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Abstract

This paper presents an overview of wavelet-based techniques for
statistical process monitoring. The use of wavelet has already had
an effective contribution to many applications. The increase of
data availability has led to the use of wavelet analysis as a tool
to reduce, denoise, and process the data before using statistical
models for monitoring. The most recent review paper on wavelet-
based methods for process monitoring had the goal to review the
findings up to 2004. In this paper, we provide a recent reference
for researchers and engineers with a different focus. We focus on
i) wavelet statistical properties, ii) control charts based on wavelet
coefficients, iii) wavelet-based process monitoring methods within a
machine learning framework. It is clear from the literature that wavelets
are widely used with multivariate methods compared to univariate
methods. We also found some potential research areas regarding the
use of wavelet in image process monitoring and designing control
charts based on wavelet statistics, and listed them in the paper.

Keywords
control charts, data-driven monitoring, multiscale methods, fault
detection and diagnosis, wavelet analysis.
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Introduction

Quality improvement, system performance, and safety operation have
attracted much attention in recent years. These aspects can be achieved
by implementing a reliable monitoring system, which includes fault
detection and isolation/identification procedures that aim at determining
whether or not a fault has occurred and which variables are responsible,
respectively. Several approaches have been developed to tackle these
aspects based on three main ideas: 1) data-driven approach, which is
also referred to as statistical process monitoring, that is concerned with
the collected data from processes to develop a statistical monitoring
model (Atoui et al. 2019a; Yin et al. 2014; Chiang et al. 2001),
2) knowledge-based approach that is based on experts (Chiang et al.
2001), and 3) model-based approach that requires a priori physical and
mathematical knowledge of the process (Isermann 2006; Chiang et al.
2001). Obviously, the best way to implement a monitoring system is to
use all three approaches because any description (data, expert and physical
knowledge) of the process provides useful information and reinforces
system understanding. However, the cost and/or technical environment of
the process may encumber practitioners and engineers to use the three
approaches simultaneously. This paper focuses on data-driven approach
or Statistical Process Monitoring (SPM). More particularly, wavelet-based
statistical process monitoring methods.
The rise of big data technologies has contributed to process data sets
available in industrial systems. These data sets are characterised by the
4 V’s: Volume (from Terabytes to Zettabytes), Velocity (from Batch to
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Real-time), Variety (from Structured to Unstructured), and Veracity (From
Noise to Uncertainty). On the other side, statistical process monitoring
serves as an efficient alternative tool where other approaches (model-
based, knowledge-based) may fail to provide satisfactory results, such as
in complex systems where it is often tough or impossible to come up with
an analytical model.

Wavelet-based techniques are often superior in performance, and that
is why they are used in various modern applications such as image
processing JPEG2000 and Wavelet Scalar Quantization algorithm for
fingerprint images developed by FBI (Bradley et al. 1993); condition
monitoring (Peng and Chu 2004); chemical engineering (Reis and Saraiva
2006; Choi et al. 2008); machine transmission lines (Lebaroud and Clerc
2008; Liang et al. 1998); bearing and gearbox fault detection and diagnosis
(Zarei and Poshtan 2007); wind turbines (Sun et al. 2014); biomedical
analysis (Akay 1998); profiles monitoring (McGinnity et al. 2015; Nikoo
and Noorossana 2013); statistics (Abramovich et al. 2000), and others
(Cohen et al. 2016b,a; Kano et al. 2002b; Gao and Yan 2010; Wang 2012).
In the context of statistical process monitoring, wavelet-based methods
are popular for the goal of fault detection and diagnosis. Their significant
advantages consist of reducing noise, extracting features, and reducing
dimension (Jeong et al. 2006).

Statistical process monitoring

Traditional statistical process monitoring methods are essential to
understand the variation in a process and to assess its current state
(Woodall and Montgomery 2014), such as X-R (Mean-Range), X-
S (Mean-Standard deviation), EWMA (Exponential Weighted Moving
Average), CUSUM (Cumulative Sum), Multivariate EWMA (MEWMA),
MCUSUM, χ2, T 2, Q-statistic, Principal Components Analysis (PCA),
Partial Least Squares (PLS), see Figure 1.
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Figure 1. Statistical Process Monitoring Approaches

These methods have been used for decades and still being used
because of their simplicity and efficiency to detect assignable faults
in the time domain. However, these methods are not able to detect
faults in a frequency domain, especially where the time domain cannot
provide information about the state of the system. Several techniques
in time-frequency domain have been developed and used for process
monitoring, such as Linear time-frequency representation (short time
Fourier transform and wavelet) and Bilinear time-frequency distribution
(e.g. Wigner-Ville, Cohen class) (Feng et al. 2013).

Figure 1 shows a categorization of statistical process monitoring
approaches. We distinguish the statistical process control, which mainly
means control charts techniques. These are graphical tools that are often
based on a plotted statistic that monitors a quality characteristic, which
can be univariate, multivariate, adaptive, or profile; the control limits
define the area where the control chart does not signal. The second group
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of techniques are machine learning/data-driven techniques, where the
data are often subject to processing/feature extraction/feature selection
before applying a statistical monitoring model. For example, control chart
patterns (CCPs) is a different way to detect faults using machine learning
techniques (Hachicha and Ghorbel 2012). Also, principal component
analysis is widely present in the literature of SPM as well as its
various extensions, such PCA-dynamic (dynamic process), PCA-moving
(autocorrelation), PCA-Kernel (non-linear process).

Wavelet-based methods have drawn attention earlier 2000 for process
monitoring in order to deal with measurements noise, autocorrelation,
non-normal data, and more particularly time-frequency analysis, where
the fault detection can be made in different scales or frequency. This is
become a considerable subtopic in statistical process monitoring field.
Sometimes called mnultiscale statistical process monitoring. However,
multiscale analysis can be conducted using other methods such as
empirical mode decomposition. We can distinguish techniques that use
wavelet coefficients to develop a statistic to plot in a control chart, and
techniques that use wavelet analysis as a preprossessing tool before using
the classical technique of statistical process monitoring. For example,
Multiscale Principal Component Analysis (MS-PCA) that uses wavelet
with PCA to denoise data before applying PCA- Hotelling Statistics for
fault detection. Kano et al. (2002b) showed that MS-PCA performs better
than DISSIM (Dissimilarity) (Kano et al. (2002a)) and PCA-moving when
monitoring Tennessee Eastman Process (TEP).

The scope of the paper

The most recent review paper on wavelet-based methods for process
monitoring was published in 2004 by Ganesan et al. (2004). The
authors reviewed the use of wavelet analysis for process monitoring
and highlighted the advantages and disadvantages of multiscale methods.
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More particularly, they presented the use of wavelet in process monitoring
with and without process model. Thresholding techniques were also
presented. The goal of this paper is to review the up-to-date findings
in order to provide a recent reference for researchers and engineers,
so we attempt to avoid duplication of the material listed in that paper.
We focus on i) wavelet statistical properties, ii) control charts based
on wavelet coefficients, iii) wavelet-based process monitoring methods
within a machine learning framework.
This paper is organized as follows: Section 2 introduces wavelet and their
statistical characteristics; Section 3 presents control charts using wavelets;
Section 4 shows the usage of wavelet in a machine learning framework.
Finally, in Section 5 conclusions and some possible research directions are
presented.

Wavelet for statistical process monitoring

Wavelets were introduced by Jean Morlet in 1983. He came up with the
word “wavelet” when he was working on seismic signals as a geophysicist.
Afterwards, Grosmann Alex and Yves Meyer (Meyer 1993) developed
the mathematical foundations of wavelets. A historical introduction to
the subject of wavelet is presented by Hubbard (1998). The theory of
Multi-Resolution Analysis (MRA) developed by Mallat (1989) opened the
way to apply wavelet to image processing. His work also resulted in the
implementation of the Fast Wavelet Transform (FWT) algorithm (Misiti
et al. 2003, 1996), and then spreading out the use of wavelet in various
applications. Wavelet functions are grouped by families: discrete wavelets
that contain Haar (1910), Daubechies, Coiflet, Symlet and Biorthogonal
(Daubechies 1992; Cohen et al. 1992); and continuous wavelets such as
Morlet and Gaussian (Mallat 1999).
A suitable introduction to wavelet analysis is to compare it to Fourier
analysis. In fact, Fourier transform is a decomposition that projects data
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Figure 2. The multiscale representation through a wavelet transform

into a sinusoidal base, where each sinusoid corresponds to a frequency
and has a coefficient weight, called Fourier coefficients. Similarly, wavelet
transform projects data into a wavelet base, where the size of the window-
analysis is variable and not fixed as in Fourier transform. Each window
of analysis (given by stretching and shrinking of the mother wavelet)
corresponds to a scale of the decomposition and contains the wavelet
coefficients. The multiscale representation is given into a Time vs. Scale
plan as shown in Figure 2. The data is represented into large scales or
resolutions. If you look at the data with a large window (large scale),
we would observe “global” features, and if we look at the data with a
small window then we would observe “local” features. Wavelet analysis
processes the data at different resolutions or scales. An example of Morlet
wavelet is given in Figure 3 compared to a sinusoid function.

Mathematically, a wavelet is a square integrable function on Euclidean
space R× R∗+, usually oscillating and must satisfy some eligibility
conditions (Daubechies 1992; Meyer 1993). The wavelet transformation
is a way to decompose data (signal, image, video, time series, etc.) into a
weighted sum of a series of bases localized in time and frequency domains.
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Figure 3. The Morlet wavelet and a sinusoid function

Several wavelet transforms have been proposed, such as Continuous
Wavelet Transform, Discrete Wavelet Transform, Stationary Wavelet
Transform, Complex Wavelet Transform and others (Mallat 1999; Gao
and Yan 2010). Not all wavelet functions have an analytic expression,
some are defined by a filter.

Continuous Wavelet Transform (CWT)

The continuous wavelet transform is defined as follows:

cwt(τ, s) =
1√
s

∫ +∞

−∞
x(t)ψ∗(t− τ

s

)
dt, (1)

where ∗ represents the operation of complex conjugate of the mother
wavelet ψ; s ∈ R+∗ and τ ∈ R indicate the scale and translation
parameters, respectively. x(t) is the data. The wavelet coefficients
cwt(τ, s) are the convolution result between the data and the wavelet
functions. In this transformation, the translation τ parameter is continuous
and vary along the data x(t). The transformed data are a function of
the translation τ and the scale s parameters. The signal energy here is
normalized by dividing the wavelet coefficients by 1√

s
at each scale. An
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example of the CWT is given in Figure 4. The large scales correspond to
low frequencies and vice versa.

Figure 4. The Continuous Wavelet Transform

The CWT is widely used for signal processing fault detection and
diagnosis such as rotary machines fault detection (e.g. bearing and gears).
The vibration signals generated from these machines contain a wide
range of natural and defect frequencies due to periodic behaviors of the
machines. The challenge is extracting significant frequencies within a
small-sized pattern for faults diagnosis. In this type of problems, the
continuous wavelet coefficients has the advantage to show how well
a mother wavelet correlates with a particular signal. If the continuous
wavelet coefficient is large in a scale, then the signal has probably
a major frequency component corresponding to that scale (Rafiee and
Tse 2009). Wu and Chen (2006) proposed a fault diagnosis technique
for internal engines using both acoustic and vibration data and applied
Morlet wavelet. Pahon et al. (2016) developed a wavelet-based method
to diagnosis a high temperature fuel cell. They used wavelet energy and
entropy approaches as features. The Daubechies db4 wavelet was used
because it is shown that it capture the energy of the signal. Jedliński and
Jonak (2015) investigated early fault detection in a gearbox using artificial
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neural networks and wavelet. Eleven wavelets were examined to find the
best for this application: Morlet, biorthogonal 3.1, Coiflet 3, Daubechies 4,
Dmeyer, Gaussian, Haar, Mexican hat, Meyer, ReverseBior 3.1 and symlet
wavelets. The most suitable type of wavelet in the investigated case was
the Haar wavelet. They used the classification accuracy of their artificial
neural networks to select the suitable wavelet. An extensive attention was
given to the use of continuous wavelet on rotary machines (Peng and Chu
2004; Yan et al. 2014; Chen et al. 2016). Most of the published papers
used CWT to extract featured data in a specific frequency band.

Discrete Wavelet Transform (DWT)

CWT is a redundant transformation since the scale and the translation
parameters are changed continuously. Although the redundancy is useful
in some applications such as noise reduction and feature extraction, other
applications may need computational efficiency. This can be achieved by
discretization of the scale s and translation τ parameters, as follows:

ψj,k(t) = 2j/2ψ(2jt− k), (2)

where s = 2j and τ = ks; j, k ∈ Z.

These wavelet bases are orthogonal and defined in the framework of
the Multi-Resolution Analysis (MRA), which provides a multiscale
decomposition using orthogonal wavelet families across filter banks
(Mallat 1989), see Figure 5. The input signal is downsampled and results
in two subsignals. The approximation coefficients aj(k) capture the low
frequency or high scale of the input signal (using filter hn), while the
details coefficients dj(k) capture the high frequency or small scale of the
input signal. In a multi-scale decomposition the process is repeated as
described in Figure 5.
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Figure 5. A Discrete Wavelet Transform through Filter Banks

The approximation at scale j is successively decomposed in two
subsignals: one detail and one approximation. At each scale of
decomposition j, we obtain details coefficients dj(k) until we reach
the maximum level J where we obtain both approximation and details
coefficients. An example of a discrete wavelet transform is given in Figure
6. The data denoted by s is decomposed into 5 levels, therefore we
obtain the approximations coefficients a5(k) and the details at each scale
d1, d2, d3, d4, and d5.

Figure 6. The Discrete Wavelet Transform applied to the signal s
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The wavelet coefficients of the DWT, approximations aj(k) and details
dj(k), are given as follows:

aj(k) =
l∑

i=0

h[i]aj−1[2k − i], (3)

dj(k) =
l∑

i=0

g[i]aj−1[2k − i], (4)

where a0 = x the original signal, j represents the decomposition scale;
k ∈ Z; l is the filter length; h and g are the scaling (low-pass) and wavelet
(high-pass) filters, respectively.

The Discrete wavelet transforms provide parsimonious representations,
which have the ability to describe data with a limited number of
wavelet coefficients (Mallat 1989; Mallat and Zhong 1992). Therefore,
thresholding wavelet coefficients techniques have shown an excellent
performance for reducing noise in data. Several thresholds have been
developed: VisuShrink (Donoho and Johnstone 1994), RiskShrink,
SUREShrink (Donoho and Johnstone 1995; Donoho 1995), FirmShrink
(Gao et al. 1997; Gao 1998). Andrade et al. (2016) proposed an adaptive
threshold allowing the segmentation of electric signals to analyze the
power quality. Kumar and Singh (2013) proposed a technique based on
the DWT using Symlet wavelet for measuring outer race defect width of
taper roller bearing.

Statistical properties of wavelet coefficients

There have been advances in recent years in the use of wavelet
approaches for statistical modeling and applications. But a few research
papers have reported the statistical characteristics of wavelet coefficients.
Regarding statistical applications, the central use of wavelet analysis
has been in nonparametric regression and density function estimation.
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This is basically done by using the discrete wavelet transform,
applying a thresholding rule (Donoho and Johnstone 1994, 1995), and
then reconstructing the function using the inverse wavelet transform
(Nason and Silverman 1995; Abramovich et al. 2000). Additionally,
wavelet decompositions have shown good time-frequency localization
(Daubechies 1990), which is a reasonable catalyst for their use in change-
point problems.

The wavelet coefficients are the result of the convolution product of
wavelet/scaling functions and the signal under consideration. Considering
XXX = [X1, X2, ..., Xn] is a sample/signal, where Xi are independent and
identically distributed random variables, which have fXi

as a probability
density function. The wavelet coefficients, approximations aj(k) and
details dj(k) (Equations (3) and (4)), are defined as a linear combination
of the random variables Xi that come from the same distribution family,
which corresponds in the context of the statistical distribution to the
convolutions of probability distributions fXi

. Some of these convolutions
have already been derived in the literature, such as the linear combination
of exponential distributions (Ali and Obaidullah 1982) and χ2 chi-square
distribution (Davies 1980). For additional distributions, see (Nadarajah
and Kotz 2005; Johnson et al. 1994, 1995). In the case of wavelet
coefficients, the prior results must first be adapted to the wavelet functions
(filters) in order to derive the exact distribution of the wavelet coefficients.
Various combinations could be studied for the existing different wavelets
and the probability distributions of the data.

An asymptotic result is given in Ogden (1997). It is mentioned that,
for normal data the approximation and details wavelet coefficients are
asymptotically normal with order O(1/n). Vannucci and Corradi (1999)
presented some results on the covariance structure of wavelet coefficient
in the case 2D wavelet transformations with a Bayesian perspective.
In Ganesan et al. (2004), it is mentioned that wavelet coefficients are
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Gaussian even if the data are non-normally distributed, but no references
were given.

The distribution of wavelet coefficients depends on the distribution of the
data of interest. For normal data, it is shown that wavelet coefficients
follow a normal distribution. Assume XXX = [X1, X2, ..., Xn] is a signal,
where Xi are independent and identically distributed random variables
Xi ∼ N (µ0, σ

2
0). Consider Orthonormal and Biorthogonal compactly

supported wavelets (Haar, Daubechies, Symlets, Coiflets, Discrete Meyer,
Biorthogonal, Reverse Biorthogonal). The multiresolution analysis
applied to X provides wavelet coefficients as follows (Cohen et al. 2016a):

aj(k) ∼ N (2j/2µ0,

(∑
n

h2n

)j

σ2
0), (5)

dj(k) ∼ N (0,
∑
n

g2n

(∑
n

h2n

)j−1

σ2
0), (6)

which are identically distributed random variables, and independent if
the orthonormal wavelets are used, else they are slightly correlated.
The wavelet coefficients are summation of normally distributed variables
consequently they follow the normal distribution. Furthermore, for
orthonormal wavelets families the wavelet coefficients are independent at
each scale. The independence of wavelet coefficients is a consequence of
the projection into orthonormal bases. This is not the case for Biorthogonal
bases where the correlation coefficient can be estimated by empirical
studies.

Aspects of the Wavelet-based Methods

There are three main aspects in multiscale methods that are valuable and
should be taken into account while designing a wavelet-based statistical
monitoring model. These include 1) the level of the decomposition, 2)

Prepared using sagej.cls



15

the window size (e.g. a subgroup/sample in control charts), and 3) the
wavelet selection. The level of the decomposition is related to the the
window size with the formula n = 2J , where J is the maximum level
of the decomposition that can be applied to a sample of size n. In the
case where the sample size does not equal to 2J , the concept of wavelet
on the interval is proposed (Meyer 1991; Cohen et al. 1993), but still
not entirely satisfactory from a practical viewpoint. However, several
numerical algorithms can be used to solve this problem (Strang and
Nguyen 1996, Chapter 8). So we can adapt the wavelet-based method
to any sample size. The issue is that by violating this condition (n =

2J ) correlation between wavelet coefficients can be created even if the
observations are mutually independent.

The choice of the wavelet families The subject of selecting a wavelet
for a given application is valuable because the choice may affect the
result of wavelet transform and then the performance of the multiscale
method at the end. Wavelet families have some properties, such as
symmetry, orthogonality, and compact support. Having knowledge and
understanding these properties should be helpful for selecting a candidate
wavelet from the wavelet families for a specific application. For example, a
compact support wavelet is a nonzero function only within a finite interval.
This is an important property for data compression. The orthogonality
means that the inner product of the wavelet with itself is unity, and
zero with other scaled or shifted wavelets. This property is effective
to decompose a signal into non-overlapping sub-frequency bands. The
symmetry feature is useful to filtering operations. Figure 7 shows the
common criteria used to select a wavelet family. A well presented
description of wavelet selection measures is given in (Gao and Yan 2010,
Chapter 10).
In the last decade, researchers have used different criteria to select a
wavelet that is suitable for a specific application. For instance, Rafiee and
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Figure 7. Wavelet Selection Criteria

Tse (2009) studied 324 candidate wavelets to find the most suitable one to
fit the gearbox vibration signals. They used the variance of the continuous
wavelet coefficients for each scale to select the most similar wavelet to
their vibration data. The wavelet that was selected is Daubechies 44 db44.
Kankar et al. (2011) uses Minimum Shannon Entropy criterion to select
the most appropriate wavelet for fault diagnosis in rolling element bearing.
The authors considered Complex Morlet. Kumar and Singh (2013) uses
Symlet wavelet to measure the outer race defect size in taper roller
bearing. The criteria used for the wavelet selection is the fact that is a
near symmetrical/linear phase filter, which has advantage to deal with the
small discontinuity present in the signal. Zhang et al. (2016) used the
Symlet sym3 and Daubechies db4 wavelets in order to detect faults in
the power transmission line, and the symmetrical wavelet sym6 is used
to denoise the reflection waveform. Jedliński and Jonak (2015) used the
classification accuracy of their artificial neural networks model to select
the Haar wavelet as the suitable wavelet for their application. Another way
to find the optimal choice of wavelet is the shape matching and correlation
between Shape of the wavelet and the data being analyzed (Yan and Gao
2009).

Prepared using sagej.cls



17

Wavelet-based control charts

The use of wavelets analysis in control chart field has been addressed in
two ways: 1) the use of the multiscale analysis to reduce noise and extract
features in order to improve recognition of control chart patterns, and 2)
the design of control chart statistics for detecting mean and/or variance
changes.

Control Chart Patterns

Control charts have played an important role to improve product quality
and to monitor processes for many decades. The process variability
observed through the data results from either natural variation or unnatural
variation. The goal is to discriminate between these two types of variation.
The natural variation is inherent to the system. However, the unnatural
variation often reflects a specific fault or a set of faults. Phase I for
designing a statistical process monitoring system consists of learning and
understanding the natural variation for a well-functioning system, this is
named as natural pattern. This phase contains valuable information for
tuning parameters and decision rules. In Phase II, a traditional control
chart is used to detect faults (unnatural variation). Unfortunately, control
charts often do not provide any pattern-related information to be capable
to recognize different kinds of unnatural patterns (faults). These faults can
be associated with a pattern-related cause. Seven common categories of
control chart patterns exist: 1) natural pattern, 2) cyclic pattern, 3) upward
shift, 4) downward shift, 5) upward trend, 6) downward trend, and 7)
systematic pattern. These patterns can be described by some associated
causes. For example, cyclic patterns can be observed in periodic rotation
of operators or fluctuations in the equipment. Trend patterns concern with
tool wear, operator fatigue, and equipment failure. Shift patterns often
indicate an abrupt shift or change in the quality characteristic, this can
describe failure sensor, introduction of new employees, and replacement
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of raw materials, see Figure 8. A survey related to control chart pattern
recognition approaches is given in Hachicha and Ghorbel (2012).

Figure 8. Example of Control Chart Patterns Without Noise (adapted from Bakshi (1998))

In real application, data collected from processes often contain noise,
outliers, and they are in various scales (frequencies). Moreover, the control
chart patterns or data are often non-stationary in sense that a trend pattern
has low-frequency components while a shift pattern is a high-frequency
component. In other words, the trend patterns need more time to be seen
and a shift pattern is observed in a short time. wavelet-based methods are
very useful to process these patterns in order to display their components
in the time-frequency domain, which can enhance the performance of the
fault detection and diagnosis.

Wang and Kuo (2007) have proposed a framework to identify six common
types of control chart patterns. They particularly used a multiscale filter
based on wavelet to reduce the noise. A fuzzy clustering algorithm is
then adopted to discriminate patterns. They used Haar wavelet to enhance
the interpretation of abrupt changes in data. Their method consists of
decomposing the noisy signal into wavelet domain, then apply a threshold
rules and finally reconstruct the data from the thresholded wavelet
coefficients. Du et al. (2013) have studied the case of concurrent control
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chart patterns, in which two simultaneous patterns are considered. This
situation is realistic because a process signal often contains more than
one pattern, and methods that detect simultaneous faults can be valuable
to fault diagnosis. The authors used the multiscale decomposition to
decompose an input pattern into two single patterns using Haar wavelet
transform. The multiscale decomposition allowed them to separate the
concurrent control chart patterns to single patterns. Then they used a
support vector machine algorithm to recognize and classify these patterns.
Wavelet-based methods combined with neural network for recognition
of concurrent control chart patterns was proposed by Al-Assaf (2004).
Chen et al. (2007) have also suggested a method combining wavelet
transform and neural network. They showed that the traditional run-rule
based approach and stand alone artificial neural network approach are
not capable for recognizing concurrent patterns, however incorporating
wavelet decomposition allowed the recognition of concurrent patterns.
Ranaee and Ebrahimzadeh (2011) proposed a method for recognition
common types of control chart patterns. Their proposed approach made
up of a feature extraction module based on the wavelet decomposition.
Lee et al. (2012) proposed a wavelet-based distribution-free CUSUM chart
for detecting shifts in the mean of a profile with noisy components. They
focused on monitoring key components of the discrete wavelet transform.
A dimension reduction technique was proposed based on thresholding the
wavelet coefficients. A wavelet-based distribution-free tabular CUSUM
chart with an adaptive thresholding has been proposed by Wang et al.
(2015). Another approach that uses Haar wavelet coefficients in an SPC
setting for detecting process drifts is presented here Wang et al. (2014).
Their method involves the wavelet coefficients at a predetermined optimal
(wavelet) level using CUSUM and EWMA control charts.

Jeong et al. (2013) used an adaptive thresholding test statistic to select
wavelet coefficients adaptively according to process changes in the
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wavelet domain. The authors then applied an EWMA control chart on that
test. The proposed control chart was applied to detect small shifts in non-
linear profiles of a plasma etch process in semiconductor manufacturing.
Mansouri et al. (2018) proposed a new method (WOEWMA) using
wavelet with EWMA control chart applied to photovoltaic systems. The
use of wavelet was in order to obtain deterministic features as well as de-
correlate the data.

Wavelet thresholding is the process of cutting off some of the wavelet
coefficients based on a specific threshold then reconstruct the data using
the inverse of wavelet transformations. Various thresholds are proposed
in the literature such as VisuShrink (Donoho and Johnstone 1994),
RiskShrink, SUREShrink (Donoho and Johnstone 1995; Donoho 1995),
FirmShrink (Gao et al. 1997; Gao 1998). These techniques are often
used with statistical methods for monitoring processes. For instance,
multiscale Principal Component Analysis (PCA) (Bakshi 1998; Aradhye
et al. 2003) was proposed for dimension reduction, and it is based
on combining wavelet analysis and principal component analysis. This
methodology has been widely used in the literature of chemical process
monitoring. It consists of applying wavelet transform on the data and
then reconstruct the data after a thresholding technique is applied. Yoon
and MacGregor (2004) used the multiscale PCA approach for fault
detection and diagnosis, where they applied it to the Continuous Flow
Stirred-Tank Reactor (CSTR) process, and they showed the usefulness
of wavelet analysis to isolate the faults when prior knowledge about
their frequencies is given. Sheriff et al. (2017) proposed a hybrid data-
driven fault detection method where they improved the performance of the
generalized likelihood ratio test chart using a moving window and wavelet
analysis; see also (Kini and Madakyaru 2019; Reis and Saraiva 2006; Lee
et al. 2005; Maulud et al. 2006; Aminghafari et al. 2006).
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Combining wavelet analysis with partial least squares was proposed for
process monitoring using the same approach we described before (Teppola
and Minkkinen 2000; Lee et al. 2009; Roodbali and Shahbazian 2011;
Zhang and Hu 2011; Madakyaru et al. 2016). These methodologies are
used with control chart statistics such as Hotelling- T 2 and Q.

Design of Control Chart Wavelet-Statistics

There have been several advances in theory and application of wavelet as
a pre-processing tool. However, less attention has been given to propose
a wavelet control chart statistic for mean and/or variance changes. It is
shown that by using discrete wavelet transform, the wavelet approximation
coefficient can be used to monitor the process mean, and the wavelet
detail coefficients can be used to control the process variability. More
particularly, the Haar discrete wavelet transform is equivalent to the
X −R control charts scheme (Cohen et al. 2016a).

An Illustrative Example: Weighted Wavelet Coefficients for Process
Mean

In this example, we consider a window length/sample size of n = 8

observations and the Daubechies 2 db2 wavelet, and then the discrete
wavelet transform is applied. Consequently, we have eight wavelet
coefficients at the scale one (maximum decomposition level in this case):
four approximations coefficients and four details coefficients. The aim of
this example is to show the behavior of wavelet coefficients using db2

when a mean change is occurring. The first 39 points plotted in Fig. 9(a)
consist of observations randomly generated from a normal distribution
N (0, 1) (simulated as a in control process), and the last 41 observations
consist of observations randomly generated from a normal distribution
N (20, 1) out-of-control process with mean change.
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Figure 9. (a): Observations with mean change (positive shift); (b): wavelet coefficients
(approximations ai and details di) using db2 wavelet (adopted from Cohen et al. (2016b))

Figure 9(b) shows that the fourth approximation coefficient a4 is the
most sensitive to the change in the mean. As progressively the moving
window enters in the region with the mean change (see Window 1 in Fig.
9(a)), the other wavelet approximation coefficients will be progressively
sensitive to the mean change, and they will converge (see Window 2 in
Fig. 9(b)) to 2j/2 × µ0 = 21/2 × 20 = 28.28. On the other side, details
coefficients reveal also the mean change, but they are less sensitive
than approximations coefficients. Details wavelet coefficients converge
to zero, see Window2 in Fig. 9(b). However, we can note that the
first detail coefficients (d1) is the most sensitive one. We present a
statistic calledOWave that is based on the following wavelet coefficients:
a1, a2, a3, a4, d1. It is based on weighted wavelet coefficients, as follows:

OWavei = w1a1,i + w2a2,i + w3a3,i + w4a4,i + w5d1,i, (7)
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where i is the index of the moving window across the signal,
∑5

i=1wi = 1,
0 ≤ wi∈{1,2,3,4} ≤ 1, and −1 ≤ w5 ≤ 0 because the detail coefficient d1
shifts negatively when the mean increases (see Fig. 9(b)). On the other
hand, the d1 shifts positively when the mean decreases. In fact, wavelet
coefficients have symmetrical behaviour with positive and negative mean
shifts, then one can use the same weights wi and symmetric control limit,
in order to detect both positively and negatively shifts in the mean, more
details are given in Cohen et al. (2016b).
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Figure 10. (a) Observations with mean change, at subgroup 40; (b) OWave and Optimal
EWMA (δ = 1) control charts behavior

In Figure 10, the OWave statistic behavior is given. The first 39 points
plotted, are generated from N (0, 1) distribution, which are corresponding
to in-control process. While the last 41 points are following N (1, 1)

distribution corresponding to a change, δ = 1, in the process mean. In
Figure 10(a), a Gaussian model with mean change (δ=1) is plotted. In
Figure 10(b), OWave and EWMA control charts are displayed. It is
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shown that OWave control chart perform slightly better than EWMA,
CUSUM, and X in terms of Average Run Length.
Other research has been applying existing control charts to wavelet
coefficients instead of the original data. Harrou et al. (2018) combined
proprieties of the discrete wavelet transform and the exponentially
weighted moving average control chart to appropriately detect faults in
PV systems. Specifically, this approach was employed to monitor the
residuals generated by a simulated model of a single-diode modeling
for fault detection purposes. Similar work have been done to monitor
swarm robotics systems performing a virtual visco-elastic control model
for circle formation task. The proposed mechanism is applied to the
uncorrelated residuals from principal component analysis model (Harrou
et al. 2018), see also (Harrou et al. 2019). A distribution-free approach
using a multivariate cumulative sum (CUSUM) control chart to monitor
wavelet coefficients is proposed to detect location shifts Li et al. (2019).

Wavelet with Machine Learning for SPM

Machine learning has become a very important field that intersects with
statistics, computer science, artificial intelligence and other engineering
areas. Statistical learning has many applications in many areas of science
such as monitoring complex systems. Machine learning methods include
several statistical methods and generally classified as supervised or
unsupervised techniques (Bishop 2006; Friedman et al. 2001).
Consider we want to monitor a system by estimating/predicting its state
based on a set of features/variables. We have historical data from the
system in which we observe the outcome (quantitative or categorical)
and some feature measurements for a set of objects. Using these data
we construct a predictive model, which enables us to predict the outcome
for new objects. A good model is one that accurately predicts such an
outcome. We just described above what we called supervised learning

Prepared using sagej.cls



25

problem. It is called supervised because of the presence of the outcome
variable to guide the learning process. In the unsupervised learning, we
observe only the features and have no measurements of the outcome.
Then the task here is rather to describe how the data are organized and
clustered. Several machine learning methods are being used in statistical
process monitoring context such as support vector machines, decision tree,
Bayesian networks, Neural Networks, discriminant analysis, k-means, and
principal component analysis with Hotelling statistics (Atoui et al. 2019b;
Ge et al. 2017; Yin et al. 2014; Cohen et al. 2016a; Atoui et al. 2016,
2015).

Most statistical learning methods can be used with wavelet in an attempt
to obtain better predictive performance. Wavelets are mainly used to
achieve the following goals: noise reduction, creation of new features, and
extraction of information in time-frequency or time-scale space. Wavelet
features are useful to many process monitoring studies as wavelet can
decompose the information for further analysis. One of the most usage
of wavelet is to decompose the data and use the wavelet coefficients
or statistics of wavelet coefficients to characterise a data set or an
object (e.g. faulty or normal operating conditions). Alamelu Manghai
and Jegadeeshwaran (2019) investigated the applications of wavelet for
diagnosing the faults on a hydraulic brake system. They considered a
list of wavelet families: Haar, Daubechies, Symlet, Coiflets, Discrete
Meyer and others. They also performed a thresholding procedure to
reduce the noise, and use statistics based on the de-noised data. The
classification was conducted with the following techniques: decision tree,
support vector machine, and neural network. It is also shown in their paper
that Discrete Meyer wavelet provided the best classification accuracy
across the different classification methods. Jung (2017) introduced new
feature extraction technique to alleviate the high dimensionality problem
of implementing multivariate statistical process monitoring when the
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quality characteristic is a vibration signal from bearing system. A set
of multiscale wavelet scalogram features was generated to reduce the
dimensionality of data, and is combined with the bootstrapping technique
as nonparametric density estimation to set up an upper control limit
of control chart. The simulation of a bearing system showed that the
proposed method has satisfactory fault-discriminating ability without any
distributional assumption.

The combination of wavelet and support vector machine has been
considerably developed for the last decade (Yin and Hou 2016). It is
shown that wavelet can help reduce the number of iterations when training
classifiers such as SVM and Neural network. Liu et al. (2013) proposed
a wavelet support vector machine technique to detect the bearing fault
of electric locomotives. They showed wavelet based SVM is better than
SVM in accuracy. Wavelet SVM is also well used to diagnose faults
in induction motors (Keskes et al. 2013; Das et al. 2010). Most often,
frequency components are hardly detected in the stator current due to
its low magnitude and closeness to the supply frequency component.
To overcome this drawback, the wavelet packet transform is applied to
extract one parameter able to detect the fault with arbitrary working
conditions and a great concern of low load cases. Different multiclass
support vector machines (MSVMs) methods are evaluated with respect to
accuracy, number of support vectors, and testing time. The experimental
results confirm that the DAG SVMs and Symlet wavelet kernel function
are fast, robust, and give the best classification accuracy of 99% (Keskes
and Braham 2015).

Time-frequency strategies for process monitoring have been extensively
using wavelet transformations because they can provide the time where the
frequency changes. This cannot be achieved with the traditional Fourier
transform. In this regard, wavelet has been the main focus to extract
features in time-frequency domain. Besides the cost of a Fast Fourier
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Transform isO(n log(n)) and for the Fast Wavelet Transform isO(n). It is
worth noting that there exists other techniques for time-frequency analysis
such as the Empirical Mode Decomposition (EMD). A methodology
for fault detection has been proposed for Induction Motors (IMs) to
detect various electrical and mechanical faults based on wavelet and
support vector machine (SVM). For this, the radial, axial and tangential
vibrations, and three-phase current signals are acquired from IMs having
different faults. The acquired time domain signal is then transformed to
timefrequency signals using continuous wavelet transform (CWT). Ten
different base wavelets are used to investigate the impact of different
wavelet function on the fault diagnosis of IMs. Statistical features are
extracted based on the CWT, and then appropriate feature(s) are selected
using the wrapper model (Gangsar and Tiwari 2019). Fault diagnosis in
induction motors has been developed using wavelet features (Monfared
et al. 2019; Zgarni et al. 2017; Hmida and Braham 2016).

Rato and Reis (2015) proposed a multiscale approach to deal with changes
in the networked structure of process data. The authors used the sensitivity
enhancing transformations to detect changes in the process, and they
showed that the wavelet can be useful when the system is difficult to
model. Gillis and Morsi (2017) presented a new technique based on semi-
supervised machine learning and wavelet design applied to non-intrusive
load monitoring.

to improve the fault diagnosis performance for rotating machinery a deep
learning (DL) algorithm is proposed based on the advantages of the
wavelet packet transform in vibration signal processing (the capability
to extract multiscale information and more spectral distribution features)
and deep convolutional neural networks (good classification performance,
data-driven design and high transfer-learning ability) (Ma et al. 2019).
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Some research directions

Wavelet analysis has been used for decades in statistical process
monitoring. They have been extensively employed to multivariate analysis
to reduce dimension, reduce noise, and extract features. There are two
potential research directions that need more attention:

• Wavelet-based statistics for control charts: Wavelet coefficients are
function of sample observations. The idea to use them as new
data is not well investigated. Moreover, statistics based on wavelet
coefficients have not been yet well explored. In the literature, a very
small number of published papers use a statistic based on wavelet
coefficients to monitor the mean and/or the variance of the process in
an univarate case. Also, wavelet coefficients can be useful when data
are autocorrelated (Jeske et al. 2018; Cohen et al. 2015, 2016b).

• Image statistical control using wavelet: Image data are become
available in today’s industries (Koosha et al. 2017; Megahed et al.
2011). In this context a data image is taken from a process, and using
2D wavelet transformations features are extracted and a statistic can
be derived to monitor and plot on the control chart. Wavelet analysis
has been widely used in image processing and we expect more papers
on the use of advanced image processing using wavelet to be applied
to image statistical process control (Amirkhani and Amiri 2020; Zuo
et al. 2019).

Conclusions

Wavelet based methods for statistical process monitoring have been
studied for decades and enormous contributions have allowed better
performance for fault detection and diagnosis. They are extensively
employed to achieve, in a few sentences as a conclusion, the following:
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• Wavelet transformations are often used to reduce noise via threshold
techniques.

• Wavelet can be used to characterize faults in time-frequency domain.
This needs a better knowledge of the physics related to the faults
such in bearing fault detection.

• Wavelet coefficients can be used as input data (features), instead of
the original data. Another approach is to use statistic of wavelet
coefficients (details or approximations) as input data. This often
improves the machine learning performance algorithm.

In this paper, we introduced wavelet analysis as well as give an overview
of the aspects related to its application to statistical process monitoring.
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