HAL will be down for maintenance from Friday, June 10 at 4pm through Monday, June 13 at 9am. More information
Skip to Main content Skip to Navigation
Journal articles

Calculi, countermodel generation and theorem prover for strong logics of counterfactual reasoning

Abstract : We present hypersequent calculi for the strongest logics in Lewis’ family of conditional systems, characterized by uniformity and total reflexivity. We first present a non-standard hypersequent calculus, which allows a syntactic proof of cut elimination. We then introduce standard hypersequent calculi, in which sequents are enriched by additional structures to encode plausibility formulas and diamond formulas. Proof search using these calculi is terminating, and the completeness proof shows how a countermodel can be constructed from a branch of a failed proof search. We then describe tuCLEVER, a theorem prover that implements the standard hypersequent calculi. The prover provides a decision procedure for the logics, and it produces a countermodel in case of proof search failure. The prover tuCLEVER is inspired by the methodology of leanTAP and it is implemented in Prolog. Preliminary experimental results show that the performances of tuCLEVER are promising.
Document type :
Journal articles
Complete list of metadata

Contributor : Marianna Girlando Connect in order to contact the contributor
Submitted on : Wednesday, February 9, 2022 - 9:25:15 AM
Last modification on : Saturday, February 19, 2022 - 3:37:19 AM
Long-term archiving on: : Tuesday, May 10, 2022 - 6:21:55 PM


Files produced by the author(s)




Marianna Girlando, Björn Lellmann, Nicola Olivetti, Stefano Pesce, Gian Pozzato. Calculi, countermodel generation and theorem prover for strong logics of counterfactual reasoning. Journal of Logic and Computation, Oxford University Press (OUP), 2022, ⟨10.1093/logcom/exab084⟩. ⟨hal-03562537⟩



Record views


Files downloads