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Achievable Information-Energy Region in the Finite
Block-Length Regime with Finite Constellations

Sadaf ul Zuhra, Samir M. Perlaza, H. Vincent Poor, and Eitan Altman

Abstract—This paper characterizes an achievable information-
energy region of simultaneous information and energy trans-
mission over an additive white Gaussian noise channel. This
analysis is performed in the finite block-length regime with finite
constellations. More specifically, a method for constructing a
family of codes is proposed and the set of achievable tuples of
information rate, energy rate, decoding error probability (DEP)
and energy outage probability (EOP) is characterized. Using
existing converse results, it is shown that the construction is
information rate, energy rate, and EOP optimal. The achieved
DEP is, however, sub-optimal.

I. INTRODUCTION

Simultaneous information and energy transmission (SIET),
also known as simultaneous wireless information and power
transfer (SWIPT) is one of the key technologies being re-
searched [1]–[5] for use in 6G systems [6]. A key research
direction is the study of the fundamental trade-off between the
amount of information and energy that can be simultaneously
transmitted by a signal. This trade-off has been studied in [1],
[7] in the case of point-to-point noisy channels in the asymp-
totic regime. Nonetheless, the information-energy trade-off is
not the only trade-off involved in SIET. In the finite block-
length regime, several other trade-offs appear which are taken
into consideration in this paper.

Optimal signal and system design exclusively for wireless
energy transmission has been studied in [8]–[14]. Various
aspects of SIET system design such as resource allocation,
receiver architectures, energy harvester circuits, and decoding
strategies have been considered in [15]–[20]. An algorithm
for designing circular quadrature amplitude modulation for
SIET that maximizes the peak-to-average power ratio has been
proposed in [21].

Much of the existing work in this field including [1], [2],
[4], [7], [22], [23] assume that the duration of transmission is
infinitely long. The assumption of infinitely long transmissions
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guarantees that the decoding error probability (DEP) and the
energy outage probability (EOP) can be made arbitrarily close
to zero, and thus, the focus is only on the information and
energy transmission rates. In the finite block-length regime,
which is the subject of this paper, the DEP and EOP are
bounded away from zero.

Earlier research on the fundamental limits of SIET in the
finite block-length regime is presented in [3], [24], [25]. In [3]
and [24], the information-energy capacity region with binary
antipodal channel inputs is presented. A converse information-
energy region of SIET with arbitrary number of channel inputs
is presented in [25]. Comprehensive overviews of the literature
on SIET can be found in [26]–[29].

This work proposes a new method of constructing a family of
codes for SIET over an AWGN channel in the finite block-
length regime with finite constellation sizes. An achievable
information-energy region is characterized for the constructed
family of codes. Using the converse results obtained in part
from [25], it is shown that the constructed codes are informa-
tion rate, energy rate and EOP optimal.

The rest of this paper is organized as follows. Section III
presents a new method for constructing families of codes
that satisfy the information and energy rate, DEP, and EOP
requirements. The converse and achievable information-energy
regions are characterized in Section IV and Section V, respec-
tively. The gap between the converse and achievable regions
is studied using numerical examples in Section VI.

II. SYSTEM MODEL

Consider a communication system formed by a transmitter, an
information receiver (IR), and an energy harvester (EH). The
objective of the transmitter is to simultaneously send informa-
tion to the IR at a rate of R bits per second; and energy to the
EH at a rate of B Joules per second over an AWGN channel.
That is, given a channel input x = (x1, x2, . . . , xn)

T ∈ Cn,
with n ∈ N, the outputs of the channel are the random vectors

Y =x+N1, and (1a)
Z=x+N2, (1b)

where n is the duration of the transmission in channel
uses; and the vectors Y = (Y1, Y2, . . . , Yn)

T ∈ Cn and
Z = (Z1, Z2, . . . , Zn)

T ∈ Cn are the inputs of the IR and
the EH, respectively. The components of the random vectors
N1 = (N1,1, N1,2, . . . , N1,n)

T ∈ Cn and N2 = (N2,1, N2,2,
. . ., N2,n)

T ∈ Cn are independent and identically distributed.
More precisely, for all (i, j) ∈ {1, 2} × {1, 2, . . . , n}, Ni,j

is a complex circularly symmetric Gaussian random variable



whose real and imaginary parts have zero means and vari-
ances 1

2σ
2. That is, for all y = (y1, y2, . . . , yn)

T ∈ Cn,
for all z = (z1, z2, . . . , zn)

T ∈ Cn, and for all x =
(x1, x2, . . . , xn)

T ∈ Cn, it holds that the joint probabil-
ity density function of the channel outputs (Y ,Z) satisfies
fY Z|X(y, z|x) = fY |X(y|x)fZ|X(z|x), where

fY |X(y|x)=
n∏

t=1

fY |X(yt|xt) and (2)

fZ|X(z|x)=
n∏

t=1

fZ|X(zt|xt), (3)

and for all t ∈ {1, 2, . . . , n},

fY |X(yt|xt) =
1

πσ2
exp

Ç
−|yt − xt|2

σ2

å
, (4a)

fZ|X(zt|xt) =
1

πσ2
exp

Ç
−|zt − xt|2

σ2

å
. (4b)

Within this framework, the two tasks of information and
energy transmission must be accomplished.

A. Information Transmission
Assume that the information transmission takes place using a
modulation scheme that uses L symbols. That is, there is a
set

X ≜ {x(1), x(2), . . . , x(L)} ⊂ C (5)

that contains all possible channel input symbols, and

L ≜ |X | . (6)

Let M be the number of message indices to be transmitted
within n channel uses. That is,

M ⩽ Ln. (7)

To reliably transmit a message index, the transmitter uses an
(n,M)-code defined as follows.

Definition 1 ((n,M)-code). An (n,M)-code for the random
transformation in (1) is a system

{(u(1),D1), (u(2),D2), . . . , (u(M),DM )} , (8)

where, for all (i, j) ∈ {1, 2, . . . ,M}2, i ̸= j,

u(i) = (u1(i), u2(i), . . . , un(i)) ∈ Xn, (9a)
Di ∩ Dj = ϕ, (9b)
M⋃
i=1

Di ⊆ Cn, and (9c)

|ut(i)| ⩽ P, (9d)

where P is a peak-power constraint. Assume that the trans-
mitter uses an (n,M)-code

C ≜ {(u(1),D1), (u(2),D2), . . . , (u(M),DM )}, (10)

that satisfies (9). Without any loss of generality, assume that
for all i ∈ {1, 2, . . . ,M}, the decoding set Di is written in
the form

Di = Di,1 ×Di,2 × . . .×Di,n, (11)

where for all t ∈ {1, 2, . . . , n}, the set Di,t is a subset of C.
The information rate of any (n,M)-code C is given by

R =
logM

n
(12)

in bits per channel use. To transmit message index i, the trans-
mitter uses the codeword u(i) = (u1(i), u2(i), . . . , un(i)).
That is, at channel use t, the transmitter inputs the sym-
bol ut(i) into the channel. At the end of n channel uses,
the IR observes a realization of the random vector Y =
(Y1, Y2, . . . , Yn)

T in (1a). The IR decides that message index
j, with j ∈ {1, 2, . . . ,M}, was transmitted, if the following
event takes place:

Y ∈ Dj , (13)

with Dj in (10). That is, the set Dj ∈ Cn is the region of
correct detection for message index j. Therefore, the DEP
associated with the transmission of message index i is

γi(C ) ≜ 1−
∫
Di

fY |X(y|u(i))dy, (14)

and the average DEP is given by

γ(C ) ≜
1

M

M∑
i=1

γi(C ). (15)

This leads to the following refinement of Definition 1.

Definition 2 ((n,M, ϵ)-codes). An (n,M)-code C for the
random transformation in (1) is said to be an (n,M, ϵ)-code
if

γ(C ) ≤ ϵ. (16)

B. Energy Transmission
Given a channel output z ∈ C, the energy harvested from
such channel output is given by a positive monotone increasing
circularly symmetric function g given by

g : C→ [0,+∞), (17)

with g(0) = 0. The energy transmission task must ensure
that a minimum average energy B is harvested at the EH
at the end of n channel uses. Let ḡ : Cn → [0,+∞)
be a positive function such that given n channel outputs
z = (z1, z2, . . . , zn), the average energy is

ḡ(z) =
1

n

n∑
t=1

g(zt), (18)

in energy units per channel use. Assume that the transmitter
uses the code C in (10). Then, the EOP associated with the
transmission of message index i, with i ∈ {1, 2, . . . ,M},
is

θi(C , B) ≜ Pr[ḡ(Z) < B|X = u(i)], (19)

where the probability is with respect to the probability density
function fZ|X in (3); and the average EOP is given by

θ(C , B)≜
1

M

M∑
i=1

θi(C , B). (20)



This leads to the following refinement of Definition 2.

Definition 3 ((n,M, ϵ,B, δ)-code). An (n,M, ϵ)-code C
for the random transformation in (1) is said to be an
(n,M, ϵ,B, δ)-code if

θ(C , B) ≤ δ. (21)

The results in this work are presented in terms of the
types [30] induced by the codewords of a given code. Given an
(n,M, ϵ,B, δ)-code C of the form in (10), the type induced
by the codeword u(i), with i ∈ {1, 2, . . . ,M}, is a probability
mass function (pmf) whose support is X in (5). Such pmf is
denoted by Pu(i) and for all ℓ ∈ {1, 2, . . . , L},

Pu(i)(x
(ℓ)) ≜

1

n

n∑
t=1

1{ut(i)=x(ℓ)}, (22)

where x(ℓ) is an element of X in (5). The type induced by all
the codewords in C is also a pmf on the set X in (5). Such
pmf is denoted by PC and for all ℓ ∈ {1, 2, . . . , L},

PC (x(ℓ)) ≜
1

M

M∑
i=1

Pu(i)(x
(ℓ)). (23)

A class of codes that is of particular interest in this study is that
of homogeneous codes, which are defined hereunder.

Definition 4 (Homogeneous Codes). An (n,M, ϵ,B, δ)-code
C for the random transformation in (1) of the form in (10) is
said to be homogeneous if for all i ∈ {1, 2, . . . ,M} and for
all ℓ ∈ {1, 2, . . . , L}, it holds that

Pu(i)(x
(ℓ)) = PC (x(ℓ)), (24)

where, Pu(i) and PC are the types defined in (22) and (23),
respectively.

Homogeneous codes are essentially (n,M, ϵ,B, δ)-codes that
satisfy the condition that a given channel input symbol is used
with the same frequency in all the codewords. Such codes are
the primary focus of the results in this paper.

III. CODE CONSTRUCTION

The information-energy capacity region of SIET systems with
finite constellations is defined as follows.

Definition 5. The information-energy capacity region
C(n, ϵ, δ) for the random transformation in (1) is the set of all
information and energy transmission rate pairs (R,B) ∈ R2

for which there exists an (n,M, ϵ,B, δ)-code C such that
logM

n = R, the average DEP λ(C ) ≤ ϵ, and, the average
EOP θ(C ) ≤ δ.

The process of characterizing an achievable information-
energy region for SIET with finite constellations begins with
the construction of an (n,M)-code. Let the (n,M)-code C
be

C ≜ {(u(1),D1), (u(2),D2), . . . , (u(M),DM )} . (25a)

The construction of the code begins with the construction of
the channel input symbols. The set of channel input symbols is
a modulation constellation represented by a finite subset of C.

Consider a constellation formed by C layers, with C ∈ N. A
layer is a subset of symbols in C that have the same magnitude.
For all c ∈ {1, 2, . . . , C}, denote by Lc ∈ N the number of
symbols in the cth layer and let Ac ∈ R+ be the amplitude
of the symbols in layer c. Denote such a layer by U(Ac, Lc).
That is,

U(Ac, Lc) ≜
{
x(ℓ)
c = (25b)

Ac exp

Å
i
2π

Lc
ℓ

ã
⊆ C : ℓ ∈ {0, 1, 2, . . . , (Lc − 1)}

}
,

where i is the complex unit. Using this notation, the constel-
lation can be described by the following set:

X =

C⋃
c=1

U(Ac, Lc). (25c)

Without any loss of generality, assume that

A1 > A2 > . . . > AC . (25d)

The symbols in layer c of the form in (25b), are equally spaced
along a circle of radius Ac. The constellation induced by the
set X is thus made up of points uniformly distributed along
C concentric circles. The total number of symbols L in (6)
for X in (25c) is

L =

C∑
c=1

Lc. (25e)

The construction of the (n,M)-code C in (25a) is as follows.
For all c ∈ {1, 2, . . . , C}, let pc be the frequency with which
symbols of the cth layer appear in the code. The resulting
probability vector is denoted by

p = (p1, p2, . . . , pC)
T
, (25f)

where, for all c ∈ {1, 2, . . . , C},

pc =
1

Mn

Lc∑
ℓ=1

M∑
i=1

n∑
t=1

1{ut(i)=x
(ℓ)
c }. (25g)

The decoding set G(ℓ)
c associated with symbol x(ℓ)

c is a circle
of radius rc ∈ R+ centered at x(ℓ)

c . That is,

G(ℓ)
c =

ß
y ∈ C :

∣∣∣y − x(ℓ)
c

∣∣∣2 ≤ r2c

™
. (25h)

The radii r1, r2, . . ., rC are chosen such that the decod-
ing regions are mutually disjoint. To ensure this, for all
c ∈ {1, 2, . . . , C} the amplitudes Ac in (25b) satisfy the
following

Ac −Ac−1 ≥ rc + rc−1. (25i)

The vector formed by these radii is denoted by

r = (r1, r2, . . . , rC)
T
. (25j)

For all i ∈ {1, 2, . . . ,M}, the decoding region for codeword
u(i) is

Di = Di,1 ×Di,2 × . . .×Di,n, (25k)



where c ∈ {1, 2, . . . , C}, t ∈ {1, 2, . . . , n}, and ℓ ∈
{1, 2, . . . , Lc} are such that if, ut(i) = x

(ℓ)
c , then, Di,t =

G(ℓ)
c .

This defines a family of (n,M)-codes denoted by

C (X ,p, r), (26)

with constellation X in (25c), probability vector p in (25f)
and, radii of decoding regions r in (25j).

IV. CONVERSE RESULTS

This section characterizes a converse region for codes in
C (X ,p, r) in (26). That is, any tuple (n,M, ϵ,B, δ) out-
side the converse region is not achievable by the codes in
C (X ,p, r).

The following theorem follows from Lemma 1 and Lemma 3
in [25] and Lemma 4.5 in [31].

Theorem 1. Consider a homogeneous (n,M, ϵ,B, δ)-code C
for the random transformation in (1) with constellation X of
the form in (25c) and p = (p1, p2, . . . , pC)

T in (25f). The
constellation X has C layers and for all c ∈ {1, 2, . . . , C},
layer c contains Lc symbols and has amplitude Ac. Then, the
following holds

M ≤ n!∏L
ℓ=1(n

pc

Lc
)!
; (27a)

B ≤ 1

1− δ

C∑
c=1

pcEW [g (Ac +W)] ; and (27b)

ϵ ≥ 1−
C∏

c=1

Lc∏
ℓ=1

(
1−Q

(
|x(ℓ)

c − x̄
(ℓ)
c |√

2σ2

− σ
√
2|x(ℓ)

c − x̄
(ℓ)
c |

log

Ç
PC (x̄

(ℓ)
c )

PC (x
(ℓ)
c )

å))n pc
Lc

, (27c)

where, the type PC is defined in (23); the function g is the
energy function in (17); the expectation in (27b) is with respect
to W, which is a complex circularly symmetric Gaussian
random variable whose real and imaginary parts have zero
means and variances 1

2σ
2; and, for all c ∈ {1, 2, . . . , C} and

ℓ ∈ {1, 2, . . . , L}, the complex x̄
(ℓ)
c satisfies

x̄(ℓ)
c ∈ argmin

x∈X\{x(ℓ)
c }

(
1−

Q

(
|x(ℓ)

c − x|√
2σ2

− σ
√
2|x(ℓ)

c − x|
log

Ç
PC (x)

PC (x
(ℓ)
c )

å))
.(28)

The function Q in (27c) and (28) is the Q function defined
in [32, Chapter 2].

V. MAIN RESULTS

This section provides various achievability results for homo-
geneous codes in the family C (X ,p, r). The proofs of these
Lemmas are presented in [31].

A. Information Transmission
The results in this subsection provide conditions on the pa-
rameters of homogeneous codes in C (X ,p, r) that impact the
information transmission rate R and the DEP ϵ.

Lemma 1. Consider a homogeneous (n,M)-code C for the
random transformation in (1) of the form in (25) with p =
(p1, p2, . . . , pC)

T in (25f). The code C is an (n,M, ϵ)-code if
the parameters r1, r2, . . . , rC in (25h) satisfy

C∏
c=1

Å
1− e−

r2c
σ2

ãnpc

≥ 1− ϵ, (29)

where, the real σ2 is defined in (4).

Lemma 2. Consider an (n,M)-code C for the random
transformation in (1) of the form in (25), with the set of
symbols X in (25c) and p = (p1, p2, . . . , pC)

T in (25f). Then,
for all c ∈ {1, 2, . . . , C}, the number of symbols in layer c of
X is given by

Lc ≤
ú

π

2 arcsin rc
2Ac

ü
, (30)

and, the number of codewords M satisfies the following:

M ≤ n!∏C
c=1

Ä
(n pc

Lc
)!
äLc

, (31)

where, rc is the radius of the decoding regions G(1)
c , . . . ,G(Lc)

c

in (25h) and Ac is the amplitude in (25b).

B. Energy Transmission
The result in this subsection provides conditions on the pa-
rameters that impact the energy transmission rate B and the
EOP δ for homogeneous codes in C (X ,p, r).

Lemma 3. Consider a homogeneous (n,M, ϵ)-code C for
the random transformation in (1) of the form in (25) with p =
(p1, p2, . . . , pC)

T in (25f). The code C is an (n,M, ϵ,B, δ)-
code if, the energy transmission rate B satisfies the following:

B ≤ 1

1− δ

C∑
c=1

pcEW [g (Ac +W)] (32)

where, the parameters Ac are in (25b) and, the expectation is
with respect to W, which is a complex circularly symmetric
Gaussian random variable whose real and imaginary parts
have zero means and variances 1

2σ
2.

VI. FINAL REMARKS

Consider a homogeneous (n,M, ϵ,B, δ)-code C in C (X ,p, r)
in (26). The constellation X is of the form in (25c) with
number of layers C = 3. Duration of the transmission in
channel uses is n = 80. The energy harvested at the EH
takes into consideration the non-linearities of the receiver as
suggested in [33], [34]. More specifically, the energy function
g in (17) is of the form in [34, Proposition 1].

In Fig. 1, the bound on the achievable energy transmission rate
B in (32) for code C is plotted as a function of the achievable
DEP ϵ in (29). The figure also shows the converse bound on B
in (27b) as a function of ϵ in (27c). The amplitude of the first
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Fig. 1: Converse (27b) and achievable (32) bounds on energy
transmission rate B for a homogeneous code in the family
C (X ,p, r) as a function of the DEP ϵ in (27c) and (29),
respectively.

layer is A1 = 50. Amplitudes of the second and third layers
A2 and A3 are determined by the radii of the decoding regions
according to (25i). For all c ∈ {1, 2, . . . , C}, the number of
symbols in layer c i.e., Lc, is determined by the radii rc and
the amplitudes Ac according to (30). The probability vector
in (25f) is p = (0.5, 0.3, 0.2)T. The points on the curves are
generated by varying rc between 2 and 10.

Fig. 1 shows several trade-offs between the energy transmis-
sion rate B, the DEP ϵ, the EOP δ, and the information
transmission rate R. Firstly, the energy rate B increases as
ϵ increases. This effect is due to the fact that increasing ϵ
allows decreasing the radii of the decoding regions r in (25j)
according to (29). At the same time, decrease in rc allows
increasing the amplitudes A2 and A3 according to (25i) which
increases B according to (32). Secondly, the energy rate B
increases as δ increases. This effect stems from the dependence
of B on δ as in (32). Thirdly, the information rate R increases
as ϵ increases. This is because increasing ϵ allows decreasing
rc according to (29). At the same time, decrease in rc allows
increasing the number of symbols in a layer Lc according
to (30) which increases R according to (31) and (12).

Fig. 2 shows the converse and achievable information-energy
regions of code C as a function of the EOP δ and the DEP
ϵ. The radii of the decoding regions rc are assumed to be
the same for all the layers i.e., for all c ∈ {1, 2, . . . , C},
the radii rc = r in (25h). The value of r is obtained
according to (29) to satisfy ϵ. The amplitude of the first layer
is A1 = 30. Amplitudes of the second and third layers A2

and A3 are determined by r according to (25i). The points in
Fig. 2 are obtained by varying ϵ and the probability vector p
in (25f).

Fig. 2 shows the following trade-offs between the information
and energy transmission rates in the converse and achievable
curves. Firstly, the maximum achievable information transmis-
sion rate is R = 3.9 bits/channel use. This R is achieved by a
code in which all the symbols in the constellation X are used

Fig. 2: Converse and achievable information-energy regions
for homogeneous codes in the family C (X ,p, r).

with the same frequency. The maximum energy transmission
rate that can be achieved at R = 3.9 bits/channel use is
B = 1.5×104 energy units. This corresponds to the point D1

in Fig. 2. Secondly, the maximum achievable B is 2.9× 104

energy units. This is achieved by a code that exclusively uses
the symbols in the first layer i.e., the probability vector p
in (25f) is p = (1, 0, 0)T. The maximum R that can be
achieved at B = 2.9×104 energy units is R = 2.4 bits/channel
use. This corresponds to the point D2 in Fig. 2. Thirdly, the
curves between the points D1 and D2 in Fig. 2 show the trade-
off between the information and energy transmission rates. As
B is increased from 1.5 × 104 energy units at point D1, R
decreases. Similarly, as R is increased from 2.4 bits/channel
use at point D2, B decreases.

A. Comments on Optimality

The codes constructed in this work are optimal in the sense of
the converse results of Theorem 1 except for the DEP ϵ. Fig.1
shows that the code C achieves the optimal energy rate B and
information rate R as given by the converse results albeit at a
higher DEP ϵ. Fig. 2 shows that the converse and achievable
information-energy rate curves for C overlap. However, for
the same information and energy rate pair, the DEP for the
achievable curves is higher than that of the converse curves.
The sub-optimality in DEP arises due to the sub-optimal
choice of circular decoding regions in (25h).

The proposed construction provides a method of building
codes that meet the given energy and information rate, EOP,
and DEP requirements. Building codes that achieve the op-
timal energy and information rate, EOP, and DEP requires
optimizing set of channel input symbols X . However, the
problem of optimal input design even for the most well
behaved channels [35]–[37] remains an open problem.
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