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Abstract

Statistical wisdom suggests that very complex models, interpolating training data, will
be poor at predicting unseen examples. Yet, this aphorism has been recently challenged by
the identification of benign overfitting regimes, specially studied in the case of parametric
models: generalization capabilities may be preserved despite model high complexity. While it
is widely known that fully-grown decision trees interpolate and, in turn, have bad predictive
performances, the same behavior is yet to be analyzed for random forests. In this paper, we
study the trade-off between interpolation and consistency for several types of random forest
algorithms. Theoretically, we prove that interpolation regimes and consistency cannot be
achieved for non-adaptive random forests. Since adaptivity seems to be the cornerstone to
bring together interpolation and consistency, we study interpolating Median RF which are
proved to be consistent in a noiseless scenario. Numerical experiments show that Breiman’s
random forests are consistent while exactly interpolating, when no bootstrap step is involved.
We theoretically control the size of the interpolation area, which converges fast enough to zero,
so that exact interpolation and consistency occur in conjunction.

1 Introduction

Random Forests (RF) [§] have proven to be very efficient algorithms, especially on tabular data
sets. As any machine learning (ML) algorithm, Random Forests and Decision Trees have been
analyzed and used according to the overfitting-underfitting trade-off. Regularization parameters
have been introduced in order to control the variance while still reducing the bias. For instance,
one can increase the variety of the constructed trees (by playing either with bootstrap samples or
feature subsampling) or control the tree structure (by limiting either the number of points falling
within each leaf or the maximum depth of all trees).

However, the paradigm stating that high model complexity leads to bad generalization capacity
has been recently challenged: in particular, deeper and larger neural networks still empirically
exhibit high predictive performances [I5]. In such situations, overfitting can be qualified as “benign”:



complex models, possibly leading to interpolation of the training examples, still generalize well on
unseen data [4].

Regarding parametric methods, benign overfitting has been exhibited and well understood in linear
regression [3, 25] [I8]. Many researchers currently study the implicit bias or implicit regularization
of stochastic gradient (SGD) strategies used during neural network training: the optimization of an
over-parametrized one-hidden-layer neural network via SGD will converge to a minimum of minimal
norm with good generalization properties in a regression setting [2], or with maximal margin in a
classification setting [I1].

Regarding non-parametric methods, practitioners have noticed the good performances of high-depth
RFs for a long time (by default, several ML libraries such as the popular Scikit-Learn grow trees until
pure leaves are reached). More recently, the use of interpolating (or very deep) trees for boosting and
bagging methods has been advocated in [27]. Indeed, Wyner et al. [27] believe that the self-averaging
process at hand in RF (or in boosting methods) also produces an implicit regularization that prevents
the interpolating algorithm from overfitting. Note that the regularization properties of RF have
also been studied in the light of their complexity [I0] and tree depth [28]. [27] even argue that
interpolation actually provides robustness against noise: (i) the interpolating estimator would grasp
the main signal thanks to its averaging ability; (ii) its high complexity would allow it to locally
interpolate a noisy point without damaging the estimated function globally. This argument is to
be put in parallel with the results proved in [12, [6] where they show that an interpolating kernel
method using a singular kernel (similar to K (x) = ||z||~*14<1) is consistent, reaching minimax
convergence rate for f-Holder regular functions.

Contributions In this paper, we study the trade-off between interpolation and consistency for
several types of random forest algorithms. Theoretically, we prove that interpolation regimes and
consistency cannot be achieved simultaneously for non-adaptive centered random forests (Section
. The major problems in combining interpolation and consistency arise from empty cells in tree
partitions. Therefore, we study Centered RF which do not take into account empty cells (in Section
3) as well as Kernel Random Forests (KeRF) that are built by averaging over all connected data
points (Section . By neglecting empty cells, these methods are consistent for larger tree depths,
which unfortunately does not meet the strict interpolation requirement. Since adaptivity seems to be
the cornerstone to bring together interpolation and consistency, we study the interpolating Median
RF, which is proved to be consistent in a noiseless scenario (Section . Numerical experiments
show that Breiman random forests are consistent and interpolate exactly, when the whole data
set is used to build each tree (Section @ If bootstrap is used instead, we numerically show that
Breiman random forests are consistent but do not interpolate anymore: however each weak learner
in the forest is inconsistent while being an interpolator. Finally, we prove that the volume of the
interpolation zone for an infinite Breiman RF (without bootstrap) tends to 0 at a polynomial rate
in the number of samples n and an exponential rate in the dimension d (Section @ This supports
the idea that the decay of the interpolation volume is fast enough to retrieve consistency despite
interpolation. All proofs are given in Appendix [A] and all details of the experiments are given in

Appendix



2 Setting

Framework In a general non-parametric regression framework, we assume to be given a training set
D, = ((X1,Y1), ..., (X, Ys)), composed of i.i.d. copies of the generic random variable (X,Y"), where
the input X is assumed throughout the paper to be uniformly distributed over [0,1]¢, and Y € R is
the output. The underlying model is assumed to satisfy Y = f*(X) + ¢, where f*(z) = E[Y|X = z]
is the regression function and ¢ is a random centered noise of variance o2 < co. Given an input vector
x €10, 1]d, the goal is then to predict the associated square integrable random response by estimating
f*(z). We measure the performance of any estimator f, via its quadratic risk, also referred to the
generalization error, defined as R(f,) := E [(fn(X) — f*(X))?]. The asymptotic performance of an
estimator f,, is assessed via its consistency, a property stating that nlgrgo R(fn) =0.

Estimator A Random Forest (RF) is a predictor consisting of a collection of M randomized trees
[see 9, for details about decision trees|. To build a forest, we generate M € IN* independent random
variables (O1,...,0),), distributed as a generic random variable ©, independent of D,,. In our
setting, ©; actually represents the successive random splitting directions and the resampling data
mechanism in the j-th tree. The predicted value at the query point x given by the j-th tree is
defined as

n
Ix.ea,(z0,)Yi

fn(x7®j) = Nn(x7@.]) 1N71($7ej)>0

i=1

where A, (z,0;) is the cell containing z and N,,(z,©;) is the number of points falling into A, (z, ©;).
The (finite) forest estimate then results from the aggregation of M trees:

1 M
frrn(@,©u) = 57 D ful(@,Om),
m=1

where @) := (01,...,0)). By making the number M of trees grows towards infinity, we can
consider instead the infinite forest estimate, which has also played an important role in the theoretical
understanding of forests:

foo,n(x) = Eo|fn(z,0)],

where Eg denotes the expectation w.r.t. ©, conditional on D,,. This operation is justified by the
law of large numbers [see 23 for more details].

Several random forests have been proposed depending on the type of randomness they contain
(what © represents) and the type of decision trees they aggregate. Breiman forest is one of the most
widely used random forests, which exhibits excellent predictive performances. Unfortunately, its
behavior is difficult to theoretically analyze, because of the numerous complex mechanisms involved
in the predictive process (data resampling, data-dependent splits, split randomization). Therefore,
in this paper, we simultaneously study the consistency and interpolation properties of different
simplified versions of RF, both adaptive (i.e. when trees are built in a data-dependent manner) and
non-adaptive.



All forests include a depth parameter, denoted k,,, which limits the maximum length of each branch
in a tree, thus limiting the number of leaves (up to 2%#). In this work, we analyze how the tuning of
k, allows us to adjust the consistency and interpolation characteristics of the forest. The classical
notion of (exact) interpolation is defined below.

Definition 2.1 ((Exact) interpolation). An estimator f, is said to interpolate if for all training
data (X;,Y;), we have f,(X;) =Y; almost surely.

Recall that the prediction of a single tree at a point x is given by the average of all Y; such that
X is contained in the leaf of x. Therefore, each tree within a forest can be parameterized in order
to interpolate: it is sufficient to grow the tree until pure leaves (i.e. leaves containing labels of the
same values) are reached. In any regression model with continuous random noise, we have Y; # Y;
for all 4 # j almost surely. Therefore, an interpolating tree is a tree that contains at most one point
per leaf.

As the final prediction of the random forest is made by averaging the predictions of all its trees,
if all trees interpolate, the random forest interpolates as well. Consequently, throughout all the
theoretical analysis, we consider RF built without sub-sampling: each tree is built using the whole
dataset instead of bootstrap samples as in standard RF. We will discuss the empirical effect of
bootstrap in Section [6]

Remark 2.2. In a classification setting, if we handle the problem of estimating the probabilities
of being in a class, interpolation occurs as soon as there is no diversity within each leaf, i.e. each
leaf is pure containing points from a single class. Indeed, consider a degenerated setting such as X
uniformly distributed on [0,1]¢ and Y ~ B(p),p € [1/2,1) independent from X, then as soon as there
are t > 1 points in a cell, the probability of not interpolating is greater than 1 — ((1 — p)* + p*) > 0.
In such a setting, interpolation almost surely occurs when there is at most one data point per cell,
similarly to the regression setting. For a more detailed analysis of the classification setting, see [20].

We start our analysis of interpolation and consistency of RF with the simple yet widely studied
Centered Random Forest (CRF).

3 Centered RF

Centered Random Forests [7] are ensemble methods that are said to be non-adaptive since trees are
built independently of the data: at each step of a centered tree construction, a feature is uniformly
chosen among all possible d features and the split along the chosen feature is made at the center of
the current cell. Then, the trees are aggregated to produce a CRF.

3.1 Interpolation in CRF

For CRF, forest interpolation is equivalent to tree interpolation, as shown below.



Lemma 3.1. The CRF fj(\}RnF interpolates if and only if all trees that form the CRF interpolate.

Since CRF construction is non-adaptive, it is impossible to enforce exactly one observation per
leaf. Hence trees do not interpolate and in turn, the interpolation regime (Definition [2.1)) cannot be
satisfied for CRF. This leads us to examine a weaker notion of interpolation in probability.

Proposition 3.2 (Probability of interpolation for a centered tree). Denote Zr the event “a centered
tree of depth k, interpolates the training data”. Then, for all n > 3, fixing k,, = |logy(an,n)], with
an > 1, one has

e_ﬁ < ]P’(IT> <e 2(0:;+1)_

According to Proposition [3:2] the probability that a tree interpolates tends to one if and only if
kn = [logy(ann)| with a,, = w(n)ﬂ Consequently, the regime «,, = w(n) completely characterizes
the interpolation of a centered tree. Proposition [3.2| can be in turn used to control the interpolation
probability of a centered RF.

Corollary 3.3 (Probability of interpolation for a CRF). We denote by Zr the event “a centered
Jorest fERT(., @) interpolates™. Then, for k, = [logy(ann)]| with an > 1,

P (Zp) < e ZoniD. (1)

According to Corollary the condition «,, = w(n) (corresponding to the interpolation of a
single centered tree with an overwhelming probability) is necessary to ensure that w.h.p., the forest
interpolates. Our analysis stresses that a tree depth of at least k,, = 2log,(n) is required to obtain
tree/forest interpolation.

In fact, choosing k, of the order of log,(n) characterizes another type of interpolation regime. To
see this, consider a centered tree of depth k, whose leaves are denoted L, ..., Lyx. The number of
points falling into the leaf L; is denoted N, (L;). If X is uniformly distributed over [0, 1]¢, then by
construction, for a given leaf L;,

1
P(X €Li)= g

and E[N,(L;)] = = (2)
Definition 3.4 (Mean interpolation regime). A CRF fﬁRnF satisfies the mean interpolation regime
when each tree of fys, has at least n leaves.

The mean interpolation regime is met for CRF if and only if k,, > logy n. By Equation , this
implies that for all leaves L;, E[N,(L;)] < 1, that is, each leaf contains at most one point in
expectation. Therefore, one could say that trees interpolate in expectation in the mean interpolation
regime.

Yi.e. o, asymptotically dominates n.



3.2 Inconsistency of the standard CRF

In both interpolation regimes (mean and in probability), trees need to be very deep, with a growing
number of empty cells as n tends to infinity, eventually damaging the consistency of the overall

CRF.

Proposition 3.5. Suppose that E [f*(X)Q] > 0. Then the infinite Centered Random Forest O%RHF
of depth k,, > |logyn| is inconsistent.

The non-consistency of the CRF stems from the fact that the probability for a random point X to
fall in an empty cell does not converge to zero, introducing an irreducible bias in the excess risk.

Proposition emphasizes the poor generalization capacities of the interpolating CRF (under any
interpolating regime), which could be expected given its non-adaptive construction.

3.3 Consistency of void-free CRF under the mean interpolation regime

Since limiting the impact of empty cells seems crucial for consistency, we study a CRF that averages
over non-empty cells only, which we call the Void-Free CRF. Note that if all cells are empty,
the prediction remains arbitrary set to 0. Denoting A, (x,®js) the number of non-empty leaves

containing z in the forest with trees O1,...,0 s, the void-free CRF is written as
1 M
VF
Opy)=—7—"—" E (2, 0)1N (£.0.)>0-
farn(®,On) An(z,On) (@, 05)In,(.0,)>0

We can also introduce an infinite version of the void-free CRF by letting M grow to infinity:
o (2,0) = Eg [fu(x,0)|Nu(2,0) > 0]
Lemma 3.6. Consider a finite void-free CRF J\\ZF,L of depth k € N and = € [0,1]%. We denote
Emn () the event “x falls into an empty cell in all trees of f}\fn ”?, Then,
P(Enrn) < € T M, (3)
Consequently, if k = logy(n) and M = w(n'°24), then,

lim P (Exn) = 0. (4)
Theorem 3.7. Grant that f* is bounded and has bounded partial derivatives. Then, the infinite
void-free-CRF of depth k = logy n is consistent in a noiseless setting (o0 =0), and

d
E | (05,00 = 11 (X0)7] <20 311055 |n'om(75) o 20wt

oo,n
Jj=1



The overall rate is of order O (nlog(l_l/ 2d)) which is a typical approximation rate for CRF which is
also found in Klusowski [I7]. As a matter of fact, Theorem highlights that empty cells do not
limit the performance of the void-free-CRF.

Indeed, the problematic terms that arise in the theoretical derivations of classical CRF vs. void-free
CRF are of different natures: the probability P (N, (X, 0) = 0) of falling into an empty leaf in a
random tree of an (infinite) CRF compared to the probability Px p, [VO, N, (X, ©) = 0] of falling
into empty leaves in all trees in the (infinite) CRF.

Neglecting empty cells allows a CRF to become consistent in the mean interpolation regime. However,
this construction introduces a conditioning over N, (z,0) > 0 that prevented us from efficiently
bounding the variance in the case of noisy samples. Therefore in the next section we analyse
Centered Kernel RFs (KeRF) for which the aggregation rule is slightly different (the empty cells
still being neglected).

4 Centered kernel RF

As formalized in [14] and developed in [I], slightly modifying the aggregation rule of tree estimates
provides a kernel-type estimator. Instead of averaging the predictions of all centered trees, the
construction of a Kernel RF (KeRF) is performed by growing all centered trees and then averaging
along all points contained in the leaves in which z falls, i.e.

M
Yo Yid e Ix,ea, (2.0.)
= .
Doim1 2om=1 LX €A, (2.0,)

Mon” (2, Onr) =

One of the benefits of this construction is to limit the influence of empty cells, which can be harmful
both for consistency and interpolation (see Section . Letting K s, be the connection function of
the M finite forest defined by

M
1
Ky (2,2) = i E Laea,(2.0));
j=1

[24] shows that the KeRF can be rewritten as

_ Yoy YiK (2, X5)
Z?:l K]M,n(xa Xz) ’

hence the name of kernel RF. In addition, it is shown that

]I\flf'}:L{F(xa GNI)

lim Kpyn(z,2) = Ky(z,2),

M— o0

where K, (z,z) = Pg [z € A,(x,0)] which can be seen as the empirical probability that z and z
are in the same cell w.r.t. a tree built according to ©. Consequently, for all 2 € [0,1]%, the infinite



KeRF reads as

KeRF(x) _ Z?:l Vil (z, Xi)
on Z?:l Kn(xa XZ) ’

4.1 Interpolation Conditions

Since KeRF aggregates centered trees as CRF (but in a different way), the results of Section [3| can
be extended to KeRF":

1. the mean interpolation regime is met for centered trees, and therefore for KeRF, as soon as
kn > logy n;

2. a necessary condition to attain the KeRF interpolation in probability is k, > 2log,(n).

One can note that the depths required for both interpolation regimes are still large, leading to as
many empty cells for KeRF as for classical CRF but the aggregation rule is such that they are not
taken into account in KeRF predictions, which gives hope that consistency could be preserved.

4.2 Consistency

In this section, we study the convergence of the centered KeRF when k, is of the order of log,(n),
i.e. under the mean interpolation regime. To this end, we consider extra hypotheses on the noise
and on the regularity of f*.

Theorem 4.1. Assume that f* is Lipschitz continuous and that the additive noise € is a centered
Gaussian variable with finite variance o®. Then, the risk of the infinite centered KeRF of depth
kn = [logy(n)| verifies, for all n > 2,

R( KeRF) <y log(n)—(d—ll)/6’

co,n

with Cyq > 0 a constant depending on o, d, || f*||co-

Theorem states that the infinite centered KeRF estimator is consistent as soon as d > 11, with a
slow convergence rate of log(n)_(d_u)/ 6. The proof is based on the general paradigm of bias-variance
trade-off and is adapted from [24]. At first sight, one might think that the rate becomes better as
the dimension d increases. This would be without thinking that the constant in front of it depends
on the dimension, so that the established bound should be regarded for any fixed d.

Choosing k,, = [logy(n)]| in Theorem allows us to have a mean interpolation regime concomitant
with consistency for KeRF, therefore highlighting that consistency and mean interpolation are
compatible. This is not the case for CRF for which the mean interpolation regime forbids convergence



(Proposition . If a “mean” overfitting regime is benign for the consistency of KeRF, it seems to
be nonetheless malignant for the convergence rate. Indeed, Lin and Jeon [I9] provides a lower bound
on the optimal convergence rate of a non-adaptive RF (such as the CRF), scaling in (logn)~(¢=1).
This leads us to believe that the convergence rate we obtain in Theorem [£.1]is marginally improvable.

Interpolation of kernel estimators has been recently studied with singular kernel by [6]. Since KeRF
are kernel estimators, one can wonder how sharp is our bound (Theorem [4.1)) compared to that of
[6], which is minimax. Due to the spikiness of the singular kernel studied in [0], interpolation arises
for any kernel bandwidth. The latter can be then tuned to reach minimax rates of consistency. The
story is totally different for KeRF since interpolation occurs only for specific tree depths k,, > log(n)
(where the depth parameter is closely related to the bandwidth of classical kernel estimates). Less
latitude for choosing the depth then leads to sub-optimal rates of consistency (see Theorem . of
course, a better rate of consistency in O(n'/(3+41°82)) could be obtained as in [24] when optimizing
this depth parameter, but leaving the interpolation world.

4.3 Empirical results

We numerically assess the performance of KeRF in the mean interpolation regime.

Experimental framework We consider four different regression models, most of which have
been already considered in [26]: Model 1 is additive without noise (d = 2), Model 2 is polynomial
with interactions (d = 8), Model 3 is the sum of elementary terms that contain non-polynomial
interactions (d = 6) and Model 4 (d = 5) corresponds to a generalized linear model. All models are
specified in Appendix For each model, the simulated dataset is divided into a training set (80%
of the data set) and a test set (the remaining 20%). We train a centered KeRF (with M = 500) of
depth fixed to [logys n] + 1 (mean interpolation regime) for different sample sizes n and evaluate the
empirical quadratic risk on the test set.

Model 1 Model 2
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Figure 1: KeRF consistency results: excess risk w.r.t. sample sizes. For each sample size n, the
experiment is repeated 30 times: we represent the mean over the 30 tries (bold line) and the mean
+ std (filled zone).



Results On Figure|l] for all models, the risk decreases toward zero as the number of samples n
increases (with slow convergence rates). These numerical results, even though obtained for a finite
KeRF with a large number M = 500 of centered trees, support the theoretical consistency of the
infinite KeRF in the mean interpolation regime (see Theorem [4.1J).

5 Semi-Adaptive RF

So far, consistency has been analyzed in the mean interpolation regime. What about consistency
with exact RF interpolation? To this end, we introduce semi-adaptive RF whose constructions
depend on the training inputs X;’s (and not on the outputs Y;’s).

5.1 Semi-adaptive CRF

We first introduce a (semi-)adaptive centered tree which is a modified version of a centered tree,
built by taking into account the positions of the X;’s, and thereby reduces the number of empty
leaves. It is recursively grown: at each node, a feature is uniformly chosen among the set of all
separable d features (a feature is separable if cutting this feature produces two non-empty cells)
and the split is made in the middle of the current node along the chosen feature. If there are more
than one point in the current node and none of the feature separates them, the splitting direction
is uniformly chosen among all the separable features of the previous cut. The construction stops
when all leaves contain 0 or 1 observation. The semi-Adaptive Centered RF (AdaCRF) results from
a specific aggregation of such trees: for a given point z, the final prediction of the RF is given by
averaging along all the trees for which z falls into a non-empty leaf.

5.1.1 Interpolation and depth

By construction, AdaCRF interpolates since all trees interpolate. AdaCRF adaptivity allows it to
reach full growth while preserving a reasonable depth in probability. To show this, we grow an
adaptive centered tree and measure, for a given point x, the depth k,(z) associated to the cell
containing x.

Lemma 5.1. For all « € [0,1), the depth k‘ﬁdaCT of a semi-adaptive centered tree verifies

lim P (k29°T(X) € [log(n) £log'~*(n)]) = 1.

n— oo

Lemma states that the asymptotic behavior of k242€T(X) is equivalent to logn up to a negligible
factor. The log(n) equivalent matches the condition for the mean interpolation regime in the case of
CRF exhibited in Section 3| Therefore, while AdaCRF has a depth of the same order as that of a
classical CRF, its adaptivity nature ensures its interpolation. As seen hereafter, this adaptivity is
not sufficient enough to preserve consistency while interpolating.

10



5.1.2 Inconsistency of AdaCRF

In this section we show that AdaCRF is not adaptive enough in order to preserve both consistency
and interpolation.

Lemma 5.2. Consider the infinite AdaCRF foé"i,iCRF. Denote £ the event “X falls into an empty
leaf of ffg‘}ﬁCRF ?. Let ¢ € N be such that n > 2¢, then for all d,

n—1

d
P(E) > (1 —47°) e T (1 S CR s el> .

Lemma [5.2] states that too many points fall into an empty cell of the infinite AdaCRF: the above
lower bound does not converge to 0 as n grows to infinity. This entails the inconsistency of AdaCRF,
as the risk is lower bounded by E [ f*(X)?] P (£).

Proposition 5.3. If E[f*(X)?] > 0, the infinite AdaCRF fi;‘?ijRF is inconsistent in an exact
interpolation regime.

AdaCRF is not consistent due to the number of empty cells that is not negligible enough and
introduces a bias in the generalization error. To maintain both the interpolation and consistency
properties, empty cells should be avoided by construction: one has to choose the split between two
points and not anymore independently of the position of the X;’ s. Therefore, the considered RF
should be more adaptive to the data, as in Median RF described below.

5.2 Median RF

The Median RF, studied e.g. in [13], is composed of median trees which first randomly choose the
direction to cut over and then cut at the median of the data points contained in the current cells.
In order to avoid points falling on a cell boundary, whenever the number of points n. in the cell is
odd, the cut is made at the quantile (n. + 1)/2n..

5.2.1 Consistency of Median RF in the interpolating regime

An interpolating infinite Median RF turns out to be consistent, at least in a noiseless scenario.

Theorem 5.4. Under a noiseless setting (o0 = 0), suppose that f* is bounded and has bounded
partial derivatives. Then, the infinite interpolating Median RF fol\é[f;fRF is consistent and verifies:

. 57 logy(n+1)—2 d
R () <40 (1- 20 > 1197

Jj=1
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The proof is adapted from [I3]. Theorem is the first result to establish the consistency of
an interpolating (adaptive) forest, theoretically supporting the self-regularization of RF allowing
consistency and (exact) interpolation together. Note that the consistency achieved by Median RF
cannot be obtained for CRF (adaptive or not) under the exact interpolation regime, even in the
noiseless setting. Indeed, this is due to the non-negligible probability of falling into empty cells
(see Propositions and resp. for CRF and AdaCRF), which cannot be coerced under any

interpolation regimes.

We believe that Theorem [5.4] also stands in the more general setting of noisy data so that the
limitation is mainly due to a technical obstruction within the proof. In details, when dealing with
interpolating trees, the variance reduction does not come from averaging many points in the leaf
of a given tree anymore, but rather from averaging single points from the leaves of many different
trees. Hence, it requires to understand the geometry of the tree partitions and their intersections,
which is an arduous task for generic RFs even those with data-independent cuts. This intuition
is corroborated by a theoretical control of the interpolation volume and by numerical experiments

(resp. Section and [5.2.3).

5.2.2 Volume of the interpolation area

To go one step further in the analysis of Median RF, we introduce the notion of interpolation area
defined below.

Definition 5.5. The interpolation area is the subspace of [0,1]? where the forest prediction
depends only on one training point. For a given forest fus (., ®as), the interpolation area is denoted

byf]

m=1

M
A(frn(Owm)) = {:17 €[0,1],31X; € Dy, X; € ) An(x,@m)}.

The interpolation zone is highly dependent on both the geometry of the training points X;’s and
the construction of the trees. Analyzing the interpolation area for a finite Median RF turns out
to be quite a challenging task. Therefore, we focus our study on the core interpolation area Apyin
written as

MEN,®

The area A,,;, is nothing but the intersection of the interpolation zones of all possible forests, or
equivalently of a forest containing all possible trees (and therefore all possible cuts). As an example
note that in the case of centered trees, every cut may occur with a positive probability. Therefore,
Anin matches the volume of the interpolation area of an infinite Median RF. In the following
proposition, we control the volume (A;piy) of the minimal interpolation zone of a Median RF, with
w the Lebesgue measure.

2the symbol 3! means “there exists a unique”

12



Proposition 5.6. For all n > 2, for all d > 2, consider an infinite Median RF ;\,E?,?RF. Then,

2 d—1
Ep, [p(Ana™)] <2 () :

n

The volume of the interpolation area for an infinite Median RF tends to 0 polynomially in n and
exponentially in d, and so does Ep, [P (X € Apin)]-

Remark 5.7. Apart from a very restricted zone, the prediction of a Median RF mostly relies on
more than one training point. More specifically, this is a necessary condition for consistency: indeed,
to reach consistency, the volume of the area where the prediction involves a finite number of points
(a fortiori the interpolation zone) should tend to 0. In fact, the variance is of the order of o2 in
such an area. Proposition [5.6] portends the predominant self-averaging property of adaptive RF,
and hence underpins the idea of good capabilities of Median RF in interpolation regimes (with or
without noise).

5.2.3 Empirical consistency results

We analyze the empirical performances of Median RF in noiseless and noisy settings on the same
models as considered in Section For each model, given a training set, we train Median RF (with
M = 500 trees) until pure leaves are reached, and measure its excess risk on a test set.

Model 1 Model 2

0.00150

0.00125

% 0.00100 008
% 0.00075
$ 006
& 0.00050

0.00025 0.04

0.00000

Model 3 Model 4

2 0.0005.
Zo.0s \\- 0.0000

1000 5000 10000 15000 1000 5000 10000 15000
n n

Figure 2: Consistency results for a Median RF with M = 500 trees: excess risk w.r.t. the sample
size n. For each sample size, the experiment is repeated 30 times: we represent the mean over the
30 tries (bold line) and the mean =+ std (filled zone).

Figure [2| shows that the excess risk of a Median RF decreases as n grows. These empirical
performances lend support to the idea that Median RF are consistent even with a finite number of
trees and beyond the noiseless setting.
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6 Breiman RF

The widely-used Breiman RF is composed of several trees, built with CART methodology, each one
trained on bootstrap samples, and for which the successive splitting directions and thresholds are
chosen at each step (among a random subset of directions) in order to minimize the CART criterion
(empirical variance for instance). Breiman forests are among the state-of-the-art ensemble methods
in terms of predictive performance even if their adaptivity to the data remains a real hurdle to their
theoretical analysis.

From the interpolation perspective, each CART being trained on a bootstrap sample, the RF
interpolation is not ensured when considering fully-grown trees. Indeed, a tree cannot interpolate a
point that is not chosen in the bootstrap step. For this reason, we focus our study on the volume of
interpolation areas for Breiman RF without bootstrap and then analyze their empirical behavior in
interpolating regimes through a battery of numerical experiments.

6.1 Interpolation

As a Breiman RF is built using both the X;’s and the Y;’s, it is difficult to determine the depth
necessary to reach the interpolation state. Depending on the data, the latter can be of the order
k =~ log,(n) in the best case, if each cut creates approximately two groups of the same size), or k ~ n
in the worst case, if only one point is separated from the others at each step [low signal-to-noise
ratios situations, see e.g., [I6]. Note that by omitting the bootstrap step in the RF construction, the
interpolation of Breiman forests directly results from aggregating fully-grown trees.

6.2 Volume of the interpolation zone

As shown in the next proposition, the volume of the minimal interpolation zone tends to 0 as n
tends to infinity.

Proposition 6.1. Consider an infinite Breiman forest constructed without bootstrap. Suppose that
for a given configuration of the training data, all cuts have a probability strictly greater than 0 to
appear. Then, the volume of the minimal interpolation zone verifies

E [M(Amin)] < % (1 - 2_n)d-

Similarly to the Median RF, the bound on the interpolation volume for a Breiman forest enjoys
the same order of decay, improved by a constant exponential in the dimension. Since predictions
cannot be accurate in the interpolation area in a noisy setting, it is necessary that the volume of
this area decreases to zero in order to ensure the RF consistency (see Remark . Proposition
therefore suggests the good generalization properties of Breiman RF in interpolation regimes, as
several training points are mostly used for prediction.
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Setting the number of eligible features for splitting to 1 is sufficient to ensure the hypothesis on cuts
in Proposition [6.1} one can obtain a tree in which all splits are performed along a single direction.
This is a minor modification to the original algorithm and an easy one to implement since most ML
libraries have a “max-feature” (as scikit-learn in Python) or “mtry” (in R) parameter that can be
set to 1.

6.3 Empirical study

Interpolation volume We numerically evaluate the volume of the interpolation area of a Breiman
RF (with 5000 trees, see Figure [11]in Appendix for details about this choice) when the sample

size n increases.

Model 1 Model 2

-12 —— th. bound
-+~ emp. result

Model 3 Model 4

~_

10 \

-11
50 100 500 50 100 500
n n

Figure 3: Log volume of the interpolation zone of a Breiman RF with 5000 Trees, max features set
to 1, no bootstrap. Mean over 10 tries (red line) and mean + std (filled zone). The theoretical
bound (Proposition is represented in green.

In Figure 3] the volume of the minimal interpolation zone is shown to tend polynomially fast to 0
(linear in the logarithmic scale) for all considered models as the dataset size increases, matching the
behavior of the theoretical bound established in Proposition (6.1

One could notice the slight gap between the theoretical and experimental curves, which actually
reflects the gap between an infinite forest (for which Proposition holds) and its approximation
by a finite forest (5000 trees here). This gap naturally tends to increase with n (when the number
of trees is fixed) as the approximation of the infinite RF by a finite one deteriorates with n.

Consistency We now present an empirical study of Breiman RF consistency in interpolation
regimes. In the theoretical analysis, we have focused on a specific type of Breiman RF (without
bootstrap and a maz-features parameter equal to 1). We now examine the characteristics of Breiman
forests with their default parameter and study the regularization processes that limit the noise
sensitivity in the interpolation regime.

In order to reach a better estimation of the regression function, Breiman RF averages several
CARTSs while introducing randomness in the construction of each tree to diversify them. The first
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randomization comes from the bootstrap: each tree is trained on a bootstrap sample (selecting n
observations out of the n original ones, with replacement). The other randomization results from a
random selection of splitting directions: at each node, a subset of {1,...,d} of size mazx-features
is randomly selected and the CART criterion is optimized along these directions only (setting
mazx-features to 1 provides the maximum diversity whereas setting it to d results in the construction
of a unique tree).

The benefit of these two aspects in the construction of the Breiman RF is numerically analyzed when
using interpolating Breiman trees. In Figure [d] we measure the excess risk of two RFs with 500 trees
and max-depth= None, where for the first one, bootstrap is used and the max-features parameter is
set to 1, whereas the second one excludes bootstrap and sets the max-features parameter to [d/3]
(default value in randomForest in R).

Model 1 Model 2

0.10 —e— bootstrap on
—»— max-feature = int(d/3)+1

0.0015
£ 0.0010

< 0.0005.

0.0000

Model 3 Model 4
0.07 0,010

0.06 o] E——

%005

%o.04
g 0004
&oos

0.02 0.002

0.01 0.000
1000 5000 10000 15000 1000 5000 10000 15000
n n

Figure 4: Consistency of two Breiman RF': excess risk w.r.t. sample size n. Parameters : 500 trees
per forest, max-depth=None, max-features= d for the “bootstrap on” RF, bootstrap off for the
“max-feature= [d/3]” RF. Mean over 30 tries (bold lines) and mean + std (filled zone).

In Figure[d we observe that the excess risk decreases to 0 for all models and for both forests. Indeed,
each randomizing process alone induces enough diversity across trees for the self-averaging property
to be efficient, resulting in the consistency of the overall forests [see also 23], 20, 2], for insights
about tree diversity in random forests].

However, when using bootstrap, consistency comes at the cost of leaving the interpolation regime,
as only 2/3 of the data are used in average to build each tree (see Figures in Section
for more details about the forest non-interpolation). In regards of this internal sampling selection,
the aggregation of interpolating bagged trees results in smoothing the decision process of the entire
forest, providing thereby a consistent but not interpolating estimate.

In turn, Breiman RF built with maa-features= [d/3] seems consistent while preserving its interpo-
lating behavior. Within this configuration, the final RF still interpolates the data but the volume of
the interpolation zone is very small as shown in Figure[I0] This is in line with the vision of a locally
spiky estimator developed in [27] and [4]. Indeed, the influence of the averaging effect is locally
null near the data training points, but increases with the distance from these points. Note that
bootstrap and feature subsampling act differently. Bootstrap smoothens predictions by averaging
different observations, even at points of the training set, which leads to an empty interpolation area.
On the other hand, feature subsampling increases tree partition diversity, which reduces but does
not annihilate the interpolation area of the overall forest.
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In this regard, Breiman RF with maz-features= [d/3] are similar to interpolating spiky non-singular
kernel methods, as the ones introduced in [6], except for the leeway allowed for the hyperparameters
tuning. Indeed, as underlined for non-adaptive centered forests, the depth k, (i.e. the tuned
parameter) is constrained to a strict range to ensure both consistency and interpolation. This is not
the case for singular kernel methods, as they interpolate regardless of the window parameter value.

7 Conclusion

In this paper, we study both empirically and theoretically the tradeoff between interpolation and
consistency of different types of random forests. In particular, we show that interpolation is harmless
in the case of adaptive methods when the self-averaging process in the forest is sufficient to restrain
the interpolation effect to a local influence.

Indeed, we prove that the Median RF reaches consistency and exact interpolation regimes in a
noiseless scenario. This is the first result to prove that consistency and interpolation are not
irreconcilable for such powerful learners. Breiman forests is also shown empirically to be consistent
and interpolate when no bootstrap step is involved. This results from a fast decrease of the
interpolation area, which limits the negative impact of interpolation on the overall consistency of
the method.

We believe that the analysis of the interpolation zone of RF introduced in this article is a milestone for
the understanding of RF prediction in interpolation regimes. Indeed the volume of the interpolation
area is actually a roundabout way to measure the diversity in the constructed trees: if this volume
is high, all trees end up building similar partitions. This diversity measure could also be used as a
regularization tool to reduce the RF complexity by keeping only the most uncorrelated trees (in
terms of partition) in a PCA fashion.
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A Proofs

A.1 Proofs of Section [3]
A.1.1 Proof of Proposition

As all the leaves have the same volume and the data points are independent and uniformly distributed,
having at most one point per leaf is equivalent to distribute n balls into 2¥ boxes containing at most
one point with 2¥ > n as can be seen on Figure

Yl
e L el L o) o]
1 Ll
e ] ° o|lo|o|o|o ’ °
Tree partition L : +Xk ] |

Figure 5: Computing the interpolation probability (depth k = 3, n = 6)

Thus

()
("5

n

P(Zr) =

bl pl(2k — 1))
(2F —n)In! (n+ 2k — 1)1

With k = |log,(a,n)| € N, we have

anpmn apn—1 (an —n+1

P(Zr) = .
(Zr) (an+1n—1 (ap+1)n—2 onn
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e We begin by computing the lower bound:

P(Zr) > apn apn —1 (an —n+1
=+ n (om+n—1" amn+1
an—l>n
>
an

e The computation of the upper bound is similar, note that for all r € {0, ..., n},

apn —r <an+1/2
(an+1n—r—1" a,+1"°

It follows that

an +1/2

P(Zp) < | ———=
(T)_( P >n
an+1/2

< enlog(Z3F)

<e Han D) .

A.1.2 Proof of Lemmma [3.1]

Suppose that a tree f, in the forest does not interpolate for a given point X, s € {1,
write f(Xs,0,) =Y+ &, £ #0. Then, by definition of f]\(;[l?”nF,

1
o (Xg, On) = i Z YiWi;
j=1i=1
1 & 1
=17 2 X)Wy + (G +6)
Jj=1,j%#r i=1

Ix,can(xs.0)

where W;; 1= N (X.,6,)

1N, (x,,0;)>0- Therefore, fﬁ[l’{f(Xs, O,) =Y if and only if

3

...,n}, we



where C' is random and independent from e; for all i. £ was computed with the label noise of at
least one point different from X, (otherwise it would equal 0). We can write

1 n
£=C"+— ZeiWir
M=

where C’ is independent from the ;s . Finally, the forest interpolates at X, if and only if

1 M n
MZZElWW =C+C

j=1i=1

However, as the noise is continuous and independent from W;; for all 4, and from C,C” , this
equality happens with a zero probability.

A.1.3 Proof of Corollary

As it is necessary for all trees to interpolation for the forest to interpolate, the probability that the
forest interpolates is smaller than the probability that a single tree interpolates.

A.1.4 Proof of Proposition [3.5

Let fCRF be an infinite CRF with each tree containing at least o, n leaves, with a, > 1. Let X be

uniforHﬂy distributed on [0,1]¢. We write f,?lo{oF(X) =E [fSRY(X)|X, X1, ..., X,,]. Then, denoting
€ the event “N,, o (X) = 0" (or equivalently, “X falls into a non-empty leaf”),
2
R(JEE(X0)) = E [(fS8F (X) = 17(X))?)] (5)
= 2
> E[(FSR(X) - *(X))*] (6)

=k (Z Eeo [Wif*(Xi)] — (Le + Lge) f*(X)) (7)

=E (ZEG Wi (f*(Xi)_f*(X))]—]lgcf*(X>> (8)
> B [f*(X)*1e] o)
> E [f*(X)*P(£°1X)] . (10)
Besides,
P(E°X) =P (Npoo(X) =0|X) (11)

22



1
and as log(1 — 1/x) > ——5 for x > 1,

<1 _ 1)" _ elos(1-kw) (13)

apn

> e mnnT, (14)

The above quantity does not tend to 0 when n tends to infinity. Therefore, if E [ (X )2] > 0, the
infinite CRF is inconsistent.

A.1.5 Proof of Lemma [3.6]

To ease the notations, we write P (Eys) instead of P (Epr,,) throughout the proof. We have

M
E(X) = () (Nu(e,0,) = 0}. (15)

Given a dataset, we distinguish two situations: either x falls into an area where it cannot be

connected to a point X; for any tree, or the dataset is such that = could eventually be connected to

a point X; for a certain configuration of cuts within a tree. We write & (z) the (D,-measurable)
event {VO, N,,(z,0) = 0} and &(z) = {3 ©, N,,(z,0) # 0}. Using these notations, we obtain

P(Enm (X)) =P (En(X) NE(x)) + P (Ep(X) NEL(2)) (16)

=P (&1(2) +P(En(X) N E(x)) (17)

where the first probability term of the second line is a probability taken over D,, only. We control it
thanks to the following Lemma:

Lemma A.1. We have
P (& (z)) < e 2T,
Proof. The event &;(x) happens if all points of the dataset fall into parts of the space that cannot

connect to x for any tree. In order to compute its probability, we compute the size of the connection
area of = for trees of depth k, denoted

Zes(z) = {z €0, 114 :30,z ¢ Ay (z,0)}. (18)

We recall that trees are built independently from the dataset and that all cuts are made in the
middle of the current node for a uniformly chosen feature at each step. We denote A(kq, ..., k4, )
the cell of x obtained by cutting k; times along feature X ) for all j € {1,...,d}. Then, the volume
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of the connection area Zj . of x is

W) = | U Alkssekaro) (19)
0<k,....ka<k
E]. kij=k
ZM U A(klak%oa“'aovx) . (20)
0<k1,k2<k
k1+ko=k

By o-additivity of p,

H U A(kl,kQ,O,...,O,ZL')
0<k1,k2<k
ki1+tko=k

k

= u(A(k,(), ey 0, x)) +
j=

Given the shape of the cells A(k — 4, 4,0, ...,0,z) for all j € {1,...,d}, we have

j—1
M (A(k —3,5,0,...,0,) \ U Ak —0,¢,0, ...,O,x)) . (21)
=0

1

j—1
Ak = §,5,0,..,0,2) \ | J A(k — £,£,0, ...,0,2)
=0
:A(k _j7j707 ...,O,I) \A(k - ] + 17.] - 170a ...,0,1‘). (22)

Furthermore, note that, for all j € {1,...,d}, the volume of each cell A(k—j+1,5—1,0,...,0,2) is
27" (since k cuts have been performed). Therefore, for all j € {1,...,k},

1. u(A(k —34,7,0,...,0,2)) = w(A(k — 5+ 1,5 — 1,0,...,0,z)) = 2%

2. p((A(k —4,5,0,...,0,2) N A(k — j+ 1,5 — 1,0,...,0,2)) = “(A(kfj’é’o"“’o’w)) as can be seen on
Figure [6]

We deduce from these observations that, for all j,
:U’(A(k - jvj» 07 ceey 07 (E))

u(A(k—j,j,O,...,O,x)\A(k—j+1,j—1,0,...,0,x)) = 2 (23)
_ 27(k+1) (24)
Hence, combining equations , and , we have
m U Atk k2,0,..,0,2) | =27F 4 k2= (D), (25)
0<k,ko<k
ki+ko=k
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k=4

J=0
0,0

A(4,0) n A(3,1)

Figure 6: Volume of leaf intersection pu((A(k — j,j,#) N A(k — j 4+ 1,j — 1,)) in dimension 2 with
z = (0,0), k =4 cuts and j € {0,1}.

Consequently, using inequality (20)),
1(Ze(x)) > k2~ FHD. (26)

Finally, as the X;’s are uniformly distributed on [0, 1]¢ and &;(z) is realized when none of the X;s
fall into Z. x(z),

P(&1(2) = P(Yi € {1,....n}, X; ¢ Zos(s)) (27)
=(1-uZ ( " (28)

g( k2" <k+1>) (29)

_ enlog(1-k2~ (kt1)y (30)

< e AT, (31)

O
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Regarding the second term of , we have

M
P(Exr(e) N &) =P [ [ () Nu(z,0)) =0] (32‘ c{l,....n},X; € zc,k(x)) (32)
j=1
=E {E {]laie{1,..‘,n},XieZC,k(x)ﬂn§11 Nn(z,ej):omnn (33)
i M
=E |13ie(1,.. n}.X:€Zc o ()P ﬂ Np(z,05) = 0D, (34)
L J=1
=E [13ie(1,...n},x1€ 200 (2) (1 — Pu) V] (35)

where p,, = Pg (N, (z,0) > 0|D,,) and where the last line is obtained by independence of the 0;’s
conditionally on D,,. Note that

e cither Ji € {1,...,n},X; € Z.x(x), then p, > d~* since a tree connects x and a point in
Z. () with probability at least d=* (i.e. by choosing the right cut at each step);

e or fic{l,...,n},X; € Z.r();

and consequently,

T3ieqt,...n} X €20 p () (1 —p)M < (1 —dF)M. (36)

Overall,
P (Ex(z) N Ex(x)) < (1—dF)M (37)
< e Md (38)

Finally, gathering Lemma and the last equation yields

P (Er(z)) < e T 4 e Md7", (39)

A.1.6 Proof of Proposition

We follow the proof of [I7]. As we are in a noiseless setting, the risk simply equals the bias.

n

E|(J¥5.(X) - /*(X))’] =E <P@ T )1( o> 0) 2/ (DB Wi, (xe0>0] - f*(X)>
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We decompose f*(X) as

FHX) = (Lpg (N, (x,0)>0)50 T+ Lpe (N, (X,0)>0)=0) J*(X)
in order to write
n

2
i (IP’@ KOS T DS (X)Ee Wil v, x>0l - f*(X)>

2
1 n
=E (P@ N.(X.650)) ; (f*(Xi) = f7(X)) Ee[Wiln, (x,0)>0] — f*(X)]lIPe(Nn(X,6)>O)—O>

2
1 - * *
<2E <IP>@ (N.(X,6>0)) ; (f (X)) = f (X))Ee[Wi]an(X,e)>o]>
+2E {(f*(X)]IIP’@(NH(X,G)>O):0)2:| (40)

The second term of the last inequality verifies

E (/" (0 Tpaqvx0p>0-0) ] < [171%P (Po (Na(X,©) > 0) = 0). (41)

The above probability is taken over D,,. The event {Pg (N,,(X,0) > 0) = 0} is (X, D,,)-measurable,
it corresponds to the situation where for any ©, N,,(X,0) = 0, i.e. the dataset is such that it is
impossible for a tree to connect X with one of the X;’s. This probability is controlled by Lemma

AT
P (Po (N (X,0) > 0) = 0) < ¢ 3h4T.

Following a computation from [I7],

d
1F7(X) = (X < Y1105 ool X — X

j=1
d
<Y 1105 loo (b — ay)
j=1
and

n n d
S WiF(X) = (X)L, (x.0)50 < O Wiln, (x.0)50 D 10: |loo(bj — ;) (42)
=1

i=1 j=1

d
<y, (x50 2105 |lso(bs — aj). (43)

j=1
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Therefore,

2

d
B (15,00 - 1 o0)] <22 | | sorrer= 3105l Eolta, cxopsolts =)

+ 2 FhiT (44)
< ded: 107 |I5E : Eo[ly, (x.0)>0(b; — a;)]?
= MO [P (N, (X,6) > 0) n(X, 3T
+ 2 FhET (45)
d
_ _kn_
<2d Y _|10f|IZE [Eol(b; — a;)]?] + 2¢ 3T (46)
j=1

where the last inequality directly results from Cauchy-Schwarz inequality and the penultimate one
from independence of N, (X, ©) from b; — a; for all j.

Then, Jensen inequality yields
E [Eol(b; — ;)] <Eb; —a,)°
_E [TKJ-(X)} ?

-E[erreon]

where K;(X) is the number of splits made on feature j to produce the cell containing X. It is
conditionally distributed as a binomial distribution of parameters (k,1/d). Hence,

1\*
E[Q—Kf(xnx} <(1-=).
2d
To conclude,

2 d 1\" kn
B [(5.00 - r(0)"] <20 Y01 (1= 55) +2e ()

j=1

A.2 Proofs of Section {4| (Theorem [4.1])

In this section, we prove the consistency of the infinite KeRF estimator in the interpolating regime
in expectancy (Theorem [4.1)). We follow the proof given in [24] and first present two of its results.

Lemma A.2. Let k € IN and consider an infinite centered random forest of depth k. Then, for all
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r,z € [0,1]%,

k! 1\*
K@) = ) M<d> | | RPN
k1,....ka Jj=1

Zﬁzlke:k

Theorem A.3. From [2])]. Let f be a L-Lipschitz function. Then, for all k,

Ki(z,z) f*(z)dz .. .dzg 1\*
sup f[O,l]d (z,2) 1 < Ld (1 3 2d> '

z€[0,1]4 f[O 1]d K (.T Z)le .dzg
Proof of Theorem [{1. Let x € [0,1]%, |[f*|lcc = sup [f*(«)| and recall that
z€[0,1]4

KeRF () _ S YViKE(x, X;) '
o Zi:l Kﬁc(%xi)

— f*(x)

Thus, letting

(YKk (z, X5) E[YK{;”(%X)])
E[K(z, X)]  BK<(z, X))

Ke(z, X;)
A < fk«wxn 1)’
E [V K (s, X)
E K (X)) |

3\'*

M: HM:

SM—‘

and M, (z) =

KeRF (il')

the estimate can be rewritten as

KoRF (1) My (z) + An(2)
Rt 1+ Bu(z) 7’
which leads to

KeRF % _ M, (x) —f*(m)—i—An(sc) —Bn(x)f*(x)

According to Theorem we have

ol [BIPOOKE@ X)) | BEKp@X)
o) = 1@ = [F g+ Breen]
B (COKE@ X))
<[ ERres @
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where C' = Ld. Take o €]0,1/2]. Let Cq(z) be the event on which {|A,(z)|, [Bn(z)| < a}. On the
event C,(x), we have

i (@) = f*(@)[? < 8|Mu(z) — f*(2)* + 8] An(z) — Bu(z)f* ()|

1 2k
< 8C? (1 — 2d) + 82 (1 + |1f*Ils)*

Thus,

2k
B8 () ~ (@) e, ] <567 (1= 30) 48221+ 17 ) (48)

Consequently, to find an upper bound on the rate of consistency of oIgf’E‘F, we just need to upper

bound

2
B[ )~ P )P egw] < Bl s Yo £ 1]

KeRF

(since fo.%,

is a local averaging estimate)

2
Leg <w)}

< ]EHQ :
= [l + 121%)(” €

1/2

< (E [2||m||oo + 1?%Xn5i:|4 P [Ci(x)]>

(by Cauchy-Schwarz inequality)

< (16t + 85 max =] ) Plcs o) "

Simple calculations on Gaussian tails show that one can find a constant C’ > 0 such that for all n,
4 l 2
B| ] < cogn)?.
max &if < C'(logn)
Thus, there exists C”" such that, for all n > 1,

B IS (@) = @)z )] < € (logm)(P [C5(x)]) . (49)

The last probability P [CS ()] can be upper bounded by using Chebyshev’s inequality. Indeed, with
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respect to A, (x),

P[|A,(z)| > o] <

niQE[ YEK&“(z, X) E[YK,@C(J;,X)]F

E[K{(e, X)]  B[K(z,X)]
1 1
na? (B[KGe(z, X)))?

e R P (P OO H

+E [5217(,30(:6, X)2D

2(|f]1% + o) B [Kie (e, X)?]

< E [Y“‘K;C(x, X)Q}

<

< . 50
ST he? EECE X)) o
Meanwhile with respect to By, (z), we obtain, still by Chebyshev’s inequality,
1 [ K, X,)?
P[|B,(z)| > a] < 2E{’M} (51)
nat B [KE(z, X))

which matches the control made by [24]. Note that from here, the control on P[|A,(z)| > a| (50)
and on P|[|B,(z)| > qf will depart from the work of [24].

First, we need a Lemma to upper bound E [K,ﬁc(m7 X)Q].
Lemma A.4. For all k,

k
2
E[KP (2, X)) <wvp+2707 1+ Gy <d) f /2

where Cs is a constant depending only on d and vy =~ C’l/(Qkk(dfl)/Z) with C1 also a constant
depending only on d.

Proof of Lemma[A.]} We know that

BK{ (e, X)) = o > E[K{@ X)) > BIKE(n X = 5, (52)

but we need a tighter upper bound on E [K,‘;c(x, X)z]. From Lemma we know that

2
e ) o1\ &
ERE@XT=EN > pra (d) [ tetsapereran | |- 3)
ki,...,kd j=1
4 ki=k
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Developing the square within the expectation, we obtain two terms, the first one being the sum of
the squares:

k! 2 1 2k d
A=E| > (M) (d) jl;[l]lmkmﬂ:mijﬂ (54)

- 5 Gam) () e - . w

Note that, for all j,

and
() ()
. 2/ \2
Jj=1
Therefore,
ol 2 N2k N\ F
4= Y () (@) () (50
ki,...,ka
S ki=k

Thanks to [22], we know that

k! 2 d2k+d/2
Z (k Ik 1) RCEWER (57)
— 1:..-Rd-
4 ki=k

The second term corresponds to the sum of cross-products:

k! k! 1\ % ¢
B:=E ( Z : kol kgl 1. 1y (d) 1_[1]1[2’€jwﬂ:f2’€1Xﬂ]l(2lmﬂ:[2ljxj] (58)
1,k j=
A L),
S k= L=k
k! k! k[ d , ,
- Y mrmimm(3) PN @ = n 2 = 2x0)
(k;l’,,,’k;d) 1. ds t1....0qd- ]:1
#(1,..50a),

Eior k=25 L=k
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A small computation yields

1 k+30 Uil 2k
) . (59)

d
P () (20 = XD 0 (2] = 225,7) | = (3

Therefore,

B N\ /1\" k! k! 1 Sy Lty
- <d> (2> 2 Tl kgl Il 1) (2) : (60)

(k1,.-w5ka)
#(l1,--5la),

d d

j=1 kj:Z_jzl lj=k

As d > 2, we can write k = gd + r with (¢,7) € IN x {0,...,d — 1}. Denoting K, = {l =
(lh,...,1q)| > l; > q}, we can write:
(T1yesla)# (ks ka)

k S Uy
1 k! k! 1 J=1°3 2 #k;
o=(ae) X > i (3) @
| ] ] !
2d k) k1! kgl X, I gt \ 2
Z?:l kj=k
k Sy e
1 k! k! 1\ ==t 9 #k
+ <2d2) Z kil .. kgl Z Il 1) <2> (62)
(k1K) 1¢K,
Z?:l kj=k
1\*
_ (2d2> (By+ By). (63)
Then, regarding Bi, as we sum over [ € KCg,
k! KU1\ D0 by k! Ko (1)1 o
- < -
kE_q
k! k! 1\¢
< — .

Regarding Bs, there are at most d — 1 integers summing at most at ¢ — 1. Therefore for a fixed
ki,...,kq, we have

k! 1
S (5 (66)

1¢K
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As a first remark, for s € {2,...,d — 2}, k!/(l;,!...1;,!) is maximal when all I;s are equal. We will
use I function verifying I'(n 4+ 1) = n! for all n € IN. Using an inequality from [5], we know that

k! k!

Wl S (67)
k!
< 68
= T/s + 1) (68)
Lkke—k 1/12k
< V2mssts/2 Vkkte S (69)
k2kks—ke—ke™ 6k/s+3/8
< QCsk*%sk, (70)

with Cs a constant depending only on s. Note that when we are not in X, we can choose s k;s such
that their sum is greater than k — ¢ + 1. For I ¢ K, we denote Ky = {l = (I}, ... Ly )|l; # k;}. We
obtain

q—1d-2
k! k!
B=3%% S v 3 B (71)
kel kgl , AN
p=2 s=2 (k17~--7kd) ek,
25:1 kji:kfp ljlzkjlv---aljszkjs
d_ki=k fixed
i=1 Z?=1 li=k
—1d-2
4 k! _sl P
P=25=2 (ki..ka) T VeK,
5:1 kji:k*p ljlzkhf{“'ﬁjs:kjs
S ki=k fixe
=t T li=k

The number of terms in the third sum over the d-uplet with s elements being fixed equals

B

and is maximum for p = ¢ — 1. Therefore,

! —s5—3)! s—1
B2§ Z k! C, (q+d S 3)k_z 3k7 (74)

with C. > 0 a constant depending only on d. Recall that ¢ = |k/d|. Note that %

O(q%=*72). The maximal term of the previous sum is therefore reached for s = 2. Overall, we find

is in

qg—1d-2
k! d 1.-1/2 ok
B2<) D X g G kRT2 "
p=2 s= (k1,.-,kaq)
225=1 ki =k—p
iy ki=k
Z 1{37'0 ) kd . k—1/2 . 2k (76)
Tl gl 2 ’
(k1yrka)
Sl ki=k
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with Cy > 0 a constant depending only on d.

Finally, as
k! ) &
> (i) -
| | ’
Z?=1 kj=k
we obtain
By < Cy - (2d)F - Vk - k% (77)
O
Using the previous Lemma, we have
2 2 —k_3 2 ’ d+1/2

where vy, ~ Cy/(k(*=1/2) and
P (|B,(7)| > «) <i v +274 4 C 2 kkd“/Q
" ~ na? *\d ’

Thus, the probability of C,(x) is given by

P[Ca(z)] > 1 —P(|An(z)] > @) — P(|Bn(z)| > )

k 2 k k
>1- 272M1+27 v+ 27 4 Oy 2 K2
n a2 na? d

Consequently, according to inequality , we obtain

okoprz ok \'? . 2\ ¥
B[S (@) = (@) Pleg )| < Callogn) (n L ) e+ 275 4 Oy <d) g+1/2

1/2

a2 " na?
Then using inequality ,
2
B[S (@) - ()]

< B[|fSRF @)~ @) Pleyw | + B[ /SR @) - £ (@) es o]

2d

1/2
ok op2 ok \ /2 2\*
+Oz(logn)<n L+ ) w4270 4 Oy (d> el

1 2k
< 8C? (1 - > + 8 (14 [|ml|o)?

o? na?
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Optimizing the right hand side in «
1/2 , 1/2
(@ = Caltogn) (22002 + )" (w4275 + Gy (2)F19972) 7 (1t ) 2/16), we g

2
B[S (@) = £*(2)]

1 2k / 2k: 2k: 1/3 9 k 41/
< 2 (1 — 1 2/3 (2 opg2 4 2 2—5—1 4 +1/2

for some constant C5 > 0. Choosing k, = |log,(n)], we obtain:

1/3

2
B[ 55 () - f* ()] (79)
) n—1/2d 1/3
< COyn2oe=3) 1 Cy(logn)?/3 <wn + + n71082(d=2) (1og ) d+1/ 2) , (80)
with Cy > 0 and w,, ~ log(n)~(*~1/2, Finally,

_ 1/3
2,,-1/d

E KeRF(I) _f*(x)r <, (1og(n)2wn+log(n)

oo,n 2

+n log, (d—2) (1og n)d+5/2)

+ Cdn2 log(172—ld)'

O
A.3 Proofs of section Gl
A.3.1 Proof of Lemma [5.1]
To begin with, we have
k-1
P (kn(X) > k) =P (ﬂ Nio(X) > 2) (81)
i=1
k—1
=P(Ne>2) || P(Nio(X)>2[Ni—10(X) >2) (82)
=2
=P (Np-1,0(X) > 2) (83)
=E[P(Nk-1,0(X) > 2|X)] (84)
1

Studying the right-hand side of equality with & = (1 — log™%(n))logy(n) and using the
inequalities

exp(— ) < exp(nlog(1l — 2%)) < exp(,Zﬁk)

n
2k —1
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yields the result.

A.3.2 Proof of Lemma [5.2]

Given a dataset, a point X falls into an empty leaf of m,, o if and only if the probability w.r.t ©
to connect 0 and a point is 0. In particular, if along each direction X ), the tree built by cutting
along X ) only (which appears a.s. in the infinite forest) does not connect X and a point of the
dataset, then X falls into an empty leaf of m,, o, (the reciprocal is true as well). As drawing i.i.d.
uniform X;’s in [0, 1]¢ is the same as drawing them i.i.d. coordinate per coordinate, we can start by
focusing on the direction X", Mathematically, we have & = ﬂjzl &gj ) where E(gj ) is the event {0
falls into an empty leaf for all trees that cut only along direction XU )}. To lighten the notation, we
write X instead of X during the proof.

x isolated x connected

Xe Xeo

Figure 7: Condition to isolate x for all trees. In the first case, x cannot connect to any point
whatever the chosen cuts whereas in the second case, x can connect to the purple point if a tree
cuts along the first direction only.

As seen on Figure[7} X cannot be connected to any point along direction X if and only if, denoting
N,,(A) the number of points X; falling into a set A C [0, 1]¢, either

1. there exist y; a real and [ay, £1] an interval, with 1 > 51 > a3 > X > v and Ny, ([aq, 81]) > 2
and N, ([a1,71]) = 0 where 1 is the closest split to X under X.

2. the symmetrized situation of the previous one.

In order to compute the probability of the first situation described above, we introduce base-2
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notations: we define U,, the unique base-2 sequence of X defined as

X = i 271y, =1
s=1

To choose a1, we consider the splits defined from the base-2 sequence of X: if /! (resp. (V) is
the set of indexes of the successive 1 in the base-2 representation of X, then, for all ¢ € 0, we
define a4 = Zg: 27°1y,=1 + 27%. The base-2 representation of a; 4 corresponds to the one of X
truncated at index ¢ —1 and where the 0 at position g is replaced by a 1. As a consequence, X < aq 4
for all ¢. Then, following the previous notations, 31,4 simply equals a1 4 +277 and v, g = a1,4 —279.

We begin by conducting the computations conditional on X:

P(e) =E[Po, (57)]. (86)

We have
o, (67) 2 Po. | U Nallone fral) 220 Mol ) =0 (87)
= P, ENnaal,q,mn > 20 No([y1.0, 01,4]) = 0). (38)

qeLwo

The first inequality comes from the fact that we do not take into account the symmetric situation,
the probability of which scales similarly. Then, for all ¢ € ¢°,

Pp, (Nu([o1,q, B1,q]) > 20 Nu(([71,4,1,4]) = 0)

—Pp, <Nn<[a1,q, Brgl) > 2\Nn<mq,m,q1> - o) Bp, (N[00 01.0]) = 0)

= (170, (Mllosaiad < 1|¥alrgrana) =0) ) (1- 270"
(- () () - () Yoy
_ ( ()t 1)") ——

as the X;’s are uniform and i.i.d.

The above quantity does not tend to 0 when ¢ ~ log, n. Given ¢ < log, n a constant, we write A4,, the
event {3s € (|logy n| £c¢),Us = 0}. As X follows a uniform distribution over [0,1], P (A,) = 1—272%¢.
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P(&")2E

<1 - Q‘Jn_ 1 (1 - 2q1_ 1)”1 - <1 - 2q1_ 1)n> (1 2q)"]1Aﬂ1

> (1—4"Ce 71 (1 SR e_1> .

Finally,

d
PE)zZ(1- 4*‘3)‘16_*%1 (1 SR el> .

A.3.3 Proof of Proposition [5.3

Note that the infinite AdaCRF is written as

1
AdaCRF( \ _ B 1
= )= B Naw,0) 5 0) o (# Ot >0

=Eo[fn(z,0)|Ny(z,0) > 0]
where f,(.,0) denotes a single adaptive centered tree.

f&?ﬁCRF is obtained by applying the law of large numbers to fﬁ?ﬁCRF (see [23]) for details).

Therefore,

E (AR (X) - /(X)) =E K% (Nn()l(,G)) Sy Eelfn (X, Oy, )50l - f*(X)> ]

1
- KP@ (Na(2.0) > 0)
> E [f*(X)*Le:]

Eo[fn(X,0)1N, (z.0)>0] — f7(X) (1e + 1g) )) ]

with £ the event {VO, N,,(X,0) = 0} which is (X, X1,..., X,,) measurable. Note that when £ is
satisfied, Pg (N, (z,0) > 0) = 0.

From Lemma we know that | [ f*(X)?1¢-] does not tend to 0 as n tends to infinity. Therefore
oﬁ‘?ﬁCRF is inconsistent.
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A.3.4 Proof of Theorem [5.4]

As we are in a noiseless setting, the risk simply equals the bias:

E |(fIRR(x) - f7(X))°| = E (Z fr(x - X >> ]

I
&
N

= I
<
Py
ke
|
\
Py
>
=
C8
=
N———
%

The second term of the last inequality verifies

E (£ (0 pa,xo15020)°] < 17 I%P (Po (Na(X,0) > 0) = 0).

Following a computation from [I7],

d
1F5(X) = XD <3110 f*||oo| XD = X))
=1

d
102" || oo (be — ae)
=1
and
n n d
D WilFH(X) — (X Z Z 1100£*|lo (be — ar)
i=1 =1 =1
d
< 100 * oo (be — ).
=1
Therefore,

d 2
B [(A00(X) - f7(x))°] < 28 KZ 1867 | Ee (b — am) ]

=1

d
<24y 1017 |%E [Eo[(be — ar))’]

{=1

where the last inequality directly results from Cauchy-Schwarz inequality.

Then, Jensen inequality yields
E [Eo[(be — ar))?] < E[be — ag)?.
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We now adapt a Lemma from [I3] to control the volume of the leaves.

Lemma A.5. For all £ € {1,...,d} and depth k € IN*, we have
57\ k1
—_a)?l < _
E|:(bg ag) :| 2(1 64d>

Proof of Lemma[A.5. Let us fix z € [0, 1]¢ and denote by ng, n1,...,n; the number of points in the
successive cells containing z (for example, ng is the number of points in the root of the tree, that is
ng = ay,). Note that ng,n1,...,n, depends on D,, and ©, but to lighten notations, we omit these
dependencies.

Recalling that b; — a; is the length of the ¢-th side of the cell containing x, this quantity can be
compared to a product of independent data distributions: the n;i-th statistical order of a uniform
sample Z1, ..., Z; follows a distribution of parameters (n;41,n; —nj+1 + 1) and corresponds to the
length of the cell at depth j if the cut is made on the n;-th points. If the number of points n; is
even and the cut is made between two points, then the length of the current node j will be less than
the n; + 1-th statistical order. Therefore we have the inequality

k
B[(b — a))?] < HE[[B(nj + 1m0 = )] PO By 4 2,m g — iy — 1)) O
=1

where B(a, ) denotes the beta distribution of parameters o and , and the indicator d, ;(x, ©)
equals to 1 if the j-th split of the cell containing x is performed along the ¢-th dimension (and 0
otherwise) and 7; = 1y, %2-1}. Note that as E[B(a, 8)!] < E[B(a+ 1,8 —1)7] for ¢ € {1,2}, we
have

I/\
-

[(bl - CL[ E E{ nj + 2,nj_1 —n; — 1)} 2§£’j(x’®)|5g7j(1‘, @)]]

ig
g

2
E|1Ls, ,(z.0)=0 + B[B(n; +2,n;_1 —n; — 1)] ]]-6Lj(.7:,®)—1:|

<.
Il
—

|
=

<.
I
—

1
+ E[B(n; +2,nj_1 —n; — 1)]2>

d

<.
Il
—

Il Il
—= L=
A~

Q.
&‘I

d  dnja+1)(nj1+2)

<
Il
—

(d -1, 1 (njm1+4+1/2)(nj—1 +6+ 1/2))
d 4d (nj_l + 1)(7’Lj_1 + 2)

<
Il
—_

IN

where the first inequality stems from the relation n; < (nj_1 +1)/2 for all j € {1,...,k}. Further-
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more,
(nj—1+4+1/2)(nj—1 +6+1/2)
(nj—1+1)(nj-1+2)
is a decreasing function of n;_; and g(2) = 221/48. As n;_; > 3 for all j < k — 1, we have
(nj—1+4)(nj—1+6) _ 57

g(nj-1) =

—. 94
(nj71 + 1)(71]'71 +2) 7 16 ( )
Finally,
k—1
29 1 57
E < (14 == -
[Ve(w, ©)7] < < + 192d> i ( at 64d>
k—1
<of1- 2"
64d
O

As the cut are performed at the median of the samples of the current node, it is clear that the depth

of é\g’e,‘fRF at point X is greater than log,(%+!). Therefore,
MedRE 9 57 logy(n+1)—2 d )
B [(Re 00 - o)) < aa (1- 2 > llost 2. (95)
=1

A.3.5 Proof of Proposition [5.6

It is possible to conduct a one-dimensional analysis and then to extend the result to the multi-
dimensional case by a simple multiplication. Indeed all the leaves are determined coordinate per
coordinate, therefore the interpolation area is the product of all interpolation areas along each
direction.

Let Zy,...,Z, be n ii.d. random variables uniformly distributed over [0,1]. As in the infinite
Median RF the trees built by cutting along one direction only appear a.s. , the length of the cell
along the chosen direction is less than Z; 1) — Z(r_1) where Z(;) indicates the i-th statistical order.
Moreover, it is known that Z(j, follows a Beta distributions of parameters (k,n — k + 1). Therefore,

k+1 k-1
E [Zat1) — Z-1)] = e (96)
2
< =, 97
= (97)

Now, as X1, ..., X,, are i.i.d. and uniformly distributed over [0,1]%, for any data point = € [0, 1] we
simply have that
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Finally, since by definition all interpolation zones are disjoint and the interpolation area is the union
of n interpolation areas, we have

2d
E[:U’(Amin>] S F

which ends the proof.

A.4 Proofs of section

Proof of[6.1] Before diving into the computations, let us recall two facts about Breiman RF con-
struction. First, when a CART cuts between two points, the cut is made at the middle of these two
points. Second, assume that all the cuts are possible, i.e. that the probability of cutting between
all pairs of successive points along all dimensions is strictly positive. Therefore, for a given point
X, one can define the minimal interpolation zone A, x, =) MeN,@,, Ax;,0, around X;. The
boundaries of this area are given for each direction by the cuts between X; and its neighbor points
respectively to the considered direction, as illustrated on Figure

Minimal
- interpolation
L4 zone
(]
Potential
. |:| interpolation
zone
&)
@

Figure 8: Different interpolation zones of a data point (in red).

1. The interpolation zone is the union of n interpolation zones, each one containing a single X;. We
denote A(masn(., Onr)) = Ax, @, U--UAx, @, With Ax, 0,, = {2 € [0,1]4, marn(z,On) =
Y;}. We begin with a one-dimensional analysis. We denote Xi(j ) the j-th feature of X;, for
all j € {1,...,d} and i € {1,...,n} and we focus on the first variable X(V). As X1,..., X,
are i.i.d. and follow a uniform distribution over [0, 1]%, Xl(l), ey XT(LD are i.i.d. and uniformly
distributed on [0, 1]. For the ease of notation, we define Z; := Xl(l), iy Dy = X, Letz = L.
The length (volume) of A,,ip, 7, restricted to the first dimension is simply given by the sum of
the distance from z to its closest point on the left side and to its closest point on the right
side (divided by 2 as the cut are made in the middle of two points). Therefore,

W Amins) = (98)

(:L' — max Z; + min Z; — x) .
2 {Z;,Z;<z}U{0} {Z:,Z;>x}U{1}
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All computations are made conditionally on 2. Denoting N, the cardinal of the set {Z; : Z; <
x with 1 <@ < n}, we have for any t € [0,2/2),

P (1 <x — max Zz') <t }(E)
2 {2:,2;<z}u{0}

:1—]P’< max Zi<ac—2t‘x>
{Z:,2;<z}u{0}
=1-E[E[P((Zi, <z—20)N..N(Zi, <x—2t)|Ny,Z;, <, ..., Zin, e < z)] ||
=1-E[(Z1 <z —2t|Z; < 2)"*|x]
n—1
=1-Y PN, =kl2)P(Z1 <z —2t|Z; < alz)"
k=0
n—1 k
Tz —2t
= 1 — =
> P(N, =klz) ( - >
k=0
z—2t\\""
= — 1 —
(0-0++(*57))
=1—-(1-2t)"!

where the penultimate equality is obtained by noticing that N, is a binomial of parameters
(n —1,2) and computing its probability-generating function.

So for all t > 0,

1
- _ ) < =1 — n—1 .
P(Q (m {Zi72%>§U{O}ZZ>t|x> 1= (=20 ey
By symmetry,

1
9 i P — < =1—(1—- n—1 )
: <2 ({Zngf}u{l}zl x) - tlx) L= (1=20)"" o> 102

Overall, using the fact that for any variable Z with cumulative function Fiz, E [Z] = [(1— F7),

we have
z/2 (1—-z)/2
/ (1 —2u)"du + / (1 —2u)""tdu
0 0

oo (2= (1= 2)" =)

1 1
—(1—-—=—.
n( 2")

Now, as X1, ..., X, are i.i.d. and uniformly distributed over [0, 1]¢, for any data point 2 € [0, 1]¢
we simply have that

E [M(Amin,w) |$]

IN

d
Amin,z = >< Amin,z(j) .

J=1
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Therefore,

S

d
nd '

E [:U(Amin,a:)] < (1 - 2*?1)

Finally, since by definition all interpolation zones are disjoint, we have

E [1t(Amin)] < ndlfl (1-27)".

. It is enough to notice that the minimal interpolation zone is the intersection of all the potential
interpolation zones. It is reached when the forest contains all the possible cuts. Then, as the
probability of any given cut appearing is strictly greater than 0 by hypothesis, the probability
of its appearance in the infinite forest is one. Therefore almost surely, when M grows to
infinity, the interpolation zone of the forest reaches the minimal interpolation zone.
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B Experiment supplementary

For all experiments, we introduce the following regression models.

e Model 1: d =2,Y = 2X? + exp(—X2)
e Model 2: d=8,Y = X; X, + X?? — Xy X5 + X6 X7 — X82 —‘1-./\/(0,05)
e Model 3: d=6,Y = X? + X3 Xze ¥4l 4 X5 — X5 + N(0,0.5)
e Model 4: d=5,Y =1/(1 4 exp(—10 % (%, X; — 1/2))) + N(0,0.05)
All the experiments are conducted using Python3. We use Scikit-learn RandomForestRegressor

class to implement the Breiman RF model. We coded CRF, KeRF and AdaCRF models ourselves,
mainly relying on numpy and joblib libraries for computation optimisation.

B.1 Consistency experiments

For all consistency experiments, the dataset was divided into a train dataset (80% of the data) and
a test dataset (20%) of the data.

The parameters of the estimators were set as follows:

e all RF estimators have 500 trees to mimic the behavior of the infinite RF.

e the max depth parameter is set to None for all RF estimators, which corresponds to growing
each tree until pure leaves.

e parameter bootstrap is set to Fualse for all estimators in order preserve the interpolation property,
or set to True when specified.

e all other parameters are set to default value for Breiman RF.

B.1.1 Counsistency of Breiman RF with max-feature= 1

On Figure [9] we see that the excess risk of a Breiman RF with the max-features parameter set to 1
is decreasing towards 0 as n increases. This RF seems consistent for all models.
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Figure 9: Consistency of Breiman RF: excess risk w.r.t sample size. RF parameters: 500 trees,
max-depth set to None, max-features= 1, no bootstrap. Mean over 30 tries(doted line) and std

(filled zone).
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B.2 Interpolation experiments
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B.2.1 Volume of the interpolation zone w.r.t sample size n

We plot on Figure the log-volume of the interpolation zone of a Breiman RF with the max-
features parameter set to [d/3] (the default value proposed in R randomForest package). The
volume decreases polynomially in n but slower than when max-features= 1 (Figure [3)) which is to be
expected: choosing max-features= 1 should increase the diversity of the splits and therefore reduce

the volume of the interpolation zone.
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Figure 10: Log volume of Breiman RF interpolation zone w.r.t. sample size n. RF parameters: 500
trees, no bootstrap, max features = [d/3]. Mean over 10 tries (bold line) and std (filled zone).
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B.2.2 Volume of the interpolation zone w.r.t number of trees M

In this section, we empirically measure how fast decreases the volume of the interpolation zone of a
Breiman RF when its number of trees M increases, and how close the interpolation zone gets from
the minimal interpolation zone.

To this end, for a fixed sample size n = 500, we numerically evaluate the volume of the interpolation
area when the number M of trees in the forest grows. This volume is anticipated to be a non-
increasing function of M (for M = 1, note that the interpolation volume is 1, the volume of [0, 1]%),
but its decrease rate highly depends on the data geometry, making its theoretical evaluation difficult.
The numerical results in Figure [L1| show a fast decay towards zero of the interpolation volume for
all models, already tiny from M = 500 trees. Furthermore, it seems to converge to the theoretical
bound (dotted line) derived in Proposition for an infinite RF with a max-feature parameter

equal to 1.
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Figure 11: Log volume of Breiman RF interpolation zone w.r.t. the number M of trees. RF
parameters: no bootstrap, max features = 1. Mean over 10 tries (bold line) and std (filled zone).
Sample size n = 500.

B.2.3 Analysis of the interpolation property of Breiman RF with bootstrap

In this experiment, we try to measure how close a Breiman RF with bootstrap on is from exactly
interpolating (with other parameters being 500 trees, max-depth set to None, max-features= d). To
this end, we measure the difference between the true train labels (the Y;s) and the predicted ones

(the Y;s) by computing
L\~ Y- Y
Lioss := — —_—
loss n ; le
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The closer is this quantity to 0, the closer is the forest from interpolating. On Figure we plot
different quantiles of the above quantity as n varies.
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Figure 12: I}, of a Breiman RF w.r.t sample size n. RF parameters: 500 trees, bootstrap on,
max-features= d, max-depth set to None. Mean over 30 tries (doted lines) and std (filled zones).

For instance, if we take the 0.8-quantile in red on Figure [12| and look at the upper-right plot (model
2), we read that the Ij.ss roughly equals 0.6 for 80% of the points. This quantity seems globally
constant in n. Finally, the quantiles are smaller in the case of a strong signal-to-noise ratio (models
1 and 4) than in the case of a bigger one (models 2 and 3).
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Figure 13: Ijoss of a Breiman RF w.r.t number of trees. Parameters: bootstrap on, max-features= d,
max-depth set to None. Sample size n = 1000. Mean over 30 tries (doted lines) and std (filled
zones).

On Figure we also plot the quantiles of the I}, for the four different models while the number
of trees varies. Adding trees does not significantly change the value of the different quantiles.
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