interaction is not intended, e.g. the user
releases the robot, the robot is controlled in position. To
implement the controller, we use a Quadratic-Programming
(QP) formulation [31], which allows further safety by taking
into account the joint limits, joint velocity limits, and joint
torque limits of the robot. The controller runs at 100Hz.

The action of the robot is implemented using a position task
in the QP formulation, i.e. the controller has the objective of
minimizing the distance between the current position of the
end-effector and a target position. In this case, the target po-
sition is the location of a high-value coin. When a high-value
coin appears, the stiffness of the position task is incremented,
increasing the effect of the objective of reaching the target
position on the generated joint torques, resulting in the robot
exerting a higher force to move its end-effector towards the
target position. However, as we use torque control, the user
could still exert high enough opposition forces on the robot
and prevent it from moving towards its target.

D. Equipment details

We use equipment similar to the one from our previous
experiment [27]. We use the Sawyer (Rethink Robotics)
collaborative manipulator, which has 7 degrees of freedom
and joint torque sensors in all the joints, which allows us
to implement the torque control and estimate the interaction
forces at the end-effector. In addition to our controller, we also
use the default self-collision avoidance of the robot. The user
has to press the cuff button located on the end-effector in order
to move the robot, i.e. to switch to torque control mode. To
start the game, the user has to press a second button, which is
also located on the end-effector. As illustrated in Figs. 2 and
3, the setup of the experiment includes the following:

• Photogrammetric motion camera system with 13 cameras
from Motion Analysis;

• 4 force plates (red area in Fig. 2) from Bertec that
measure both forces and moments;

• EMR-9 eye tracker from NAC Image Technology, which
features a cap on which the world camera and the two eye
cameras are mounted, and a controller box that allows to
record the data and synchronize with the motion capture

system; compared to [27], this new eye-tracker ensures
better data as it uses two eye cameras;

• Shimmer3 GSR+ for measuring GSR via single-use elec-
trodes positioned on the back of the neck, and PPG via
an earlobe clip.

We use a total of 27 reflective markers for the motion capture
system: 7 markers on the head are required for synchronizing
the gaze data from the EMR-9 to the motion capture system,
8 markers on the torso and the back, 3 markers on each arm,
and 3 markers on each foot. This set is similar to the one
used in [27], which represents a minimal set of markers to
detect the most important body movements to describe the
human behavior in our experiment. All markers are positioned
exclusively on the dedicated suit as illustrated in Fig. 3. During
the experiment, the users are asked to stay as much as possible
on the force plates (however, the experiment is not paused in
case they step out).

The motion capture system, force plates, and EMR-9 are
all plugged into the same software, Cortex (Motion Analy-
sis). The motion camera and eye data are recorded at 60Hz
(maximum allowed by EMR-9), while the force plates are
recorded at 5 times the frequency, i.e. 300Hz. The GSR+
sensor is recorded at 100Hz as the robot controller. All the
data, including the above-listed sensors and robot data, are
synchronized via the Cortex recording signal, which triggers
a module dedicated to data recording.

Fig. 3: Sensors setup: 27 motion capture markers, EMR eye-tracker with cap
and battery bag, Shimmer3 GSR+ sensor with earlobe for PPG measurement
and single-use gel-type electrodes for GSR measurements.

E. Questionnaires

In our previous work [27], to quantify human perceptions
towards robots, we used state-of-the-art questionnaires: the
Godspeed Series Questionnaires (GSQ) [32] and the CH33
[33]. GSQ was chosen due to its popularity in the HRI
community, however, [34] noted pitfalls, that we also found
in our results, Animacy and Anthropomorphism were highly
correlated though supposedly on independent factors.
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In this experiment, we decided to drop GSQ and keep CH33,
which is a good measurement of psychological safety towards
robots in 6 factors. In addition, we also use the Negative
Attitude towards Robot Scale (NARS) [21] to understand the
attitude of participants towards robots before the experiment,
which results in 3 factors. We also use the well-established
visual Self Assessment Manikin (SAM) [35] on a 9 points
scale to assess the variations in emotional responses during
the experiment. As for the personality, we use the simplified
version of the Big Five personality questionnaire [36] con-
sisting of 15 questions that were used in [27]. The reader is
redirected to [27] for the full versions of the personality and
CH33 questionnaires adopted in this study, while NARS and
SAM can be found in [21] and [35], respectively.

F. Experiment protocol

The experiment follows a strict protocol as follows: dur-
ing each experiment, two to three experimenters are present
for one participant. One supervising experimenter (and one
translator when necessary), who has the role of explaining
the participant’s rights (by reading the same document to
all participants) and getting their consent, and one instructor,
who is the one carrying out the experiment. In addition, an
interviewer is connected from a remote at the end of the
experiment.

To reduce the interaction between the experimenters and
the participant and keep the most similar condition possible
for all participants, each participant reads a file containing the
full protocol of the experiment (see it in the attached material),
then watches an instructional video which explains the game
and how to use the robot to play the game (see multimedia
attachment). The instructional video contains the minimum
information necessary to play the game, no further instructions
about how to approach the robot, how to grasp the robot, and
in general, how to behave during the interaction, are given.

The experiment then proceeds with the following steps:
1) Measurement of the participant’s height and weight;
2) The participant fills in the preliminary questionnaire,

the Big Five personality questionnaire, and the NARS
questionnaire;

3) The participant is equipped with the EMR-9 and per-
forms the eye-tracker calibration;

4) The participant is equipped with the motion capture
markers and the Shimmer3 GSR+ sensor performs the
motion capture template acquisition, and rest for 5-10
minutes to collect baseline data for GSR and PPG;

5) The participant performs 2 times the trial session, during
which the robot does not take any action, and the caught
coins do not account for the bonus payment;

6) The participant fills in the CH33 and the SAM;
7) The participant repeats 3 times the active session, during

which the robot takes actions (aims at high-value coins);
after each session, the participant fills in the SAM, to
assess the change in emotional state; after all 3 active
sessions, one more time the CH33, to assess the change
in perceptions; the sum of the coins caught during the
3 sessions is the final bonus payment;

8) The equipment is removed from the participant and they
take the semi-structured interview with the researcher
connected remotely on a laptop.

In total, each participant needs about 1.5 to 2 hours to
complete the whole experimental procedure from instructions
to interview. During each session, the participant plays only
one game, therefore one session lasts about 3 minutes (150
seconds for the game, about 15 seconds at the beginning,
and at the end for setting GSR and PPG at baseline levels).
The entire time during which the participant is engaged with
the robot is no longer than 30 minutes (including the time
to answer the questionnaires). The semi-structured interview
lasts about 10-15 minutes. The meaning of the actions of the
robot is not disclosed to the participant unless explicitly asked
at the end of the whole procedure.

G. Participants

A total of 40 participants participated in this study. The
participants were recruited via a recruiting company to avoid
any conflict in the process and ensure a uniform population.
The following criteria were given for the recruitment:

• Japanese nationals, born and raised in Japan;
• Age between 20 and 50;
• Weight between 50kg and 80kg;
• Height between 150cm and 180cm;
• No prior experience with similar experiments;
• No health issues (heart issues, movement disorders).

Each participant received a reward based on the time they
spent to conduct the experiment, plus the bonus payment
from the game result. The reason for choosing only Japanese
nationals is to avoid possible cultural-dependent variations,
and due to the difficulty of recruiting a uniform population
for a different nationality. Among the 40 participants, 35 have
been retained for this study. A total of 5 participants had to be
discarded due to accidental loss of data during the experiment,
i.e. force plates not recording, eye-tracker falling. Of the 35
participants, 17 are females and 18 are males, 12 are in their
20s (5 females and 7 males), 12 are in their 30s (6 females
and 6 males), and 11 are in their 40s (6 females and 5 males).

III. DATA PROCESSING

The raw data collected during the experiment are post-
processed to obtain a series of factors that are used for the
analysis. We consider only data from the second trial session
(referred to as the ”trial session” hereafter), and the 3 active
sessions. The first trial session is discarded as it is meant for
the participants to familiarize themselves with the operation
of the robot.

A. Motion and force data

The motion capture data are first processed with the Cortex
software (Motion Analysis) to obtain smooth marker trajec-
tories. Then by means of the DhaibaWorks [37] software
package, we compute the joint angles of the human model
and the poses of the body segment. In DhaibaWorks we use
both the human and the robot model, for the human model, the
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positions of the recorded markers are matched to the virtual
ones to perform inverse kinematics, while for the robot model,
the joint angles recorded directly from the robot are used to
obtain a precise reproduction of the movements of the robot.
In this way, we can directly extract body segment poses and
their relative distances to the links of the robot. We extracted
features that can describe the general human behavior during
the interaction, such as the orientation of the head, torso, and
feet, the distance between the head, torso, and hands and end-
effector of the robot, distance between the feet and the base of
the robot, and extension of their hands. Distance between the
feet, hands extension, and distance to the head are normalized
with respect to the height of the participant. To obtain more
precise information regarding the distance between the body
segments and the end-effector of the robot, we used a collision
detection algorithm [38], which is also used to automatize the
detection of the hand that the participants used to press the
cuff (the main hand) and to compute the distance from the
other hand (the supporting hand). This information is relevant
as participants interacted with the robot with many different
body postures and hand placements, as can be seen in the
multimedia material. The data from the force plates are used to
obtain the ground reaction forces (GRF), which are normalized
by the weight of the participant, and the position of the center
of pressure (CoP) with respect to the base of the robot.

B. Physiological data

From the eye-tracker, we extracted the eye blinking duration
(EBD), the eye blinking rate (EBR), and the pupil dimension
(PD), which are all normalized with respect to their baseline
values to avoid differences due to biological factors such as
age and gender. The gazing location is not considered as the
participants looked mostly at the screen for the whole duration
of the game. From the Shimmer3 GSR+ we obtained the
baseline of the GSR and PPG signals from the resting period
before the start of the experiment sessions, and also the signals
measured during the sessions. We also post-process PPG into
Pulse Rate Variability (PRV). Instead of using the GSR and
PRV directly, we use the percentage difference between their
baseline and the data measured during the sessions.

For all the data in III-A and III-B, we compute the average
during the interaction, i.e. the duration of one game, during
which the participants are holding on the end-effector of the
robot and therefore establishing a physical contact.

C. Questionnaires and interview

The questionnaires are processed to project the participants’
answers to their respective factors. For personality and CH33,
the reader can refer to [27], while for NARS and SAM, to [21]
and [35], respectively. In the case of CH33, we compute also
the difference between the outcome after the trial sessions and
the ones after the active sessions, as this represents the change
in the participants’ perceptions after they have experienced the
actions of the robot, shown in Fig. 4.

In this paper, we used partially the outcome of the semi-
structured interview to categorize whether the participants have

Fig. 4: CH33 scores after the trial session (blue) and the active sessions
(orange), ordered by participants’ ID number

understood the meaning of the intention of the robot, i.e.
catching high-value coins.

This categorization is not directly obtained with straight-
forward questions but identified by the interviewer from the
answers during the interview. We extract two categories: the
robot intention understanding and the perception of the robot
helpfulness. Of the 35 participants, 22 participants understood
the intention of the robot, and 13 did not. 18 participants found
the robot helpful while 17 did not or not completely. Another
interesting aspect that has emerged is that the intention under-
standing and the perception of the robot helpfulness are likely
dependent. For instance, among those who understood the
robot’s intention (22), 15 participants answered that the robot
was helpful or cooperative, while among those who did not or
not completely understand the intention (13), 6 answered that
the robot was not helpful nor collaborative.

D. Data analysis

We perform two types of analysis on the post-processed
data: statistical analysis, presented in section IV, and clustering
detailed in section V. All the factors that showed relevant
relationships in our analysis are reported in Table I. The
statistical analysis serves to address our initial hypotheses.
Specifically:

• H1 stated that the unanticipated robot actions can cause
measurable alterations in physical and physiological data,
meaning that we need to look for possible differences
between the data of the trial session and the active
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session, and possibly across the active sessions as well;
this is done via correlations considering the percentage
differences, and variance tests.

• H2 stated that these physical and physiological data
measured during the interaction could be explained with
users’ personality and perception of the robot, meaning
that we need to look for possible correlations between
factors.

While the statistical analyses can verify and/or reject our initial
hypotheses and explain the human behavior and perceptions
when physically interacting with a robot, the clustering analy-
sis aims at the further step of building a model of the human
state that could be used with controllers. Via clustering, we
attempt at building a model using data that can be collected
beforehand and real-time measurable data as inputs, which
could predict factors such as perception and psychological
safety.

IV. STATISTICAL ANALYSIS

A. Correlations

We perform Spearman’s correlation for non-parametric data
on the factors obtained from the post-processing. To verify
hypothesis H2, correlations are performed between personal
data (age, height), personality, perception, and the physical
(body segment distances and orientations, forces), physiolog-
ical (eye data, GSR, and PRV) data. To target hypothesis H1,
in the correlations we consider the difference in percentage
(indicated with Diff) between the data measured during the
trial session, with the average of those measured during the
three active sessions.

To select relevant factors, we use a threshold on the p-value,
i.e. all correlations with p-value < 0.05 are considered rele-
vant. This choice is due to the exploratory nature of the study,
where our sample size is still small relative to the number of
factors, and further constraints (e.g. on correlation coefficients)
on the data may leave out factors that are significant. The
retained factors are reported in Table II. The entries are split
into two groups. The first group includes the factors that are
measured at each session, and the second group includes those
that are the percentage difference between the average of the
active sessions and the trial session (except for CH33 that is
not the average, but the percentage difference in scores). From
Table II we can observe the following significant correlations:

• Personal information:
– Height has a negative correlation with Diff PRV and

positive correlation with Head Dist, indicating that
taller people had higher PRV during the experiment
and kept the end-effector further away from their
head.

– Age has a positive correlation with end-effector
forces, indicating elder people exerted higher forces.

• Personality:
– Extraversion has a negative correlation with Head

Dist, indicating that more extroverted people kept the
robot closer to their head. In Group 2, Extraversion
has a positive correlation with Diff Supp Hand Dist,

indicating that more extroverted people had their
supporting hand closer to the EE during the active
sessions compared to the trial session.

– In Group 2, Conscientiousness has a positive cor-
relation with Diff Head Dist and Diff Hands Ext,
indicating that more conscientious people kept the
robot closer to their head and with a smaller hand
extension during the active sessions with respect to
the trial session.

– In Group 2, Openness has a negative correlation with
Diff PD, indicating that the more people are open, the
smaller their PD, therefore less mental load, during
the active sessions with respect to the trial session.

• CH33 (perception, psychological safety):
– Diff Acceptance has positive correlations with Diff

GSR, indicating people who found the robot less
acceptable after the active sessions, had lower GSR
with respect to the baseline, meaning a possible
higher level of anxiety.

– Diff Agency has positive correlations with PD, in-
dicating that people who found the robot less agent
after the active sessions, also had smaller PD, which
may indicate less mental load.

– Diff Toughness has a negative correlation with end-
effector force and positive correlation with GRF, in-
dicating the people who found the robot as less tough
after the active sessions, applied lower interaction
forces at the end-effector and higher GRF.

– Diff Performance has a positive correlation with
Supp Hand Dist, indicating that the less performing
the robot was perceived after the active session,
the further the supporting hand was from the end-
effector.

– Diff Humanness has positive correlations with Supp
Hand Dist and Hand Ext, indicating that the less hu-
man the robot was perceived after the active sessions,
the further the participants kept their supporting hand
and had larger hands extensions.

• NARS:
– S3-Emotional interaction has a positive correlation

with EBR, and in Group 2, negative correlation with
Diff Harmlessness, indicating that the more people
felt negative about emotionally interacting with the
robot, the higher their blinking rate, so they may have
had a higher mental load, and the less harmless they
perceived the robot to be after the active sessions.

– In Group 2, S1-Social interaction has a negative
correlation with Diff EE force, indicating that the
more people were negative towards socially interact-
ing with the robot, the higher were their interaction
forces during the active sessions with respect to the
trial session.

B. Variance test by repeated sets

To verify H1, we performed T-test for repeated samples,
by comparing the factors that are measured in each session.
Specifically, we compared the trial session with the first active
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Factor Explanation
EE force Interaction forces measured at the end-effector

of the robot
GRF Ground reaction forces, normalized with body

weight
CoP Distance between the center of pressure of the

participant and the base of the robot
Head Dist Distance between the head and end-effector of

the robot
Supp Hand Dist Distance between the supporting hand (the one

not used to press the cuff) and end-effector of
the robot

B Feet dist The participant’s intra-feet distance
Hand ext Extension of the arms as sum of distances from

each hand to the torso, normalized by height
GSR Galvanic Skin Resistance, percentage difference

between baseline and the session
PRV Pulse Rate Variation, percentage difference be-

tween baseline and the session
EBD Eye blinking duration
EBR Eye blinking rate
PD Pupil diameter

Diff factor Percentage difference between the average of the
active sessions and the trial session.

TABLE I: All factors excluding height, age, gender, personality, and
questionnaires. All the factors above Diff factor are computed as the
average for each session (in the case of GSR and PRV, it’s the average of
the percentage differences with the baseline values). Only those relevant
in this paper are listed in the table.

Factor 1 Factor 2 Corr. coeff.
Group 1: single session measurements T A1 A2 A3

Height Diff PRV -0.39 -0.35 -0.37 -0.37
Height Head Dist 0.62** 0.61** 0.57** 0.63**

Age EE force 0.51** 0.43* 0.49** 0.41
Extraversion Head dist - -0.41 -0.35 -

Diff Acceptance Diff GSR 0.47** 0.41 0.41 0.43*
Diff Agency PD - 0.41 0.44* 0.40

Diff Toughness EE force -0.48** -0.48** -0.49** -0.49**
Diff Toughness GRF 0.4 - 0.36 0.35

Diff Performance Supp Hand Dist 0.36 0.39 0.40 0.38
Diff Humanness Supp Hand Dist 0.41 0.53** 0.49** 0.41
Diff Humanness Hands Ext 0.38 0.43* 0.47** 0.51**

S3-Emotional int. EBR - 0.33 0.4 0.51**
Group 2: differences
Conscientiousness Diff Head Dist 0.37
Conscientiousness Diff Hands Ext 0.40

Openness Diff PD 0.47**
Extraversion Diff Supp Hand Dist 0.44*
S1-Social int. Diff EE force -0.42

S3-Emotional int. Diff Harmlessness -0.38

TABLE II: Relevant correlations (p-value < 0.05). Group 1 are those where
the factors in Factor 2 are measured for each session, with T being the trial
session, and A1, A2, A3 the three active sessions respectively. Group 2 are the
percentage difference between active sessions and trial session. The correlation
coefficients marked with * are those with p-value < 0.01, while those with **
the ones with p-values < 0.005. Entries with ”-” means p-value > 0.05 and
the correlation factor is not reported in the table.

session (T-A1), and the first active session with the third active
session (A1-A3). For the SAM, we obtained p-values < 0.05
for Pleasure and Arousal for T-A1, and Dominance for A1-A3.
We can observe from Fig. 5 that Pleasure and Arousal did not
change significantly from A1 to A3, while Dominance does
not show a significant increase from the trial session to the
first active session, but does increase significantly through the
three active sessions. The EE forces also showed significant
changes in both T-A1 and A1-A3, with EE forces increasing
with the increasing number of sessions. The average distance
between the feet also showed significant differences in both
T-A1 and A1-A3, with increase distances.

Fig. 5: Self Assessment Manikin (SAM) results after each session, ”*” indicate
the ones with significant difference (p-value < 0.05).

C. Variance test by groups

We performed one-way ANOVA for different data groups,
namely: age (20, 30, 40), gender (female, male), robot inten-
tion understanding (yes, no), robot helpfulness (yes, no). In
the case of age groups, we found significant (p-value < 0.05)
differences for the EE forces, with forces increasing with age.

In the case of gender, we found a significant difference
for EBD, with females having higher blinking duration (lower
mental load) compared to males, and Hands Ext, where males
have larger hands extensions than females.

Fig. 6: Intention understanding class.

As shown in Fig. 6, there are many factors that show
significant differences between those who understood and
those who did not understand the intention of the robot. In
particular, those who understood the intention applied lower
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Fig. 7: Helpful class.

forces on the robot, had higher blinking duration and lower
blinking rate (less mental load) during the active sessions with
respect to the trial session, felt more dominant, and kept their
supporting hands closer to the robot.

For those who found the robot to be useful or not, we
also found significant differences on the forces applied on
the EE, as in Fig. 7, with those who found the robot being
helpful applying less forces. There is also a clear difference
in Extraversion, where the more introverted people found the
robot not/less helpful.

V. CLUSTERING ANALYSIS

The statistical analysis shows many relevant relationships
but does not give many insights if multiple factors are consid-
ered simultaneously, which can be done via clustering analysis.

Furthermore, in a realistic active pHRI scenario, the robot
controller would need to use information that can be gathered
beforehand and/or in real-time, to adapt its controller to spe-
cific users. Motivated by the results of the statistical analysis,
where we could observe relevant relationships between the
measurable data and perception, we divide the data into two
groups before applying clustering:

1) Data that could be used to predict perceptions of the
user:

• Data that can be collected beforehand: personal
information, personality, NARS.

• Real-time data that can be measured in real-time
with currently available or soon to be available non-
invasive sensors that can be used in a realistic near-
future scenario: postural data that depend mostly
on the user (distance between the feet, location of
the supporting hand), forces at the end-effector, and
physiological signals (PRV, eye factors).

2) Data that could be predicted or adapted to based on the
data from the group above:

• Perception: CH33, SAM, robot intention under-
standing, robot helpfulness.

• Postural data that the robot could adapt to (torso and
head distances, torso, head, and feet orientations),
e.g. by moving closer.

To reduce the number of factors and avoid redundancy, we
use the differences rather than the measurements of each
session. Factors that do not show significant changes were
discarded (e.g. Diff GSR, Diff GRF). We use the data in the

first group to perform clustering, with the aim to find out
whether these clusters can lead to specific patterns of data
in the second group, i.e. whether it would be possible to
implement a controller that takes the data in the first group
as input to predict the user’s state represented by the data in
the second group. We use agglomerative hierarchical clustering
with Ward’s linkage method. All data were standardized before
applying clustering. We can see from the obtained linkage
tree (dendogram) in Fig. 8 that it is possible to identify a
total of 6 clusters, of which one cluster contains only one
participant (n. 21). This participant is regarded as an outlier
and not considered for further analysis. The obtained clusters
are shown in Fig. 9, with the data used to obtain the clusters
in Fig. 9a, and those in the relative clusters from the second
group in Fig. 9b (gender is included only as reference). Further
discussions will follow in the next section.

Fig. 8: Dendogram for agglomerative hierarchical clustering (bold numbers
correspond to cluster number).

VI. DISCUSSIONS

Our first hypothesis H1 is that the unanticipated robot
actions could cause measurable alterations in the participants’
data. From the results, we can state that:

• From the semi-structured interview, it results that all
participants considered for the analysis (35) except for
two, clearly indicated that they felt that the robot was
taking some action, independently from from their under-
standing of the intention of the robot (for the time being,
these two participants were not considered outliers for
the data analysis).

• From the differences of CH33 as in Fig. 4, we can clearly
see that the perception of all participants changed after
the active sessions with respect to the trial session.

• From the T-test we could observe that indeed their percep-
tion from SAM showed significant changes throughout
the sessions, with decreasing pleasure, increasing arousal,
and dominance after the first active session. However,
pleasure also increases slightly for the remaining two ac-
tive sessions, while arousal decreases. This may indicate
that in the second and third active sessions, users started
to get used to the actions and they feel a bit happier, less
excited, and more dominant at the end of the experiment.

• From the physical data, end-effector forces, and distance
between the feet showed significant increases between
the trial session and the active sessions, indicating that
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(a) Data used as input for clustering

(b) Data that could be predicted/interpreted from the cluster inputs

Fig. 9: Clustering results (excluding cluster n.3).

probably when the robot was taking actions, the users
tried to adapt their forces and posture to the new situation.

With these results we could verify that the robot action
does cause alterations in the participants’ physical data and
perceptions, but not in a significant way the physiological data.

Our second hypothesis H2 stated that the physical and
physiological data can be explained with perceptions and
personalities. From the results, we could observe that:

• Personality traits can be related to several postural and
physiological data. Specifically, more extroverted people
seem to prefer to keep the robot closer, as also observed
in our previous study [27].

• The attitude of participants towards robots also explain
a few physical and physiological factors: people who
felt overall more ”positive” towards the robot (more
acceptable, less tough, more performant, less agent, more
human, and lower negative attitude), seem to have a more
”relaxed” interaction with the robot (closer distances,
lower forces, lower anxiety, lower mental load). This
result emerges also from the variance test, where people
who understood the intention of the robot are those who
used less force, had less mental load, felt more dominant,
and kept both hands closer to the robot end-effector. Also,
those who found the robot being helpful used less force
and were also those more extroverted compared to those
who found the robot not or less helpful.

• There are significant differences in the forces applied at
the end-effector in the 3 age groups, from both corre-
lations and variance test. It has been demonstrated that

significantly elder people (age range 70-80) use higher
grip forces [39] with respect to younger people (20-40).
Even if in our study the age difference is not as large as
in these studies, we cannot exclude that this could be the
reason for this finding.

We could verify that there exist relevant relationships be-
tween physical and physiological data and personalities and
perceptions, and also between perception and personalities.
Gender seems to play a smaller role, as the difference in hands
extension could be due to cultural and societal reasons, and
the possible lower mental load in females could be due to
females being generally less addicted to gaming [40].

These results indicate that it is possible to adapt the robot
controller from a set of measurable factors that explains
the real-time perception of users. The clustering helps us
identify possible patterns of these factors, which may lead to
a model that can be used to adapt the robot motions based on
measurable and known data, accounting also for the perception
of the user. From the obtained clusters in Fig. 9, we could
observe that clusters 4 and 5 are groups of younger subjects
who are mostly extroverted but are very different in other
personality traits such as Conscientiousness and Openness, and
showed different attitudes towards robots. From the data shown
in Fig. 9b, we can see that the difference in their posture may
not be relevant, however, their perception varies significantly.
Clusters 0, 1, and 2 are groups of elder participants and are dis-
tinguished mainly by their personalities, attitude towards the
robot, forces, and postures. These differences mark variations
in posture, understanding, and perceptions in Fig. 9b.

With respect to our previous study [27], we introduced a
bonus payment to motivate the participants to interact with the
robot, while we could not conclude whether the motivation of
the participants was actually affected, the new game allowed
for a better understanding of the relationship between the
data, and the higher number of participants allowed to obtain
statistically more significant outcomes. The number of factors,
however, remains high, and not all possible behavior variations
could be taken into account, therefore possible patterns could
be missed. Even if the number of participants was doubled,
it could still be premature to conclude on the usability of the
cluster outcomes, which will be verified by implementing and
testing a controller using the input data, however, this is out
of the scope of this paper.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we conducted an experiment to measure both
the physical and mental state of human users in relation to
active pHRI, i.e. a physical interaction during which the robot
may take an unanticipated physical action on the user, based
on the hypotheses that such actions can cause alterations in the
users’ state, and that physical and physiological measurements
can be explained with personality and perceptions. We could
verify both H1 and H2 by means of statistical analysis, even
if H1 could be verified only for a few factors. To be able
to use the obtained results in a possible control framework,
we performed clustering analysis to identify patterns in the
data and obtained relevant classifications. For instance, users’
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perception of the robot (including understanding the actions
of the robot and finding it helpful) could be predicted with
their age, personality, and real-time measurable postural and
physiological data.

The outcomes of this study indicate that mental state could
be quantified by means of the relation between perception
with physical and physiological signals, these findings could
be used to build a human-state model for use in the control of
robots during active pHRI. An important step will also consist
in reducing the number of factors to be verified with respect to
the number of participants of the experiment, in order to obtain
more solid and statistically significant results. The clustering
analysis is a first step towards reducing factors and building
a model, where we will also consider Structural Equation
Modeling (SEM) [41] to describe the relationship between
factors. To implement an active pHRI controller that can take
into account both the physical and mental state of the user in
a real application, it is necessary to reduce the sensor load.
In our experiment, a high amount of sensors was involved.
Despite most of the participants did not feel interfered by
the equipment (25 participants as resulted from the semi-
structured interview), it does not represent a realistic setup.
In future implementations, it will be necessary to focus on
those factors that can be measured with existing non-invasive
sensors and data that can be easily obtained, such as the ones
that guide our clustering approach.

From the results, it appears that the interaction forces
measured at the end-effector are highly relevant factors that
vary depending on different factors such as age, personality,
and perception. Personality seems to mark relevant differences
in the participants’ postures and perceptions. These outcomes
are very encouraging as the end-effector forces are easily
measurable with currently available sensors, personality can
be easily acquired via a questionnaire before starting the use
of the robot, and postures could be acquired via inexpensive
cameras. In the next step, we will consider verification of the
outcomes of this study with a minimal set of sensors. A more
in-depth analysis of the semi-structured interview will also be
performed from a social perspective but was out of the scope
of the current quantitative analysis.

In future studies, the effect of long-term interactions and
habituation should be considered, as the perception of users
varies in time [42]. Also, we used a simple visual game
to emulate the interaction with the robot, however, the type
of task involved in the interaction may also affect percep-
tions and behavior. In this paper, we used a collaborative
manipulator as it is the current state-of-the-art type of robot
meant for physical interactions with humans, especially when
considering industrial applications. However, this choice also
represents a limitation of the study regarding the generalization
of the outcomes. As a matter of fact, the type and also the
shape of the robot inevitably influence the type of physical
interactions with the human, whether direct or indirect, where
the appearance of robots may influence human’s perceptions
[43]. While the outcomes of this study cannot be directly
generalized for other types of robots (e.g. social robots, smaller
size manipulators, manipulators with mobile bases, wheeled
mobile robots, humanoid robots, etc.), the general framework

of the paper (i.e. physical action from the robot, sensors
adopted, and methods for data analysis) can be used to test
similar settings for different types of tasks and robots, where
dedicated experiments will be necessary to address each type
of robot.
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