Dielectric permittivity, conductivity and breakdown field of hexagonal boron nitride - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Materials Research Express Année : 2022

Dielectric permittivity, conductivity and breakdown field of hexagonal boron nitride

David Mele
Jose Palomo
  • Fonction : Auteur
  • PersonId : 1312478
Jean-Marc Berroir
E. Bocquillon
Gwendal Feve
Christophe Voisin
Emmanuel Baudin
Bernard Plaçais

Résumé

In view of the extensive use of hexagonal boron nitride (hBN) in 2D material electronics, it becomes important to refine its dielectric characterization in terms of low-field permittivity and high-field strength and conductivity up to the breakdown voltage. The present study aims at filling this gap using DC and RF transport in two Au-hBN-Au capacitor series of variable thickness in the 10–100 nm range, made of large high-pressure, high-temperature (HPHT) crystals and a polymer derivative ceramics (PDC) crystals. We deduce an out-of-plane low field dielectric constant epsilon∥ = 3.4 ± 0.2 consistent with the theoretical prediction of Ohba et al, that narrows down the generally accepted window epsilon∥ = 3–4. The DC-current leakage at high-field is found to obey the Frenkel-Pool law for thermally-activated trap-assisted electron transport with a dynamic dielectric constant epsilon∥ ≃ 3.1 and a trap energy ΦB ≃ 1.3 eV, that is comparable with standard technologically relevant dielectrics.
Fichier principal
Vignette du fichier
Pierret_2022_Mater._Res._Express_9_065901.pdf (1.08 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03564100 , version 1 (08-06-2022)

Licence

Paternité

Identifiants

Citer

Aurelie Pierret, David Mele, Holger Graef, Jose Palomo, Takashi Taniguchi, et al.. Dielectric permittivity, conductivity and breakdown field of hexagonal boron nitride. Materials Research Express, 2022, 9 (6), pp.065901. ⟨10.1088/2053-1591/ac4fe1⟩. ⟨hal-03564100⟩
81 Consultations
173 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More