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Impact of Popular Content Relational Structure on
Joint Caching and Recommendation Policies

Marina Costantini, Thrasyvoulos Spyropoulos
EURECOM, Sophia-Antipolis, France

Abstract—Recent work has shown that the performance of
caching systems can be boosted by the delivery of alternative
but related content. In this setup, recommendation systems are
exploited to offer the user appealing alternatives if the original
request is not found in the cache. This framework relies on the
assumption that a content can partially or completely substitute
another if they are sufficiently similar.

In this work we model these similarity relations as a graph,
where each content is a node and related contents are linked by
an edge. We then study how the characteristics of this content
graph constrain the gains of designing jointly the caching and
the recommendations with respect to just using a simple baseline
in the soft cache hits setup. We start by selecting a number
of descriptive graph features that we expect to play a role in
the performance of related content delivery policies. We then
analyze the effect of each of these features on the policies’
performance through extensive simulations with synthetic data.
Our results confirm that features such as the degree distribution
and clustering coefficient of the graph are crucial to decide
whether the close-to-optimal algorithm will perform significantly
better than the simple baseline. Our experiments with four
real-world distinct datasets further support these observations.
Motivated by these clear dependencies, we conclude by showing
that we can train a classifier to predict the gains attainable by
a “smart” policy with respect to a low-complexity baseline using
only a few macroscopic graph features as predictor variables.

I. INTRODUCTION

Storing popular items at the edge of the wireless network
(i.e. caching) is one of the main solutions that have been
proposed to deal with the large, ever-increasing demand of
content stored in the cloud [1], [2]. Caching at the network
edge is beneficial for both the users, who can get content
at a higher bitrate and reduced latency [3], and the network
operators, who can thus alleviate the congestion during peak
traffic periods by having a large fraction of requests being
served by the local caches [4]. The cached content can then
be updated during off-peak hours.

Recently, a number of works have considered using recom-
mendation systems as a means to improve caching efficiency
[5]–[12] and demonstrated interesting performance benefits in
various scenarios. These contributions propose to use recom-
mendation systems to encourage the user to pick up contents
that are both of their interest and can be found in the local
cache, thus improving the number of cache hits while still
satisfying the user’s preferences.

The idea of related content naturally motivates the modeling
of the set of potentially requested contents (the catalog) as a
graph where each content is a node and related contents are
linked by a (possibly weighted) edge. The structure of this

graph can have a significant impact on the performance of
policies for related content delivery: if e.g. there exist tight
communities of many interconnected contents, any of these
could be recommended as an alternative for any of the other,
potentially increasing the gains of joint recommendation and
caching algorithms.

However, the problem of the joint design of these variables
is NP-hard [8], [13], and even polynomial approximation
algorithms can become prohibitively slow for moderate cat-
alogue sizes. What is more, such algorithms provide the
optimal values of the control variables but no insights as to
what key parameters lead to these choices, or why the gains
are sometimes moderate and others large, depending on the
catalog considered.

Thus, a number of intriguing questions arise: (1) What is the
added value of doing the joint optimization when considering
e.g. the Netflix catalog of movies? (2) How does this value
depend on key properties of the graph? Will it change if
we consider a catalogue of Amazon Prime movies instead?
and (3) Could we use these properties to predict performance
on a new catalog, without actually running the optimization
algorithm?

In this paper, we attempt a first-of-its-kind preliminary
investigation of these questions, by identifying which char-
acteristics of the content graph affect the policies for caching
and recommendation and how they do so. To better illustrate
our methodology and findings, we focus on the specific
setup of [13], where soft cache hits and a limited number
of recommendations are introduced in the system.1 To test
the benefits of the joint design we compare the performance
of (i) a close-to-optimal policy for the joint problem and
(ii) a baseline obtained by a simple decomposition of the
problem that loosely corresponds to the current state-of-the-
art. Extensive simulations with both synthetic and real-world
data confirm the tight relation between the graph structural
properties of the content catalog and the policies’ performance.

Our main contributions, each tackling one of the questions
posed before, can be summarized as follows:

1) We formalize the model of a content catalog as a graph
and identify key content graph and network setup param-
eters2 (e.g. degree distribution, clustering coefficient for

1Our analysis can be readily applied to other related problem setups, as we
will discuss later.

2We remark that we will use the word “network” to refer to the commu-
nication and content distribution network, while we will reserve the word
“graph” for the relational model of the content catalog.



the former and cache size, number of recommendations
for the latter) that have an impact on the performance
of the caching and recommendation algorithms. We iso-
late their individual effect by running experiments with
synthetic data and changing one parameter at a time,
and observe their impact on the absolute and relative
performances of the two policies considered.

2) We validate our findings by running the policies on
four real-world datasets and attempt an analysis of the
outcome based on the graph features of each dataset.
Furthermore, we show that modifications of the network
setup parameters affect the joint policy’s performance in
each trace differently, and these differences highly depend
on the traces’ graph structure.

3) Inspired by the dependencies observed between the graph
structural parameters and policy performance, we do a
preliminary test on training a classifier to predict whether
the relative performance between the policies will exceed
a given threshold using only a handful of content graph
and network setup parameters as predictor variables, with
very encouraging results.

II. PROBLEM SETUP AND POLICIES

We consider the soft cache hits setup with limited number
of recommendations [13], where users request files to a local
server. The server is equipped with a cache that can store a
fraction of the complete catalog of contents. The requests can
either be served by the local cache if it contains the content
requested (“direct” hit) or with a related content otherwise
(which will give a “soft” hit if accepted by the user). Our
model assumes that the substitutes offered to the user are
provided by a recommendation system that looks for related
content stored in the cache.3 This notion of content relation
naturally motivates the modelling of the catalog as a graph.
In this work, we analyze how the structural characteristics of
this content graph constrain the gains attainable by a close-to-
optimal policy against a simple baseline. This analysis, as we
show in section IV, may allow us to state a priori whether,
for given a content graph, it is worth to find the optimal
cache configuration and content recommendations or a low-
complexity heuristic will perform similarly enough, only based
on the graph features and without having to actually run the
complex algorithm.

In this section we give the details about each of the system
components introduced above. The soft cache hits setup has
been already studied in detail in [9], [13], but we give a brief
summary here to set the goals of this paper and interpret the
results of the experiments shown in sections III and IV. Table
I summarizes some key network setup notation.

A. Content Model

We denote with K the catalog of contents from which the
users make their requests (|K| = K). We will reuse the

3This is assumed to be the respective app recommender (e.g., YouTube
recommender), which already knows and utilizes these relations for baseline
(i.e., non cache-aware) recommendations.

TABLE I: Network Setup Notation

C Storage capacity of the cache
xi Content i is stored in the cache (xi = 1) or not (xi = 0)
K Set of contents (|K| = K)
uij Probability of accepting substitute j when i is requested, U = {uij}
pi Probability of content i being requested
yij Recommend j to substitute i (yij = 1) or not (yij = 0)

adjacency matrix from [9]:

U = {uij ∈ [0, 1]}, i, j = 1, . . . ,K

to denote this content graph, where uij denotes the probability
that a user accepts content j when they had initially requested
content i.4 For example, if K is a catalog of music videos, two
songs of the same artist will be linked with a high weight and
two songs from different artists but of the same genre will be
linked with a low weight. Thus, unrelated contents i and j will
have uij = 0 (no link in the content graph), and uii = 1 ∀i.

B. Recommendation Model

Requests for contents in K arriving to the server are random
and i.i.d, where content i is requested with probability pi. In
our simulations the pi follow a Zipf distribution as shown in
related literature [14].

Our model assumes that given a request for a content i that
is not locally available, the user will be offered N alternative
contents j that they might accept with probability uij . We use
the variable

yij ∈ {0, 1}, i, j = 1, . . . ,K

to indicate whether content j is recommended if a requested
content i is not found in the cache, and we require

∑K
j=1 yij ≤

N ∀i.

C. Caching Model

In order to isolate our analysis from the additional gains
from femto-caching, we focus on a single cache of size
C � K.5 We use variables

xi ∈ {0, 1}, i = 1, . . . ,K

to indicate whether content i is stored in the cache. These val-
ues must satisfy the cache capacity constraint

∑K
i=1 xi = C.

When a new request for a content i arrives to the server
three things can happen:

1) Direct hit: The content is found in the cache.

4In practice, a recommender will not have these probabilities but the content
relations through, e.g., some collaborative filtering algorithm. The actual
probabilities will be a function of such relations (e.g., linearly dependent, or
other more complex function), which might furthermore depend on additional
incentive mechanisms that can also be learned by the recommender. Without
loss of generality, we assume that the uij probabilities are (normalized) linear
functions of the baseline relations of files.

5The gains attainable in the multi-cache, multi-user scenario for the soft
cache hits setup have been studied in [9], [13] and are orthogonal to the
gains analyzed here. In such scenarios, the uij and pi quantities could differ
between users. Here we assume that the values given to these parameters are
aggregated values, i.e. they correspond to the “average user”.



2) Soft hit: The cache does not contain the request but
the user accepts an alternative content offered by the recom-
mender.

3) Cache miss: Neither the requested item nor any related
content is found in the cache. There are no hits accrued inde-
pendently of the decisions for yij taken by the recommender.

D. Performance Metric

Here we will evaluate the performance of each policy by its
attained Cache Hit Ratio (CHR), which measures the expected
quotient of the number of hits to the number of requests.

In our setup, where we consider soft hits and a limited
number of recommendations, any suitable policy has to choose
the variables xi and yij trying to maximize the CHR while
satisfying the constraints presented above. This problem was
introduced and solved in [13], and can be summarized as:

max
xi,yij

CHR =

K∑
i=1

pi

1− K∏
j=1

(1− xj · uij · yij)

 (1)

s.t.
K∑
i=1

xi ≤ C (2)

K∑
j=1

yij ≤ N, ∀ i (3)

xi, yij ∈ {0, 1} (4)

In the problem above the objective function (1) computes
the expectation of a cache hit over all contents in the catalog.
To see this, let us assume for a moment that the uij ∈ {0, 1}.
Then, for each i the product term in (1) will be 1 iff neither i
or any related content j are cached. In such case requesting i
leads to a miss. Conversely, if either i or a related content j are
cached and recommended, then the product term is 0, and the
CHR increases an amount pi. Thus, (1) computes the expected
CHR over all contents i, where the hit can come either from
getting the request i directly or from a related content that
is both cached and recommended.6 In the general case where
uij ∈ [0, 1], eq. (1) still computes the expected CHR, as shown
in Lemma 1 in [9]. Constraint (2) states that we cannot cache
more contents than the capacity of the cache, and constraint (3)
limits the number of recommended items to N . Altogether, the
general objective could be loosely described as “maximizing
the cache hit rate for the operator while making sure that the
recommendations shown to the user are relevant”.

E. Caching and Recommendation Policies

In order to test whether we can predict the performance
benefits of optimal joint caching and recommendation based
solely on a few content graph and network setup parameters,
we considered two different policies:

6This formulation assumes that a maximum of N alternative contents are
presented one by one to the user, and the next content is presented only if
all the previous were rejected. We plan to consider alternative user models in
future work.

TABLE II: Graph Parameter Notation

R Node degree
E[R]/K Density
α Zipf popularity exponent
plink Link probability in an ER graph
`new Number of links added per node in a BA graph
γ(X) Skewness of random variable X
κ Clustering coefficient
n Newman’s modularity

Popularity Caching (POP): This approach decomposes the
joint problem of finding the xi and the yij into two sequential
choices: it first caches the most popular contents (i.e. highest
pi) until the cache is full, and then for each item i it recom-
mends the N contents j with highest uij out of the ones cached
(more details in [13]). This simple strategy could be used in
the cases where the caching and recommendation decisions
are done by different entities (e.g. by the network operator
and the content provider, respectively), but the recommender
can know what is cached. This policy is our baseline.

Joint Caching and Recommendation (JCR): This policy
approximates the optimal solution of the joint problem of
Eqs. (1)-(4) with a polynomial algorithm based on a primal
decomposition of the problem. It provides a theoretical worst-
case guarantee of 63% and in practice it achieves almost
optimal performance in most scenarios considered (see [13]
for more details). Thus, we will consider the performance of
JCR our reference of the optimal performance achievable in
each scenario analyzed.

III. IMPACT OF CONTENT GRAPH STRUCTURE

In this section we concentrate on a few aspects of the con-
tent graph structure and study their effect on the performance
of the policies introduced before. We consider these properties
with different content graphs, but also different network setups
(e.g. cache sizes) for the same graph; as we will see later, such
parameters can further affect the (absolute or relative) impact
of content graph properties.

Understanding the impact of these parameters can be helpful
for, given a content graph of interest, deciding whether it
is worth running a computationally expensive but close-to-
optimal algorithm over a quick and simple heuristic (see
section IV on performance prediction), for designing the
network setup to make the most of a particular policy (see
Fig. 3 on the impact of N and C on different real-world
traces), or to define the limits of performance achievable by
any approach.

A fair question to ask at this point is how do we characterize
the structure of a graph? The answer is not straightforward,
since graphs are complex structures over which many metrics
can be computed (see e.g. [15]). Furthermore, an exhaustive
characterization (through the adjacency matrix, for example)
is not insightful and impractical for large graphs. Here we
have concentrated on a few macroscopic parameters that can
be easily measured in any graph and that we could expect
to have a significant impact on the performance of the joint
caching and recommendation problem.



Fig. 1: Effect of degree skewness, cache size, popularity Zipf exponent and number of recommendations on performance.

In the first part of this section we perform experiments with
synthetic data changing one parameter at a time to isolate
their effect on the policies’ performance as much as possible.
In the second part we measure the graph parameter values
of real-world traces and look at the performance of the two
considered policies on them. We then attempt to interpret the
latter results in light of the trends identified with synthetic data.
Table II summarizes the notation used in this section, where
the skewness γ(X) of a random variable X is measured with
Pearson’s moment coefficient γ(X) = E[((X − µX)/σX)3],
and the clustering coefficient κ is measured as the number of
triangles over the number of triples in the graph.

A. Synthetic Graphs

We tested the effect of both (i) content graph parameters:
degree skewness, popularity skewness and community struc-
ture, and (ii) network setup parameters: cache size and number
of recommendations. For our simulations with synthetic data
we used three probabilistic models of graphs:

Erdős–Rényi (ER): a link between each pair of nodes is
generated at random and independently with probability plink.
The resulting node degree is a random variable with binomial
distribution, i.e. R ∼ B(K, plink).

Barabási–Albert (BA): starting from an initial graph of K0

nodes, a new node is added by connecting it with `new ≤ K0

new links to the nodes already in the graph. The probability of
connecting to a node in the graph is proportional to its degree.
The degree distribution of the resulting graph follows a power
law distribution with exponent 3 [15].

Community graph: this is a disconnected graph where
each community is connected and there are no links between
different communities.

Next we describe the experiments done to test the impact of
each graph parameter on the policies’ performance and discuss
the results. The parameter values used in each experiment are
shown in Table III. In all cases w.l.o.g. we set uij = 0.5 if
contents i 6= j are related.7 For all graphs, we assume a Zipf

7For example, in the case of the traces where we only know which files
are related but we do not know “how much”, this 0.5 factor captures that the
“value” of a soft cache hit (i.e. the click probability for the related item) is
lower than a direct hit. As explained in Section II, the exact value of uij
might depend on a number of factors, which go beyond the scope of this
work. We observed empirically that its precise value (barred from the two
extremes of 0 and 1) only affects the total CHR but not the qualitative impact
of different graph parameters.

TABLE III: Parameter values used in each experiment with
synthetic data

Feature
tested

Degree
skewness C

Zipf
exponent N

Community
structure

Graph {ER,BA} ER ER ER {ER,comm}
K 1000 1000 1000 1000 1000
C 10 {10,50,100} 50 50 50
N 1 1 1 {1,2,3} 1
α 1 1 {0.5,1,1.5} 1 1

plink 0.04 0.01 0.01 0.04 0.02
`new 10 - - - -

popularity distribution with tunable exponent α, and assign
the popularities pi to the graph nodes randomly. For each
experiment we perform 32 repetitions of the graph generation
and policy testing. We then report the average and standard
deviation of the CHR accrued by each policy.

1) Degree skewness: The first panel of figure 1 shows
the performance of the two policies for both BA and ER
graphs with `new = 10 and plink = 0.04, respectively. These
values were selected so that the density E[R]/K would be the
same for both types of graphs, since a higher density would
automatically increase the CHR thanks to more soft hits, and
the comparison in that case would be unfair. The bars show
the total CHR accrued, and the fraction obtained from direct
and soft hits are shown in dark and light color respectively.

The CHR achieved by JCR on the BA graph is much larger
than that of the ER graph. This happens because JCR is
capable of picking the high-degree nodes in the BA graph
to earn many soft hits. The ER, however, does not provide
such a possibility, since all nodes have approximately the same
degree and there is no clearly winning strategy that JCR can
take. POP, on the other hand, performs almost identically for
both graph types. This is because the popularity values were
assigned to the nodes randomly, thus caching the most popular
nodes is equivalent to picking up randomly and uniformly C
nodes in the graph. Therefore the performance of POP depends
on the average connectivity, and since E[R]/K is the same
for both graph types, POP achieves approximately the same
CHR in both cases.

2) Cache size: The second panel shows the performance
for different cache sizes for an ER graph. As expected, as the
cache size increases both algorithms achieve a higher CHR.
However, the high popularity skewness helps POP to boost its



performance more than it helps JCR: by making the cache size
only a 10% of the total catalog size, POP can achieve with its
simple criterion a CHR ≈ 0.5 coming from direct hits and a
total CHR comparable to that achieved by JCR. Note that if
the popularity distribution was uniform (α = 0) the amount
of direct hits accrued by POP would equal C/K. The effect
of the skewed distribution of pi is discussed next.

3) Popularity skewness: The third panel shows the per-
formance for different Zipf popularity exponents. Again, in-
creasing this parameter helps both algorithms, but the boost is
larger for POP. The reason is analogous to that of increasing
C for fixed α: a larger percentage of requests can be served
with direct hits, which is what POP goes after by caching the
most popular contents. Note that as α increases, JCR tends to
“copy” the strategy of POP and go for more direct hits.

4) Number of recommendations: The last panel shows the
performance when we change N . The gap between JCR and
POP increases with N in favor of the former. This is due to
POP getting more soft hits just by chance, while JCR adjusts
its strategy to exploit the larger number of recommendations.
Note that the fractions of soft and direct hits of JCR increase
and decrease respectively as N gets larger, and added together
they achieve a higher total CHR each time.

5) Community structure: Figure 2 shows the performance
for different cache sizes and two types of graphs: a com-
munity graph that contains 50 communities of 20 nodes all
connected to their neighbors (“Cliques”), and an ER graph
with K = 1000 and E[R] = 20. The strong community
structure enhances the performance of JCR with respect to
the ER case, and the effect is larger when the cache size
matches the number of communities. This is because JCR
can recognize that choosing one content per community is
the best strategy. When C is smaller than the number of
communities, the effectiveness of this strategy is limited by
the cache size. When it is larger, JCR has to pick more than
one node per community and the gains with respect to ER
are more moderate. Again there are no significant effects on
POP when the graph type changes, since popularity values are
assigned at random and the density of both graphs is the same.

In the following experiments we measured the degree of
community structure with two parameters: the clustering co-
efficient κ and Newman’s modularity n [16]. For the latter we
used the implementation of [17], which applies the method of
[18] to find communities in the graph before computing n.

Overall, the results with synthetic data seem to indicate that
there is indeed a direct relation between graph parameters and
policy performance. But can we observe similar tendencies in
real-world data? We address this question next.

B. Real-world traces

We tested the performance of JCR and POP in four real
datasets from different applications and sources:

Amazon for Android applications (AznApp) [19]: here we
considered that a pair of items were related when they were
bought together.

Fig. 2: Effect of community structure. Community structure
boosts the performance of JCR respect to POP, provided that
C approximately matches the number of communities.

LastFM [20]: the dataset contains for each song a list of
similar songs, thus we considered songs i and j related when
song i was in the list of j or vice-versa.

MovieLens (MovLens) [21]: for this dataset we built the
content graph from the user ratings using collaborative filtering
(see details of preprocessing in [9]).

YouTube [22]: as for LastFM, we set a link between two
videos if either of them is in the recommended list of the other.

Like in the synthetic data, we set uij = 0.5. Since the
Amazon and LastFM datasets did not contain the content
popularity distribution, we generated random popularity values
following a Zipf distribution with α = 1. Table IV shows the
graph parameter values of all traces.

TABLE IV: Graph parameter values of the real-world traces.
Notation is explained in Tables I and II.

AznApp LastFM MovLens YouTube
K 8229 3506 3306 2098
E[R] 15.97 4.25 25.49 5.38

E[R]/K 0.0019 0.0012 0.0077 0.0026
γ(R) 11.95 3.6 2.41 1.42
γ(p) 1.94 1.89 2.07 7.57
κ 0.08 0.13 0.55 0.38
n 0.59 0.81 0.78 0.84

Figure 3 shows the performance of both algorithms in the
traces for different C/K ratios and values of N . Note that
there is no standard deviation specified in these plots, since
the traces are taken from real-world data and are thus unique.

As observed in synthetic data, increasing either C or N
improves the performance of both algorithms. In the case of
POP, increasing C is consistently better than increasing N ,
as could be expected. For JCR, however, which of the two
parameters has the greatest impact to boost the performance
in a trace depends heavily on the characteristics of the content
graph (compare panels 2 and 3 against panel 1 in Fig. 3):

When the graph structure favors the accrual of soft hits,
it is more beneficial to increase N : This is true for AznApp,
which has very high degree skewness, thus confirming the
observations done with synthetic data. The MovLens dataset
has high density and clustering coefficient, which also favors



Fig. 3: Results on traces for different cache sizes and number of recommendations.

the accrual of soft hits. However, the structure of this trace
seems not to be “as convenient” for JCR as that of AznApp
to exploit soft hits, and increasing C achieves a similar total
CHR as increasing N .

When the graph is not particularly well-connected or
the popularity skewness is high, it is better to increase C:
This happens for YouTube, which has a very high popularity
skewness, and for LastFM, whose parameters are similar to
those of MovLens but is more sparsely connected (it has
significantly lower average dergee E[R], density E[R]/K and
clustering coefficient κ). In these cases JCR can do better by
accruing direct hits rather than soft ones, and thus increasing
C is preferable over increasing N .

These observations suggest that, as observed with synthetic
data, qualitative and quantitative performance differences in
these much more complex traces can be, to some extent,
attributed to structural differences of their respective content
graphs. This motivates our next and final step in this work: to
investigate whether these features can be used to predict the
expected performance of the policies in a given dataset.

IV. PERFORMANCE PREDICTION

The results of the previous section with both synthetic
and real-world data show that the performance of JCR and
POP is heavily affected by the content graph structure and
the network setup parameters. This suggests that looking at
the parameters alone might suffice to design an automated
performance predictor that, given a new graph (dataset), will
be able to decide the benefits of exploiting the soft cache
hits over just caching the most popular items, without actually
running the optimization algorithm. Given the limited amount
of training data (data catalogs and related content graphs),
we choose in this work to perform a simple classification
task: “will joint optimization (JCR) provide relative gains that
exceed a threshold T , compared to the baseline (POP)?”. We
will attempt to answer this question using only the graph
and network-related features introduced before, and Support
Vector Machine (SVM) based classification.8 We will also
demonstrate how to generate a reasonably sized training set,
through the use the collected data traces. Finally, we stress

8We also tried performing this binary classification using Logistic Regres-
sion, but SVM provided better results.

that the goal of this section is not to derive a state-of-the-art
machine learning algorithm for this task, but rather to carry
out a preliminary investigation of the feasibility of such a task.

A. Dataset

We have chosen SVM methods as they can achieve rea-
sonable performance even with smaller amounts of training
data (compared e.g. to modern Deep Neural Network based
methods). Nevertheless, our baseline consists of 6 collected
traces, and 2 synthetic graph types. It is thus important to
devise a methodology to come up with a proper training set
out of these, that has diversity in the graph structure and not
too many samples of a particular type of graph that could
generate bias. Our complete dataset was constructed from:

Splitting traces: We randomly split the traces in groups of
500 ≤ K ≤ 700 nodes (the average number of nodes in our
traces was 4257), each of which constitutes a new graph of
our dataset. Apart from the four traces used in Section III,
here we also considered the Amazon Virtual Games (AznVG,
K = 5614) and Amazon Movies & TV data (AznTV, K =
2789) datasets [19]. The adjacency values uij were obtained
as those for AznApp.

Synthetic graphs: To add variability to the dataset and
potentially improve generalization we generated six additional
cases: three ER graphs with plink = 0.002, 0.005 and 0.01
respectively, and three BA graphs with `new = 1, 4 and 8. The
number of nodes of these graphs was chosen randomly and
uniformly in [500, 700].

This procedure provided a total of 47 graphs (41 from real
traces, 6 from synthetic data). We will refer to the set of graphs
generated from a particular trace or synthetic graph as their
“child set”, e.g. out of the YouTube dataset we generated 36
YouTube child traces with this subsampling method. For every
such child graph, we also create different network setups, as
combinations of the following parameters: (i) 3 values of of
Zipf popularity α = 0.5, 1 and 1.5, (ii) 3 values of C/K =
0.01, 0.05 and 0.1, and (iii) N = 3. This gives a total of 9
network setups per child graph, and thus a total of 423 different
scenarios to consider for training (and testing).

B. Experiment design

Each case i in the dataset was represented by a vector xi ∈
R7 with the values of parameters {K, E[R], γ(R), κ, n, α, C}.



TABLE V: Distribution of labels per set (y = 1/y = −1).
Child set T = 0.1 T = 0.15 Child set T = 0.1 T = 0.15
AznVG 44 / 37 38 / 43 MovLens 28 / 17 20 / 24
AznApp 66 / 42 57 / 51 YouTube 13 / 23 10 / 26
AznTV 20 / 25 15 / 30 ER 12 / 15 10 / 17
LastFM 13 / 41 11 / 43 BA 21 / 6 18 / 9

We assigned a binary label yi to each case according to:

yi =

{
1 if CHRJCR(i)−CHRPOP(i)

CHRJCR(i)
> T

−1 otherwise,

where T ∈ [0, 1] is a threshold for relative performance that
we chose arbitrarily and the subindex of CHRP(i) indicates
the CHR obtained by policy P when applied to case i. The
choice of the threshold T defines the number of cases with
each label. Table V shows the distribution of labels for each
child set and the two thresholds T = 0.1, 0.15 used in our
experiments. Note that the addition of the two numbers gives
the total number of cases in the child set.

To test the generalization power of the obtained model, we
trained using the child sets of 7 out of the 8 graph types consid-
ered, and used the remaining child set for testing. This resulted
in 8 different training and testing experiments, each using a
different child set as testing data. Such a splitting allowed us
to make sure that the test set was new unseen data, completely
unrelated from that used for training. Furthermore, to test the
robustness of the results we repeated each of the 8 experiments
10 times. We report the mean and standard deviation of the
training and testing accuracies in each experiment.

C. Support Vector Machines

The SVM is a non-probabilistic binary linear classifier
method that finds the hyperplane in the feature space that better
separates the two classes. The optimization problem solved by
SVM (using L1 regularization) can be formulated as

min
β,β0,ξ

1

2
‖β‖2 + δ

m∑
i=1

ξi

s.t. yi(β
Txi + β0) ≥ 1− ξi, i = 1, . . . ,m

ξi ≥ 0, i = 1, . . . ,m

where m is the number of samples in the data (in our case
graph-network setup combinations), f(x) = βTxi+β0 defines
the separating hypeplane between the two classes, ξi are slack
variables that allow for having points on the wrong side of
the boundary and δ is a cost parameter that penalizes having
a large number of misclassified points [23].

For our experiments we normalized the features xi by sub-
tracting their mean and dividing by their standard deviation.
For the training of the SVM we used the Matlab function
fitcsvm and let the software optimize the hyperparameter δ
through the option OptimizeHyperparameters.

D. Results of automatic performance prediction

Table VI shows the mean and standard deviation (between
parenthesis) of both the training and testing accuracies over
the 10 repetitions of the experiments and for two values of T .
The distribution of labels (y = 1/y = −1) is shown next to
each value of T . Next we make some remarks on these results.

TABLE VI: Accuracy of the SVM classifier for relative
performance prediction.

Set used T = 0.1 (217/206) T = 0.15 (180/243)
for testing Test Train Test Train

AznVG 0.93 (0.006) 0.94 (0.002) 0.96 (0.020) 0.93 (0.003)
AznApp 0.93 (0.012) 0.95 (0.001) 0.89 (0.035) 0.93 (0.005)
AznTV 0.96 (0.000) 0.95 (0.004) 0.86 (0.015) 0.93 (0.002)
LastFM 0.83 (0.020) 0.95 (0.004) 0.86 (0.049) 0.94 (0.007)

MovLens 0.84 (0.007) 0.95 (0.001) 0.91 (0.000) 0.93 (0.003)
YouTube 0.87 (0.037) 0.95 (0.002) 0.94 (0.000) 0.92 (0.003)

ER 0.96 (0.000) 0.95 (0.001) 0.83 (0.031) 0.93 (0.001)
BA 0.91 (0.031) 0.94 (0.001) 0.83 (0.019) 0.93 (0.001)

Mean 0.90 (0.051) 0.95 (0.005) 0.89 (0.049) 0.93 (0.006)

The features considered are good indicators to distinguish
between high- and low-gain scenarios for the joint approach
with respect to the baseline. This observation is based on the
high training and testing accuracies observed in all experi-
ments.9 However, in some cases there is a large gap between
the training and testing accuracies (differences larger than 5%
in Table VI have been highlighted in purple), which leaves
room for further improvement, discussed below.

More features or non-linear combinations of the current
features might be needed when the generalization power
changes with T . This comes from the fact that for some traces
(AznTV, MovLens, YouTube, ER and BA) the training and
testing accuracies are very similar for one value of T and
quite different for the other. Thus, for one T the “separation
rule” learned from the training data applies well to the test set
(i.e. the hyperplane found makes a good split of the testing
points), but when the labels change for the new T the rule
learned at training does not apply to the test set anymore. For
the former case a potential solution is enlarging the training set
(discussed in the next point). Another alternative is considering
more complex, non-linear interactions between the features: an
example of such interplay was the link between the cache size
and the number of communities identified in the experiment
of section III-A5, where the gains of JCR due to strong
community structure where maximized when both quantities
were equal. Thus, adding new combinations of the features
already considered may allow for capturing effects not well
represented yet. Adding completely new features could help
to this end as well, but contrary to what we want they might
broaden the accuracy gap by introducing overfitting.

Enlarging the dataset with new, different and diverse
graphs that enrich the feature space would probably improve
generalization significantly. This would most likely help par-
ticularly the experiment using the LastFM child set for testing,

9In some cases the test accuracy is even slightly higher than the training
accuracy. This can happen if the test data has relatively few samples and is
not particularly challenging for the given threshold.



apart from being beneficial also for the cases mentioned in the
previous paragraph. When testing with the LastFM child set
the gap between training and testing accuracies is large for
both values of T . This suggests that this test set might have
specific characteristics not accounted for in the training set.
In such case using a larger dataset with more varied content
graphs that are potentially more similar to that of the LastFM
child set could help to improve testing accuracy.

V. DISCUSSION AND FUTURE WORK

We have shown through our experiments with both synthetic
and real-world data that we can associate specific graph
properties to clear changes in the outcomes of the two policies
considered. Such connection between graph parameters and
policy performance reveal that there is a fundamental limit on
the gains that any smart policy can achieve, compared to the
baseline, that is intricately tied to the properties of the dataset
(graph) itself, rather than the algorithm.

This observation motivated the exploration of whether we
could do automatic performance prediction from a few graph
structural descriptors. Our results with SVM classification sup-
port the hypothesis that with careful training of the classifier
and a sufficiently representative dataset it is indeed possible
to get good predictions. This not only gives further proof of
the tight relation between graph properties and policy perfor-
mance, but it also opens the possibility of using automatic
classification for deciding whether applying a “smart” but
computationally costly policy is worthy with respect to just
using a simple baseline.

Finally, we remark that the analysis made here can also
be applied to other settings considering the interplay between
caching and recommendations. This can be done straightfor-
wardly e.g. for [5]–[7], [9], [10], where the content catalog
is also modeled as a graph. However, other cases may need
an extra step to map their setup to our content graph formu-
lation: in [8], [11], for example, the cosine distance used to
measure user-content interest could instead be used to build the
adjacency matrix of the content graph (which would be user-
specific). In the case of [12], we could build U by setting
each component uij to the inverse of the cost Ca(i, j) of
approximating content i with content j. In sum, our analysis
does not only concern the JCR and POP policies, but could
be readily applied to any other similar setting.

Future work will address the challenge of predicting the ac-
tual values of the individual and relative gains in CHR, instead
of setting a hard threshold and perform binary classification as
we did here. We will also consider adding features that could
help devise effects not yet well captured by the ones analyzed
in this work, and study more deeply the relevance of each
parameter for predicting policy performance with sensitivity
analysis and feature selection techniques.
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