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We consider the problem of quantum temporal imaging in the case where the time lens is imple-
mented by a Sum Frequency Generation nonlinear process, in particular when the device is operated
close to 100% conversion efficiency. In the general case where the time lens also presents a finite
aperture and a non-perfect phase-matching the relevant figures of merit, as for example the tempo-
ral resolution, do not have an explicit expression. As a consequence, the performances of imaging
scheme are difficult to assess. Having a reliable estimation of these figures of merits is particularly
important because they can be significantly different from the regime of low conversion efficiency
usually considered in classical temporal imaging. We show that this problem can be approached in
terms of the eigenmodes of the imaging scheme and we show how its relevant figures of merit can be
extracted from the modal description of the imaging scheme. As a consequence we obtain criteria
allowing to design imaging schemes with close to unity efficiencies.

I. INTRODUCTION

Optical spectrotemporal degrees of freedom provide a
reliable and flexible encoding for photonic non-classical
states [1]. Their noiseless manipulation plays an im-
portant role in the processing of quantum information
and communication networks [2]. In order to cope with
the great heterogeneity of technologies that are used in
a quantum network, it is important to optimize mode-
matching between nodes. To this purpose a plethora of
strategies have been proposed such as quantum trans-
lation of the carrier frequency [3–6], waveform conver-
sion [7], bandwidth compression or stretching [8–12],
quantum pulse gating [13, 14] and shaping [15, 16].

Another approach to the manipulation of optical pulses
is based on the formal space-time analogy between the
propagation of a diffracting beam and that of a short
pulse in dispersive media. For classical beams, this led
to the formulation of temporal imaging [17–19] and the
demonstration of ultrafast waveform magnification and
reversal [20, 21], compression [38] or ultrafast waveform
detection [23, 24]. On the other side, quantum temporal
imaging (QTI) aims at the manipulation of the time-
frequency degrees of freedom of a quantum state without
destroying it. This has been considered either for single
photons [9, 25–29] or for squeezed light [30–34].

The key element of a temporal imaging system is the
time lens, a device that imprints a quadratic temporal
phase modulation on an input pulse as like a thin lens
induces a quadratic phase modulation on a spatially ex-
tended input wavefront. Optical time lenses are presently
based on electro-optical phase modulation [9, 12, 37],
sum-frequency generation (SFG) [20, 21], or four-wave
mixing (FWM) [23, 38–40] and provide a temporal mag-
nification up to 100 times. Time-lenses based on non-

linear processes, as discussed in [25, 30–32], need to be
operated in the regime close to 100% conversion efficiency
in order to process an input quantum state without de-
stroying its quantum properties. This case has been con-
sidered in the limit of infinite aperture and perfect phase-
matching [25, 26, 30, 31] and in the limit of finite aperture
but still perfect phase-matching [33, 34]. Here we con-
sider the most general case of QTI with finite aperture
and in presence of non perfect phase-matching. This case
has been considered in [19] but only in the low conversion
efficiency approximation, a regime suitable for classical
protocols only. On the contrary, in the high conversion
efficiency regime this problem does not admit a closed-
form solution, thus an explicit expression for the impulse
response function (IRF) is not possible. The IRF rep-
resents the response of the system to a point object and
plays an important role for extracting the relevant figures
of merit (as the temporal resolution) and for assessing
the system performances. In this work we show that the
problem can be approached in terms of the eigenmodes
of the imaging scheme and that its relevant figures of
merit can be extracted from the modal description even
if the IRF does not have an explicit expression. Our ap-
proach also allows to make clear the multimode nature
of QTI, a character that is important for processing an
image without distortions, thus enabling the design of
schemes with close to unit efficiencies. It is interesting to
remark that despite being implemented by the same non-
linear process of SFG-based QTI, quantum pulse gates
and shapers [13–16] are rather designed for single mode
operation.
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FIG. 1. (a) The imaging scheme: input dispersive line of total
GGD Din is followed by a time lens of equivalent GDD Df and
by an output dispersive line of total GDD Dout. The input
field Âin(τ) is imaged at the output on the field Âout(τ). (b)
SFG-based time lens scheme: the signal field (red) is mixed
together with a strong classical pump (blue) in order to pro-
duce the idler field (purple).

II. THE FORMALISM

In this paper we consider the simplest imaging scheme
that can be realized with a single time lens as depicted
in figure 1(a): it consists of a first dispersive medium
followed by a time lens then followed by a second dis-
persive medium. This scheme is the temporal equivalent
of a thin lens that performs the imaging of a spatially
extended object. In the following we will refer to the
first (second) medium as the input (output) dispersive
medium. Without loss of generality, we will focus on a
SFG-based time lens even if our approach remains valid
also for FWM-based time lenses. The SFG process (see
figure 1(b)) is mediated by a short chirped pump pulse of
carrier frequency ωp. Hence a pulse at signal frequency ωs

after a dispersive propagation through the input medium
is up-converted in a non-linear crystal to a new pulse at
the idler frequency ωi such that ωs+ωp = ωi. Finally the
idler pulse is dispersed through the output medium. In
the plane wave and quasi-monochromatic approximation
we write the positive-frequency electric field operator as

Ê(+)
m (t, z) = Em ei(kmz−ωmt)Âm(t, z), (1)

Âm(t, z) =

∫ +∞

−∞

dΩ

2π
e−iΩtei δm(Ω)zâm(Ω, z) (2)

where the index m = {s, i,p} identifies the signal, idler
or pumps waves respectively, Em is the single photon am-
plitude, km = k(ωm), δm(Ω) = k(ωm +Ω)− km.

It is convenient to define a travelling-wave frame of
reference (τ, z) propagating with the wave at pulse group
velocity where the delayed time τ is defined as

τ = t− β(1)
m z

with β
(1)
m = (dk/dω)ωm the inverse of group velocity. In

this frame of reference we have

Âm(τ, z) =

∫ +∞

−∞

dΩ

2π
e−iΩτei ζm(Ω)zâm(Ω, z) (3)

where ζm(Ω) = δm(Ω)− β(1)
m Ω.

A. Linear Dispersion

In the quasi-monochromatic approximation, the evolu-
tion of the Âm(τ, z) fields through a dispersive medium
of length L is given by

Âm(τ, L) =

∫ +∞

−∞

dΩ

2π
e−iΩτ G(Ω)âm(Ω, 0) (4)

where

G(Ω) = e
i
2DmΩ

2

, (5)

β
(2)
m = (d2k/dω2)ωm is the Group Velocity Dispersion

(GVD) and Dm = β
(2)
m L is the Group Delay Disper-

sion (GDD) accumulated by the wave during its disper-
sive propagation through the medium. Also eq. (4) can
rephrased as

Âm(τ, L) =

∫ +∞

−∞
dτ ′ eiΩτ G(τ − τ ′)Âm(τ ′, 0) (6)

with

G(τ) =
e−iτ

2/2Dm

√−i2πDm

(7)

Notice that eqs. (4) and (6) induce a unitary transfor-
mation on the field operators, thus preserving their com-
mutators.

B. Time lens

For a SFG-based time lens, the object pulse enters in
the nonlinear medium through the input signal channel
and is up-converted in the output idler mode (see fig-
ure 1(b)). The input idler mode is in vacuum state and
the process is mediated by a strong undepleted pump.
The evolution equations for signal (âs) and idler (âi)
fields through the nonlinear crystal, in the plane-wave
and undepleted pump approximations, are given by

∂

∂ξ
âs(Ω, ξ) = g

∫
dΩ′f∗(Ω′, Ω, ξ)âi(Ω

′, ξ), (8)

∂

∂ξ
âi(Ω, ξ) = −g

∫
dΩ′f(Ω,Ω′, ξ)âs(Ω

′, ξ), (9)

where

f(Ω,Ω′, ξ) = αp(Ω −Ω′)e−i∆(Ω,Ω′)ξ (10)
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αp(Ω) are the Fourier amplitudes of the pump classical
field at the input of the crystal (since we assumed it does
not evolve along z), g is a parameter proportional to
the effective nonlinear coupling inside the crystal and the
function ∆(Ω,Ω′) is the phase mismatch between signal,
idler and pump spectral components defined as following

∆(Ω,Ω′) = ki,z(Ω,qi)− ks,z(Ω′,qs)− kp,z(Ω −Ω′,qp)
(11)

where we allow for the general case of plane waves non-
collinear with the longitudinal axis z, presenting a trans-
verse component of the wave-vector qs, qi and qp for
signal, idler and pump fields respectively such that

km,z(Ω,qm) =
√
k2m(ωm +Ω)− q2

m. (12)

The solution of eqs. (8) and (9) can be obtained as
a linear symplectic integral transformation for the fields
operators using the Magnus perturbative approach. At
the first order we have(

âs(Ω, lc/2)
âi(Ω, lc/2)

)
= e

∫
dΩ′M1(Ω,Ω

′)

(
âs(Ω

′,−lc/2)
âi(Ω

′,−lc/2)

)
(13)

where

M1(Ω,Ω′) =

(
0 glcK

∗(Ω′, Ω)
−glcK(Ω,Ω′) 0

)
(14)

and

K(Ω,Ω′) =

∫ +lc/2

−lc/2
dz f(Ω,Ω′, z) =

= αp(Ω −Ω′) Sinc

(
∆(Ω,Ω′)

lc
2

)
. (15)

Notice that the function K(Ω,Ω′) is not symmetric with
respect to the exchange Ω ↔ Ω′ since the function
∆(Ω,Ω′) is not either.

Then by using the Singular Value Decomposition
(SVD) of K(Ω,Ω′) that reads

K(Ω,Ω′) =
∑
m

λmψm(Ω)φ∗m(Ω′) (16)

the solution (13) can be put in the following form(
âs(Ω, lc/2)
âi(Ω, lc/2)

)
=

∫
dΩ′B(Ω,Ω′)

(
âs(Ω

′,−lc/2)
âi(Ω

′,−lc/2)

)
(17)

where

B(Ω,Ω′) =

(
Us(Ω,Ω

′) Vs(Ω,Ω
′)

−Vi(Ω,Ω′) Ui(Ω,Ω
′)

)
(18)

and

Us(Ω,Ω
′) =

∑
m

cos(glcλm)φm(Ω)φ∗m(Ω′), (19)

Vs(Ω,Ω
′) =

∑
m

sin(glcλm)φm(Ω)ψ∗m(Ω′), (20)

Ui(Ω,Ω
′) =

∑
m

cos(glcλm)ψm(Ω)ψ∗m(Ω′), (21)

Vi(Ω,Ω
′) =

∑
m

sin(glcλm)ψm(Ω)φ∗m(Ω′). (22)

Hence the transformation induced by the time lens
does not have a closed-form expression, but it is given
as an expansion in terms of the singular values λm and
eigenfunctions {ψm} and {φm} of the problem.

We note that a 1st order Magnus perturbation theory
is accurate up to 80% conversion efficiencies and it intro-
duces errors when attempting to discuss regimes much
closes to 100% conversion efficiency. In particular when
the 1st order theory predicts a 100% conversion efficiency,
the exact model presents about an 80% efficiency [36].
However, the modal method we are considering in this
work is general and remains valid for any order of the
Magnus expansion and we discuss the 1st order for sake
of simplicity.

SFG configurations

The SFG process can be configured in different ways
according to the chosen parameters for the pump and
phase-matching.

For what concerns the pump, a time lens is obtained
when using a chirped Gaussian pulse. For this, a short
Fourier-limited pulse of duration τp and spectral band-
width ∆p is dispersed through a medium of GDD Dp =

β
(2)
p Lp, with Lp the length and β

(2)
p the group velocity

dispersion of the medium. After the propagation, in the
Fraunhofer dispersion limit, the pulse is stretched to a
duration τ ′p � τp:

τ ′p = Dp∆p. (23)

In the Fourier domain the chirped pulse is

αp(Ω) = Ap e−
1
2Ω

2/∆2
p e

i
2DfΩ

2

, (24)

where we define Df = −Dp is the focal GDD of the time
lens.

For what concerns the phase-matching, we can Taylor
expand expression. (11) up to first order in Ω and Ω′

∆(Ω,Ω′)
lc
2
≈ ∆0

lc
2

+(k′i−k′p)
lc
2
Ω+(k′p−k′s)

lc
2
Ω′ (25)

where ∆0 = ki − ks − kp and k′m are, respectively, the
phase-mismatch and the group velocity at the carrier fre-
quency ωm, for m = {s, i,p}. We restrict our treatment
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FIG. 2. (a) module and (b) phase of K(Ω,Ω′) as described in eq. (26). The parameters are: ∆h = 100 a.u., ∆v = 2 a.u.,
∆p = 10 a.u., Df = 5 a.u.

to processes that are perfectly phase matched at the cen-
tral frequencies of the three waves so that ∆0 = 0.

We can, then, distinguish three configurations that are
qualitatively distinct:

(i) Ideal: in this case not only the phase matching
is perfect at carriers but also for every Ω and Ω′

so that ∆(Ω,Ω′)lc/2 = 0. This condition would
require to simultaneously satisfy (k′i − k′p)lc = 0
and (k′p − k′s)lc = 0. The pump is assumed to be
infinitely long;

(ii) Perfect phase-matching and finite aperture: in this
case the aperture of the time lens is determined
only by the (finite) pump duration τ ′p and it corre-
sponds to the physical situation where the temporal
walk-off between pump and the signal and idler is
much smaller than the inverse of the pump band-
width ∆−1p = τp. The conditions to be satisfied are
now: (k′i−k′p)lc � τp and (k′p−k′s)lc � τp. From an
experimental point of view these conditions could
be implemented by using symmetric group veloc-
ity matching k′i − k′p = k′p − k′s (this condition is
also known, in the case of parametric-down con-
version as “extended phase-matching” [35]). No-
tice, however, that it is challenging to assure for
the corresponding temporal walk-off to be larger
than the reciprocal of the pump bandwidth. When
these conditions are not respected, the temporal
aperture is determined not only by the pump du-
ration but also by the spectral filtering induced by
the phase-matching. As a consequence the time
aperture would be smaller than that determined
by the pump only. From a classical point of view,
one could tune the other free parameter, the crystal

length lc, to be sufficiently small in order to satisfy
those conditions. On the other hand, in quantum
regime, a small lc would reduce the conversion effi-
ciency that should be compensated by higher pump
intensities. A different implementation could be via
asymmetric group velocity matching as discussed
in [19, 32], a configuration that is similar to that
adopted for quantum pulse gates [13, 14]. In the
case where the pump and signal group velocities
are matched (k′p = k′s), the spectral filtering of the
phase matching does not limit the time lens aper-
ture that is solely determined by the pump dura-
tion. However the temporal walk-off between the
idler and the pump introduces a spectral filtering
that would be challenging to make negligible. As
in the case of symmetric group velocity matching,
one could, for example use shorter crystals;

(iii) Finite phase-matching and finite aperture: this is
the most general case where no restrictions are
required on the temporal walk-off and the pump
duration. As discussed in [19, 32] we consider
the asymmetric group velocity dispersion matching
k′p = k′s.

SVD in the Gaussian kernel approximation

In the configurations discussed above, the integral ker-
nel K(Ω,Ω′) can be approximated by a double Gaussian.
This allows to obtain an analytic form for the singular
values and the corresponding eigenvectors.

When the group velocity of the pump is matched
either to that of the signal or to that of the idler
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wave (asymmetric group velocity matching, the phase-
matching function can be characterized by two band-
widths ∆h (along the horizontal direction) and ∆v (along
the vertical direction) so that (15) can be written as

K(Ω,Ω′) ≈ Ape−
1
2 (Ω−Ω

′)2/∆2
pe

i
2Df (Ω−Ω′)2×

× e−
1
2Ω
′2/∆2

he−
1
2Ω

2/∆2
v (26)

where the two characteristic bandwidths are the inverse
of the temporal walk-off between the pump and signal
waves (∆−1h = lc|k′p − k′i |), or between the pump and the

idler waves (∆−1v = lc|k′p − k′s|). In this case the SVD of
K(Ω,Ω′) leads to the following analytic results

λm = Ap

[
π3/2∆̃h∆̃v

F1 + F2

(
F1 − F2

F1 + F2

)m]1/2
, (27)

ψm(Ω) =
1√
Nψ

e−
i
2Df (1−∆̃2

v/∆
2
p)Ω

2

e−
1
2σ

2
i Ω

2

Hm(σiΩ),

(28)

φm(Ω) =
1√
Nφ

e
i
2Df (1−∆̃2

h/∆
2
p)Ω

2

e−
1
2σ

2
sΩ

2

Hm(σsΩ),

(29)

where Nφ, Nψ are normalization factors for the eigen-
modes,

F1 =

√
1 +D2

f ∆̃
2
h∆̃

2
v, (30)

F2 =
√

1− ∆̃2
h∆̃

2
v/∆

4
p, (31)

σi =
√
F1F2/∆̃v, (32)

σs =
√
F1F2/∆̃h, (33)

with 1/∆̃2
h = 1/∆2

h + 1/∆2
p and 1/∆̃2

v = 1/∆2
v + 1/∆2

p.
In the typical situation where ∆v � ∆p � ∆h, the

integral kernel K(Ω,Ω′) looks like the one depicted in

Figure 2 and ∆̃h ≈ ∆p and ∆̃v ≈ ∆v. In figures 3(a)-
3(e), we trace the first 200 singular values, the first two
input (blue) and output (green) eigenvectors for the pa-
rameters ∆h = 100a.u., ∆v = 2a.u., ∆p = 10a.u. and
Df = 5a.u.

As a final remark we observe that the multimode char-
acter of the time lens is grounded in the spectral corre-
lations that come with the chirped pump phase profile
(see Figure 2(b)) and make K(Ω,Ω′) not separable. On
the contrary, when the pump is not chirped (Df = 0),
K(Ω,Ω′) is separable and the process is single-mode as
in the case of quantum pulse gate [13, 14].

III. QUANTUM TEMPORAL IMAGING

A. Standard approach in the perfect
phase-matching approximation

Under the approximation of perfect phase-matching we
get the results of [34] that we review in this section for

comparison. Since in this case

f(Ω,Ω′, ξ) ≈ αp(Ω −Ω′), (34)

the right hand side of eqs. (8) and (9) become convolu-
tions and eq. (13) reads(

âs(Ω, lc/2)
âi(Ω, lc/2)

)
= eM1(Ω)⊗

(
âs(Ω,−lc/2)
âi(Ω,−lc/2)

)
(35)

where ⊗ denotes a convolution product. Differently form
the general case, solution (35) is exact since all the terms
of the Magnus expansion higher than the first order are
all null. Then, by using inverse Fourier transform, the
transformation (35) becomes a standard matrix multipli-
cation (

âs(τ, lc/2)
âi(τ, lc/2)

)
= B(τ)

(
âs(τ,−lc/2)
âi(τ,−lc/2)

)
(36)

where

B(τ) =

(
c(τ) e−iφ(τ)s(τ)

−eiφ(τ)s(τ) c(τ)

)
(37)

with φ(τ) = Arg[α̃p(τ)], α̃p(τ) the inverse Fourier trans-
form of α̃p(Ω)

α̃p(τ) ∝ Ap e−τ
2/2τ ′p

2

eiτ
2/2Df (38)

and

c(τ) = cos(glc|α̃p(τ)|), (39)

s(τ) = sin(glc|α̃p(τ)|). (40)

In particular the idler wave at the output (z = lc/2) of
the SFG process is given by

âi(τ, lc/2) =− eiφ(τ)s(τ)âs(τ,−lc/2) + c(τ)âi(τ,−lc/2),
(41)

Equation (36) represents a unitary transformation of the
photon annihilation operators from the input of the non-
linear crystal to its output, hence preserving the canon-
ical commutation relations. This equation has the same
form as the transformation induced by a beam splitter
with the amplitude transmission coefficient c(τ) and the
reflection coefficient s(τ) such that c(τ)2 + s(τ)2 = 1.
The transmission coefficient controls the amount of the
input waves that remain in the same mode and the re-
flection coefficient controls the amount the input waves
that is converted in the other mode. The phase factor
eiφ(τ) in front of the input signal amplitude is determined
by the phase of the pump wave. Therefore a time lens
transformation is obtained by choosing a quadratic time
dependence in the pump phase φ(τ) = τ2/2Df . Notice
that the second term at the right-hand side of (41) is
associated to vacuum fluctuations entering the nonlinear
process through the input idler port of the time lens and
mixing with the input state. These fluctuations are, of
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FIG. 3. For parameter choice ∆h = 100 a.u., ∆v = 2 a.u., ∆p = 10 a.u., Df = 5 a.u.: (a) singular values of K(Ω,Ω′), (b)-(c)
module and argument of first two output eigenvectors m = 0 and m = 1; (d)-(e) module and argument of first two input
eigenvectors m = 0 and m = 1. For comparison we trace the quadratic phase DfΩ

2 induced by the time lens (dashed-black
lines).

course, detrimental for the nonclassical input states and
they need to be avoided. They can be suppressed when
the conversion efficiency of the process |s(τ)|2 = 1. This
situation can be reached when glc|αp(τ)| = π/2. How-
ever this condition cannot be satisfied for all τ because

of a finite duration of the pump pulse. Typically the
pump pulse presents a maximum intensity at τ = 0, then
the conversion efficiency of the nonlinear process can be
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optimized such as

glc|αp(0)| = π/2, (42)

while for τ 6= 0 the conversion efficiency will be smaller
than one: as a consequence the time lens presents a finite
aperture of the imaging scheme.

The linear unitary transformation for the imaging
scheme considered in figure 1(a) can be obtained by ap-
plying, one after the other, the transformation (4) for the
input dispersive propagation with GDD Din, then (41)
for the time lens and finally (4) for the output dispersive
propagation with GDD Dout:

Âout
i (τ) =

∫
dτ ′

[
hi(τ, τ

′)Âin
s (τ ′) + qi(τ, τ

′)Âin
i (τ ′)

]
(43)

where

hi(τ, τ
′) = −

∫
dτ ′′Gout(τ − τ ′′)s(τ ′′)eiτ

′′2/2Df×

×Gin(τ ′′ − τ ′), (44)

qi(τ, τ
′) = Gout(τ − τ ′)c(τ ′), (45)

are the IRFs of the transformation. In [34] we showed
that under the Goodman-Tichenor approximation and
when the imaging condition

1

Din
+

1

Dout
=

1

Df
(46)

is satisfied, then the IRFs become

hi(τ, τ
′) = −i

√
|M |e

−iτ2

2|M|Df

∫
dΩ

2π
eiΩ(τ−Mτ ′)s(DoutΩ),

(47)

qi(τ, τ
′) = i

√
|M |e

−iτ2

2|M|Df

∫
dΩ

2π
eiΩ(τ−Mτ ′)c̃(DoutΩ)

(48)

where M = −Dout/Din is the magnification factor of the
imaging scheme and c̃(τ) = c(τ)exp(−iτ2/2Df).

Notice that the response hi(τ, τ
′) corresponds to the

classical the IRF and it is given, as in standard imag-
ing, by the Fourier transform of the pupil function that
in our case is the function s(τ). On the other side the
response qi(τ, τ

′) has no classical correspondence and it
is responsible for the vacuum fluctuations entering the
scheme because of a finite pupil function.

When the pump pulse is infinitely long, hence the tem-
poral aperture of the lens is arbitrarily large, and the
condition (42) is satisfied, then s(τ) = 1 and c(τ) = 0.
In this case the response functions become ideal

hi(τ, τ
′) = −i

√
|M |e

−iτ2

2|M|Df δ(τ −Mτ ′), (49)

qi(τ, τ
′) = 0 (50)

such that the transformation (43)

Âout
i (τ) = −i

e
−iτ2

2|M|Df√
|M |

Âin
i (τ/M) (51)

describes an ideal imaging scheme as that considered in
[25, 30].

B. Modal approach

For a non ideal phase-matching (see configuration (iii)
in section II) it is not possible to analitically solve the
propagation of field amplitudes through the time lens
(eqs. (8) and (9)) and a perturbative approach is re-
quired. In section II B we used the first order of the
Magnus expansion that is suitable for high conversion ef-
ficency regimes. This analisys leads to solutions (17) that
are expressed in terms of the singular values and eigen-
functions of the kernel K(Ω,Ω′) (see eq. (16)). This
explains the necessity of a modal approach to quantum
temporal imaging.

The imaging transformation is obtained by applying
one after the other the transformations eq. (4) for the
input dispersive propagation, eq. (17) for the time lens
and eq. (4) for the output dispersive propagation:

Âout
i (τ) =

∫
dΩ√
2π

e−iΩτ Âout
i (Ω) (52)

Âout
i (Ω) =

∫
dΩ′

[
hi(Ω,Ω

′)Âin
s (Ω′) + qi(Ω,Ω

′)Âin
i (Ω′)

]
(53)

where hi(Ω,Ω
′) and qi(Ω,Ω

′) are the two transfer func-
tions given by

hi(Ω,Ω
′) = −Gout(Ω)Vi(Ω,Ω

′)Gin(Ω′), (54)

qi(Ω,Ω
′) = Gout(Ω)Ui(Ω,Ω

′). (55)

The classical IRF that allows to quantify the system per-
formances is then obtained by a Fourier transform of ex-
pression (54). We note that this is not a difficult task
in the Gaussian kernel approximation since we deal with
the Fourier transform of Gauss-Hermite functions.

Since the functions (54) and (55) satisfy the relation∫
dΩ′′

[
hi(Ω,Ω

′′)h∗i (Ω′, Ω′′) + qi(Ω,Ω
′′)q∗i (Ω′, Ω′′)

]
=

= δ(Ω −Ω′) (56)

then (52) is unitary and the field commutators are pre-
served at the output of the scheme[

Âout
i (τ), Âout

i

†
(τ ′)

]
= δ(τ − τ ′). (57)

By using expressions (21) and (22), it is possible to write
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(54) and (55) in diagonal form

hi(Ω,Ω
′) =

∑
m

(−sm)ξm(Ω)ζ∗m(Ω′), (58)

qi(Ω,Ω
′) =

∑
m

cmξm(Ω)ψ∗m(Ω′), (59)

where sm = sin(glcλm), cm = cos(glcλm) and

ξm(Ω) = Gout(Ω)ψm(Ω), (60)

ζm(Ω) = G∗in(Ω)φm(Ω). (61)

Notice that the family of functions {ξm} and {ζm} still
form two complete sets of orthonormal functions.

Even if it is not interesting from the point of view of
quantum temporal imaging, for completeness we consider
below also the unitary transformation describing the out-
put signal mode. This results to be

Âout
s (τ) =

∫
dΩ√
2π

e−iΩτ Âout
s (Ω) (62)

Âout
s (Ω) =

∫
dΩ′

[
hs(Ω,Ω

′)Âin
i (Ω′) + qs(Ω,Ω

′)Âin
s (Ω′)

]
(63)

where, after using expressions (19) and (20),

hs(Ω,Ω
′) =

∑
m

smφm(Ω)ψ∗m(Ω′), (64)

qs(Ω,Ω
′) =

∑
m

cmφm(Ω)ζ∗m(Ω′). (65)

The ensemble of expressions (58), (59), (64) and (65)
represent the decomposition of the full transformation
associated to the imaging scheme in terms of singular
values and eigenvectors.

Because of the completeness of {ζm} an input quantum
image can be decomposed as

Âin
s (Ω) =

∑
m

Âin
s,mζm(Ω), (66)

hence the functions ζm can be regarded as degrees of
freedom of the input object. Also the input vacuum field
can be decomposed as

Âin
i (Ω) =

∑
m

Âin
i,mψm(Ω). (67)

Then, because of completeness of {ξm}, we can write the
expansion

Âout
i (Ω) =

(∑
m

(
−smÂin

s,m + cmÂ
in
i,m

))
ξm(Ω). (68)

Typical experimental implementations, like that dis-
cussed in II B, are far from the ideal situation since the
signal-to-idler conversion efficiencies sm fall off for in-
creasing values of m. Therefore, in a general situation,

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

m

sm, ρ = 0.8
sm, ρ = 0.9
cm, ρ = 0.8
cm, ρ = 0.9

FIG. 4. Plot of sm = sin(λm) (blue-circles and green-
triangles) and cm = cos(λm) (red-squares and magenta-
diamonds) for glcλ0 = π/2 and ρ = F1−F2

F1+F2
∈ {0.8, 0.9}.

the higher modal components of the signal object will
be mixed with vacuum fluctuations at the output of the
imaging scheme. Since the singular values (27) of the
process depend on the pump amplitude Ap, it is possible
to choose this value such that a particular sm is equal
to one, but this condition cannot be satisfied for all the
rest of the eigenspectrum. In the following we will con-
sider a pump amplitude such that the fundamental modal
component m = 0 presents 100% conversion efficiency in
the 1st order Magnus perturbation theory (s0 = 1 and
c0 = 0); this condition is reached when

glcλ0 = π/2, (69)

being λ0 the most important singular value. In figure
4 we trace the values of coefficients sm and cm for an
experimental situation corresponding to condition (69).
From this figure it is clear that while for the first eigen-
mode the situation is ideal, it rapidly get worse for all the
other modes: the higher the order m of the eigenmode,
the higher the contribution cm of the input vacuum fluc-
tuations in the idler channel.

The modal analysis we have performed shows that
the properties of the imaging transformation (53) are
completely described by the set of coefficients sm and
cm and by the family of eigenmodes {φm, ψm, ξm, ζm}.
This fact allows to design optimal experimental configu-
rations. Notice indeed that for a setup corresponding to
lager values of the ratio

ρ =
F1 − F2

F1 + F2
(70)

the roll-off of the sm coefficients is less important so that
a larger number of modes is not corrupted by vacuum
noise. One can appreciate this difference in figure 4,
where the coefficients sm for a ρ = 0.9 (green triangles)
are compared to those corresponding to a smaller value
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FIG. 5. (a) module and (b) phase of Vi(Ω,Ω
′) as described in eq. (22). The parameters are: ∆h = 100 a.u., ∆v = 2 a.u.,

∆p = 10 a.u., Df = 5 a.u.

ρ = 0.8 (blue dots). Since the parameters F1 and F2

depend on experimentally controllable parameters (see
Eqs. (30) and (31)), highly multimode setups that are
not dominated by quantum noise could be designed.

IV. QUANTIFICATION OF SYSTEM
PERFORMANCES

While the performances of a temporal imaging scheme
can be easily quantified in the case of perfect phase-
matching for any conversion efficiency regime, as soon
as one wants to include the limitations induced by the
finite phase-matching the quantification of performances
becomes a difficult task. Despite the fact that the ex-
pressions (54) and (55) do not allow for an analytic eval-
uation of the transfer functions hi(Ω,Ω

′), qi(Ω,Ω
′), we

show in this section that a quantitative assessment of the
performances can be realized from the singular values
and eigenvectors discussed in the previous section thus
showing the interest of the modal approach for temporal
imaging.

As discussed by Bennett and Kolner in [19], a fi-
nite Group Velocity Mismatch (GVM) between the three
waves involved in the SFG process results in a spectral fil-
tering that limits the bandwidth of the transmitted field
amplitude and modifies the ideal impluse response h̃(τ).
The resolution is now determined by the width of the
effective impulse response h̃′(τ) that can be obtained, in
two simplifying cases, as the convolution the ideal im-
pulse response h̃(τ) with the inverse Fourier transform
of a spectral filtering function F(τ): when the group ve-
locity of the pump matches that of the signal, the GVM
between pump and ildler has the effect equivalent to a

filter at the output. Hence the total impulse response is

h̃′(τ) ∝ Fout(τ)⊗ h̃(τ). (71)

On the other side, when the group velocity of the pump
matches that of the idler, the GVM between pump and
signal has the effect equivalent to an input filter such that
the total impulse response is

h̃′(τ) ∝ h̃(τ)⊗Fin(τ/M), (72)

with M = −Dout/Din the magnification factor of the
imaging scheme.

In the low conversion efficiency regime, as the one
considered by Bennett and Kolner, the filtering func-
tions have an analytic expression, therfore the bandwidth
of their inverse Fourier transform can be obtained as
|k′p−k′s|lc (respectively |k′p−k′i |lc). In the high conversion
efficiency regimes the time lens transformation (22) is sig-
nificantly different from that in the low efficiency regime
(15), therefore the approach of [19] is less precise. This
difference can be appreciated by comparing figures 2 and
5: at the first order of the Magnus expansion the phase
matching has no more the profile of a double Gaussian
as K(Ω,Ω′) and the spectral region where it is maxi-
mal is larger and flatter (compare figures 2(a) and 5(a)).
Also this difference can be observed in figure 6 where the
horizontal (Ω = 0) and the vertical (Ω′ = 0) sections
of K(Ω,Ω′) and Vi(Ω,Ω

′) are compared. On the other
side the phase profile of Vi(Ω,Ω

′) (see figure 5(b)) shows
that the linear chirp induced by the pump is still present.
This fact ensures that the scheme still works as a time
lens in the high conversion efficiency regime.

The starting point of the modal approach consists in
estimating the extension of spectrum of the singular val-
ues {sm} by means of the Schmidt number S that is
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FIG. 6. For parameter choice ∆h = 100 a.u., ∆v = 2 a.u., ∆p = 10 a.u., Df = 5 a.u.: (a) Comparison between the horizontal
section (Ω = 0) of K(Ω,Ω′) (green solid) and that of Vi(Ω,Ω

′) (yellow solid); the full width at half maximum of the horizontal
section of Vi(Ω,Ω

′) is close to the FWHM of the eigenmode φm(Ω) with m = S (in this case S = 100); (b) Comparison between
the vertical section (Ω′ = 0) of K(Ω,Ω′) (green solid) and that of Vi(Ω,Ω

′) (yellow solid); the full width at half maximum of
the vertical section of Vi(Ω,Ω

′) is close to the FWHM of the absolute value of eigenmode |ψm(Ω)| with m = S (with S = 100);

defined as

S =

(∑
m s

2
m

)2∑
m s

4
m

(73)

and characterizes the amount of degrees of freedom of
the transformation (53).

Spectral Field of View : by the knowledge of the
Schmidt number S we can get also an estimate of the
bandwidths of the horizontal (∆s) and vertical (∆s) sec-
tions of |Vi(Ω,Ω′)|. Notice that these bandwidths char-
acterize also the transfer function hi(Ω,Ω

′) by virtue of
expression (54). These bandwidths can be approximately
obtained as the variances of the eigenfunctions ζm(Ω)
and ξm(Ω) of order m = S. In the Gaussian model they
are Gauss-Hermite function, therefore we get the analytic
expressions

∆2
s =

(
S +

1

2

)
σ−2s , (74)

∆2
i =

(
S +

1

2

)
σ−2i . (75)

Temporal resolution: the Schmidt number and the
eigenfunctions can be used for obtaining an analytic ex-
pression – in the case of the Gaussian approximation –
of the resolution r of the imaging scheme. The resolu-
tion of an imaging scheme is the smallest detail that can
be transferred; hence, by following [42], we can estimate
r as the average distance, in time domain, of the zeros
of the S-th eigenfunction of the impulse response func-
tion: the smaller r is the better the resolution of the
scheme. In the general case of non-ideal phase matching,
the transfer function hi(Ω,Ω

′) is characterized by the
two families of eigenfunctions {ξm} and {ζm} (see (58)).

In time domain, the first family of eigenfunctions deter-
mine the characteristic time ri of the system in the image
plane, while the second family determines the character-
istic time rs in the object plane. Then the resolution of
the system, at the image plane, is given by

r = max {|M |rs, ri} . (76)

where rs and ri are evaluated as the average distance of
the zeros of the inverse Fourier transform of ζm(Ω) and
ξm(Ω) for m = S. This distance is given by the temporal
width of the eigenfunction divided by the number of its
semi-oscillations. By using the inverse Fourier transform
of {ξm} and {ζm}, we find that the temporal widths [43]
for the eigenfunctions m = S are

Ts = σs

√(
S +

1

2

)(
1 +

(Din −D1)2

σ4
s

)
(77)

Ti = σi

√(
S +

1

2

)(
1 +

(Dout −D2)2

σ4
i

)
(78)

with D1 = Df(1 − ∆̃2
h/∆

2
p) and D2 = Df(1 − ∆̃2

v/∆
2
p).

Notice that, in Ts and Ti, the parameters σs, σi and S
depend on the details of the phase-matching profile of the
SFG process, while the parameters Din and Dout depend
on the imaging scheme and they are related each other
via the imaging condition (46).

Since the number of semi-oscillations, for a S-th order
Gauss-Hermite function, is given by S then

rs = Ts/S, (79)

ri = Ti/S. (80)

Temporal Field of View (FOV): this figure of merit is
defined as the temporal duration over which an object



11

can be viewed. By following [19], let’s assume that the
input signal modes are made up of short classical features
fin(τ ; τ0) centered at τ0 and that, at the output, they are
transformed as fout(τ ; τ0). Then the FOV is defined as
the width of the energy profile U(τ0) outgoing the system
as a function of the input τ0 of this feature

U(τ0) ∝
∫ +∞

−∞
dτ |fout(τ ; τ0)|2. (81)

The estimation of this quantity in the case of a non ideal
phase-matching profile requires a numerical calculation.
However the modal approach allows to simplify expres-
sion (81). Indeed by using (52) and the classical part of
(68) we obtain

fout(τ ; τ0) =

+∞∑
m=0

(−sm)fin,m(τ0) (82)

with

fin,m(τ0) =

∫ +∞

−∞
dτ ζ∗k(τ)fin(τ ; τ0), (83)

where ζ∗k(τ) is the Fourier transform of ζ∗k(Ω). As a con-
sequence, one has

U(τ0) ∝
+∞∑
m=0

s2m|fin,m(τ0)|2. (84)

Expression (84) can be considered a generalization of ex-
pression (28) in [19] for high conversion efficiency regimes
and when the phase-matching is non ideal. The FOV
of the system can be estimated, then, by considering
that the width of U(τ0) is given by the width of the el-
ement fin,m(τ0) with m = S. As an example, consider
an object pulse having infinitely small details such that
fin(τ ; τ0) → δ(τ − τ0). In this case fin,m(τ0) = ζ∗m(τ0)
and the FOV approximately is given by the time dura-
tion of the input eigenvector corresponding to m = S,
hence FOV≈ Ts.

As we discussed in [32], a time lens with a FOV de-
signed for classical images is not necessary adapted for
the manipulation of a quantum image because while the
degradation of its classical part might be negligible at
the same time it will be polluted by vacuum noise in a
measure quantified by the cm coefficients. The modal ap-
proach allows us to choose the level of acceptable added
noise by simply choosing the maximum allowed cmax.
From this choice, then, one can extract the order M such
that cM ≤ cmax. When cmax < 50% then M < S. Hence
the quantum-FOV corresponding to the chosen level of
added noise can be defined such as the time duration of

M∑
m=0

s2m|fin,m(τ0)|2. (85)

Time-bandwidth product : an important figure of merit

in (temporal) imaging is the time-bandwidth product of

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

m

sm, ρ = 1.0
cm, ρ = 1.0

FIG. 7. Plot of sm = sin(λm) (blue-circles) and cm = cos(λm)
(red-squares) for glcλ0 = π/2 and ρ = 1 (ideal configuration).

the time lens. It corresponds to the number of (temporal)
features that can be processed by a (time) lens and it is
given by the ratio FOV/r [19, 41].

In order to improve the system performances one has
to increase the Schmidt number. This can be done by
choosing the experimental parameters such that the ratio
ρ = (F1 − F2)/(F1 + F2) is as close as possible to one or
equivalently F1 � F2. As an example in figure 4 we
compare two cases where the ratio ρ is changed from
0.8 to 0.9. This increment allows a doubling of S (from
6 to 13). Notice, however, that increasing the Schmidt
number of the imaging scheme comes at a cost. Indeed for
any choice, since optimal conversion efficiency is obtained
for s0 = 1 or, equivalently, glcλ0 = π/2, then increasing
the value of S means increasing the value of glcAp.

A. Ideal situation

The ideal situation (see configuration (i) in section II)
is reached when the phase-matching is perfect over a very
broad bandwidth ∆h, ∆v → +∞, when the pump has
a very large duration τ ′p = Df∆p → +∞ and when the
condition (69) for perfect conversion efficiency is verified.
In this case sm ≈ 1 and cm ≈ 0 for all m (see figure 7) so
that, from eq. (68), no noise is introduced. The Schmidt
number S → +∞ and, consequently, the bandwidths ∆s

and ∆s are arbitrarily large and the parameters rs and
ri are arbitrarily small.

The connection between the modal and the traditional
approach to temporal imaging is easily obtained by ob-
serving that in this limit∑

m

ξm(Ω)ζ∗m(Ω′) = Gout(Ω)e
i
2Df (Ω−Ω′)2Gin(Ω′). (86)

When the imaging condition (46) is satisfied, eq. (52)
takes the form of the well known unitary transformation
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FIG. 8. (a) Module and (b) phase of K(Ω,Ω′) as described in eq. (26) with parameters ∆h = 100 a.u., ∆v = 100 a.u., ∆p = 10
a.u., Df = 5 a.u. (c) Comparison between the eigenspectrum of three configuration tending to the perfect phase-patching case:
solid blue for ∆v = 2 a.u., dashed red for ∆v = 10 a.u. and dot-dashed green for ∆v = 100 a.u. Notice that the case ∆v = 2
a.u. corresponds to the one depicted in figure 2.

for perfect quantum temporal imaging [30]

Âout(τ) = − 1√
M

e
i τ2

2MDf Âin(τ/M). (87)

Notice that in this ideal situation F1 → +∞ and F2 → 0.
Therefore, since Ap ∝ (F1 + F2)1/2, this regime would
require the nonphysical situation of infinitely large pump
amplitude Ap → +∞, a condition that is required for
perfectly up-converting all the infinite number of input
modes.

B. Perfect Phase-Matching and finite aperture

In this subsection we consider the case where the
phase-matching is almost perfect (∆h, ∆v � ∆p) but the
imaging scheme presents a finite aperture induced by the
pump pulse duration τ ′p = Df∆p (see configuration (ii)
in section II). Notice that in this case the traditional ap-
proach to temporal imaging (classical [17] and quantum
[34]) gives analytic results as reviewed in Section III A.
The purpose of this section is, then, to test the modal
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approach developed in this paper by comparing its pre-
dictions to those obtained by the traditional approach. In
figure 8 we show the module and argument of K(Ω,Ω′)
as well as a comparison between the eigenspectrum of
two non ideal configurations as those in figure 2 (blue
solid and red dashed lines) and a configuration where the
phase-matching tends to ideal (green dot-dashed line).

Here we have ∆̃h ≈ ∆p(1−∆2
p/∆

2
h) and ∆̃v ≈ ∆p(1−

∆2
p/∆

2
v). Since, typically, the pump pulse is dispersed in

the Fraunhofer limit (Df∆
2
p � 1), then F1 ≈ Df∆

2
p and

F2 ≈ ∆p/∆hv, where

1/∆2
hv = 1/∆2

h + 1/∆2
v. (88)

Also we have σi ≈
√
Df∆p/∆hv and σs ≈

√
Df∆p/∆hv.

The Schmidt number of the imaging scheme is large
S � 1, a consequence of the fact that the spectrum of sm
falls off very slowly. There is not an explicit form for the
expression of S in the general case, however an under-
estimated value can be obtained in the low-gain regime
(i.e. glcλ0 � π/2)

S ≈ τ ′p∆hv. (89)

By using this expression in (79) and (80), we find that
the rs = (1 + 1/|M |)Df/τ

′
p and ri = (1 + |M |)Df/τ

′
p.

Hence in the limit of large magnification |M | � 1 the
resolution r (76) is

r ≈ |M |Df/τ
′
p (90)

and in the limit of large compression |M | � 1

r ≈ Df/τ
′
p (91)

which corresponds to the resolution obtained in [17] and
[34].

Connection with the traditional approach is obtained
by observing that in this limit (see (16))∑

m

λmξm(Ω)ζ∗m(Ω′) ≈ Gout(Ω)αp(Ω −Ω′)Gin(Ω′).

(92)

As a consequence the impulse response results to be the
Fourier transform of the pupil function of the scheme
as described in [17] and [34], and in section III A of the
present paper.

It is interesting to observe that, from the expressions
of S, Ts and Ti, the limit of ∆h, ∆v � ∆p gives arbitrary
large values. However their ratios (79) and (80) remain
finite as well as the system resolution.

C. Finite phase-matching and finite aperture

This is the most general case (see configuration (iii)
in section II), we assume the typical situation where the
group velocities of pump and signal field are matched;

in this case, hence, we have ∆v � ∆p � ∆h. This
situation corresponds to that depicted in figure 2. In

this case we have ∆̃hv ≈ ∆v, ∆̃v ≈ ∆v and ∆̃h ≈ ∆p.

This implies that F1 ≈ τ ′p∆v and F2 ≈ 1− (∆v/
√

2∆p)2.
Then the Schmidt number S ≈ τ ′p∆v is smaller than the
situation with perfect phase-matching in section IV B by
a factor ∆v/∆p. Also we have that σs ≈

√
Df∆v/∆p

and σi ≈
√
Df∆p/∆v.

For large magnification |M | � 1 the temporal duration
of the eigenmodes ξm(τ) and ζm(τ) with m = S are Ts ≈
τ ′p and Ti ≈ τ ′p∆p/∆v. In this case the resolution of the
system, evaluated from (76), is

r ≈ max

{
|M |rs,

∆p

∆v
rs

}
(93)

with rs ≈ Df/τ
′
p. As a consequence the resolution will

depend on the relative magnitude between the magnifi-
cation and the ratio ∆p/∆v. By comparison with (90),
we see that if this ratio ∆p/∆v is smaller than the mag-
nification, then the effects of bandwidth filtering induced
by the temporal walk-off between the pump and idler
waves do not affect the resolution that is equal to the
resolution of the case with perfect phase-matching. On
the contrary, when the ratio ∆p/∆v is larger than the
magnification, the resolution is worst than that of the
case of (90) by an amount of ∆p/|M |∆v.

On the other side, for a system designed for a large
compression |M | � 1 the resolution results to be

r ≈ Df

τ ′p

∆p

∆v
. (94)

In this case, by comparison with (91), the resolution is
always worst than that obtained for the perfect phase-
matching case by a factor of ∆p/∆v.

V. CONCLUSIONS

In this work we developed the modal approach for
a SFG-based quantum temporal imaging scheme in the
high conversion efficiency regime and for the general case
of non-perfect phase matching and finite temporal aper-
ture. In general this problem does not admit a closed-
form expression for the impulse response function and for
its Fourier transform, the transfer function. However, by
using the modal approach, we showed that it is possible
to express the transfer function in terms of its expansion
on the singular values and eigenmodes of the problem.
Then we showed how to obtain the relevant figures of
merit of the imaging scheme and how to express them in
terms of the modal decomposition. This allows to assess
the performances of the QTI scheme. We finally used
these results for comparing the relevant figures of merit
to those obtained in the regime of prefect phase-matching
and infinite aperture and of perfect phase-matching and
finite aperture. This comparison makes clear the neces-
sity of a multimode operation for implementing a QTI
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scheme working in high conversion efficiency regimes and
the physical parameters that need to be adjusted in or-
der to improve its performances. Our results will allow,
therefore, for better designs for noiseless manipulation of
the spectrotemporal degrees of freedom of photonic non-
classical states.
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