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The present study focuses on acoustically induced thermal effects on Rayleigh streaming
inside a resonator. Firstly, we consider the effect of the transverse (or wall-normal) mean
temperature gradient on the acoustic streaming flow generated by a standing wave between
two parallel plates. Analytical expressions for acoustic quantities are developed and used
to express the sources of linear streaming. The influence of a transverse temperature
variation on the streaming velocity is clearly identified through a term proportional to
the temperature difference and to the square of the half-width of the guide. This term
modifies the Rayleigh streaming pattern and may generate an additional vortex. On the
other hand, the longitudinal (or wall-parallel) temperature difference is calculated as a
cumulated effect of thermoacoustic heat transport in the fluid, heat conduction in the
wall and heat convection of the air outside the resonator. At high acoustic levels, heat
is significantly convected by the streaming flow and the resulting transverse temperature
difference is proportional to the longitudinal temperature difference. Combining these
expressions brings out a new criterion parameter for the nonlinear Reynolds number
(ReNL) characterizing the transition in streaming patterns at high acoustic levels. This
result explains previous experimental and numerical observations of the streaming flow
dynamics at high acoustic amplitudes, under different temperature boundary conditions,
and can provide a powerful prediction tool for streaming pattern transitions.
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1. Introduction

Acoustic streaming is a steady flow generated by Reynolds stresses in an acoustically
oscillating fluid, either due to absorption in the main body of the fluid of an irrotational
sound beam (for Eckart streaming or Quartz wind) or associated with the Stokes boundary
layer adjacent to a solid boundary (Rayleigh’s streaming, Rayleigh 1884). Quartz wind is
generally observed in systems where the length scale is much longer than the wavelength
whereas Rayleigh streaming is associated with a length scale of the same order of
magnitude as the wavelength.

The typical geometry leading to the development of Rayleigh streaming flow is a
resonator of length much larger than its transverse (or wall-normal) dimensions filled
with compressible gas (initially at homogeneous pressure and temperature) submitted to
an acoustic plane wave in the longitudinal (or axial, wall-parallel) direction. Figure 1
shows a schematic of the problem studied in the present paper corresponding to such a
typical geometry. Rayleigh streaming flow is encountered for example in thermoacoustic
devices, in which it is responsible for reducing the efficiency of the machines, especially
for high powered devices. Indeed, the power density of a thermoacoustic device being
roughly proportional to the square of the acoustic pressure amplitude, the streaming
flow developing at high acoustic amplitudes is an important issue when optimizing
thermoacoustic systems.

It is well established that, in the case of a plane standing wave at low amplitude,
Rayleigh streaming is composed of toroidal so-called inner and outer vortices that have
a half-wavelength spatial periodicity, the maximum axial streaming velocity being a
quadratic function of the acoustic velocity amplitude at antinode. The inner vortices are
slender and located near the walls, while the outer vortices develop in the core of the
resonator. Figure 2 shows schematically the corresponding streamlines of the streaming
flow in a half-wavelength resonator with acoustic velocity nodes at the extremities.
The section shown is a longitudinal half-section between the axis (bottom) and the
resonator wall (top). Heat is pumped by thermoacoustic effect initially in the near-wall
region, from the acoustic velocity antinode towards the acoustic velocity nodes (Merkli &
Thomann 1975; Gopinath, Tait & Garrett 1998). It then diffuses transversely, resulting in
a longitudinal temperature gradient. A colour map of the resulting isotherms of the mean
temperature is displayed in the same figure. In this case, where the acoustic amplitude
is low, the convective transport effect by the streaming flow is negligible and does not
influence the organization of the thermal field.

For higher acoustic levels, Menguy & Gilbert (2000) showed that the influence of
inertial effects on the streaming flow is characterized by a reference nonlinear Reynolds
number ReNL = (M × R/δν)2, where M is the acoustic Mach number, M = Uac/c0, with
Uac the maximum acoustic velocity on the channel axis and c0 the initial speed of sound,
R being the half-width of the channel and δν the viscous boundary layer thickness.
For ReNL = O(1), they found that the outer vortices are distorted by inertia, while the
inner vortices are not affected. However, their study was limited to low values of ReNL
(up to ReNL = 6) and they used the assumption of isentropic flow. Later, it was found,
both experimentally by Thompson, Atchley & Maccarone (2005), Moreau, Bailliet &
Valière (2008), Reyt et al. (2013) and Reyt, Bailliet & Valière (2014) and numerically
by Boluriaan & Morris (2003), Reyt et al. (2013) and Daru et al. (2013, 2017a), that
the longitudinal streaming velocity component along the axis, which is a sinusoidal
function of the axial coordinate at low acoustic levels, becomes distorted as the acoustic
level is increased. For high acoustic amplitudes, this distortion leads to the generation
of counter-rotating additional vortices in the centre of the guide near the acoustic
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Figure 1. Typical problem geometry for Rayleigh streaming. (a) Axial acoustic velocity amplitude along the
guide axis. (b) Associated streaming cells. The fluid domain under study in the present paper corresponds to
the grey area.

HotColdHot

Figure 2. Schematic of isothermal lines and streaming streamlines obtained in a half-wavelength resonator at
low acoustic level. The section shown is a longitudinal half-section between the axis (bottom) and the resonator
wall (top). Hot and cold regions are depicted.

velocity antinodes, while in the near-wall region inner streaming vortices are only slightly
modified.

In order to disentangle the physical phenomena responsible for the change of streaming
pattern at high acoustic levels, the isentropic case was analysed in Daru et al. (2017b).
A similar evolution of streaming pattern was observed, although for higher values of ReNL
than in experiments. It was shown numerically that inertial effects cannot be considered as
the leading phenomenon to explain this evolution, which was rather attributed to nonlinear
interactions between acoustic and streaming flows (Daru et al. 2017a). The change of
pattern was shown to occur when the radial streaming velocity becomes larger than the
radial acoustic velocity.

Thermal effects on acoustic streaming flow were investigated analytically at low acoustic
levels by Hamilton, Ilinskii & Zabolotskaya (2003) in channels/cylindrical guides of
arbitrary width, where the base state (including temperature) is spatially uniform. They
included variation of thermophysical gas properties with temperature (for several gases
corresponding to several Prandtl numbers) and showed that thermal effects have a limited
influence on the streaming flow for low amplitude acoustic waves.

The influence of an imposed longitudinal temperature gradient on acoustic streaming
was considered theoretically by Rott (1974), Olson & Swift (1997) and Bailliet et al. (2001)
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in the context of thermoacoustic devices, where parts of the resonator are maintained
under large temperature gradients using heat exchangers. Thompson et al. (2005) showed
experimentally the strong effect of a small thermoacoustically induced longitudinal
temperature gradient on the acoustic streaming flow for values of the nonlinear Reynolds
number ReNL up to 20. The temperature gradient measured on the outside wall was small
(up to 8 K m−1, corresponding to a temperature difference across the streaming cell of
2.3 K). These streaming velocity measurements were not explained by theoretical studies
in previously cited references.

The influence of an imposed transverse temperature gradient on Rayleigh streaming
flow has been far less studied. Lin & Farouk (2008) and Aktas & Ozgumus (2010)
conducted some two-dimensional (2-D) numerical simulations with the two longitudinal
walls maintained at different temperatures. They found that the outer symmetric vortices
are distorted and merge to one vortex pattern for high values of the temperature difference
(up to 60 K). Note that gravity is neglected in these studies. Nabavi, Siddiqui & Dargahi
(2008) studied experimentally the influence of differentially heated horizontal walls on
acoustic streaming in a parallelepipedic channel of square cross-section. They applied a
vertical bottom–top temperature difference (bottom wall hotter than the top wall) ranging
from 0.8 K to 3 K and found that streaming patterns are greatly modified, both in shape and
in value; the streaming velocity amplitude was increased when the temperature difference
was increased. In their experiment the channel width is very large, of approximately 400δν .
However, in their study it is difficult to distinguish between buoyancy and inhomogeneity
of temperature effects on the acoustic streaming flow. More recently Chini, Malecha &
Dreeben (2014) and Michel & Chini (2019) conducted theoretical studies of the acoustic
streaming flow produced in a fluid with inhomogeneous background temperature and
density, based on a multiple scale analysis. In Chini et al. (2014), the streaming velocity
is first order in Mach number, only induced by the transverse temperature gradient (it
does not exist if the temperature gradient is zero) and the acoustic flow is non-dissipative.
The authors called this streaming flow ‘baroclinic acoustic streaming’. The motivation
was the study of high-intensity discharge lamps, where large temperature differences exist
and a strong two-way coupling between the acoustic field and the streaming flow is to
be expected. The analysis of Michel & Chini (2019) quantitatively explains the results of
numerical simulations by Lin & Farouk (2008) conducted for a temperature difference
equal to 60 K.

Cervenka & Bednarrik (2017) numerically studied in 2-D channels the evolution of
streaming patterns with inhomogeneous background temperature, the inhomogeneity
being introduced via varying prescribed temperature distribution along the resonator walls.
They found that the resulting temperature heterogeneity in the direction perpendicular
to the resonator axis has a great influence on the streaming field if the ratio of the
channel width to the viscous boundary layer thickness is large enough. Depending on the
conditions they showed that Rayleigh streaming can be enhanced (for the axis colder than
the wall) or decreased (for the axis hotter than the wall), and that the streaming patterns
can be considerably distorted even if the transverse temperature difference is small. In
Cervenka & Bednarrik (2018), the authors studied the added effect of convective heat
transport on the streaming field in a cylindrical geometry. Their study was, however,
limited to weak convective effects (and thus low values of ReNL), because their model
was not numerically stable for values of the Reynolds number of the streaming flow,
ReNL > 4. They explained that when a longitudinal temperature gradient is established
in the tube due to the thermoacoustic effect, the streaming flow convects heat along the
axis from the acoustic velocity node towards the antinode, causing the appearance of a
transverse temperature gradient responsible for the modification of streaming patterns at

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.996


HotColdHot

Figure 3. Schematic of isothermal lines and streaming streamlines obtained in the waveguide at high acoustic
levels. The white dashed-line rectangles indicate the transversely stratified temperature regions.

high acoustic levels. Even though the mechanism for the distortion of streaming due to
temperature effects was qualitatively identified, the effects need to be further quantified.

In the present study, the acoustically induced thermal effects on Rayleigh streaming
flow in a waveguide at high acoustic amplitude are analysed by following a combined
formal and phenomenological approach. In such a waveguide, a longitudinal temperature
difference in the boundary layer near the wall is first created by thermoacoustic effect, as
shown in figure 2. At high acoustic amplitude, convective transport effects by the streaming
flow are no more negligible. Since transport occurs towards the acoustic velocity antinode
near the waveguide axis and towards the acoustic velocity node near the wall, a large zone
of transverse temperature stratification appears in the central part of the streaming cells
(figure 3). Similar temperature distributions were observed in early numerical simulations
by Gopinath & Mills (1994). This mean temperature reorganization results in spatial
modification of the streaming patterns, and possibly the emergence of a new cell as
previously observed experimentally and numerically by Thompson et al. (2005), Reyt et al.
(2013) and Daru et al. (2013).

One of our aims is to identify the scaling parameters that predict this modification of
streaming pattern. Following Cervenka & Bednarrik (2018), we postulate that a major
effect on the streaming flow patterns is to be attributed to the change of the temperature
field distribution due to heat transport by convective effect. We thus expect that the
streaming flow at high acoustic levels can be adequately studied theoretically by solving
linear equations for both acoustic and streaming flows with an imposed background
transversely stratified temperature distribution.

The transverse temperature difference observed in figure 3 is proportional to the
longitudinal temperature difference observed in the boundary layer. The latter could be
well approximated by the longitudinal temperature difference calculated on the inside
boundary of the wall. Since the longitudinal temperature gradient due to thermoacoustic
effect is expected to be small, the transverse variations of temperature under study here are
supposed to be small.

Following the ideas presented above, the present study is divided in five sections.
In § 2 the effect of a transversely stratified temperature distribution on the streaming
flow is analysed in the plane case of low acoustic amplitude. The analytical model
developed in Baltean-Carlès et al. (2019) for isentropic flow is extended here to the case
of variable mean temperature for a perfect gas. As in Baltean-Carlès et al. (2019), the
symbolic computational software Mathematica (Wolfram Research Inc. 2018) is used to
solve the equations throughout this study. The plane case is addressed because analytical
expressions are simpler and also we expect a behaviour very similar to the axisymmetric
case (a cylindrical geometry would involve integration of products of Bessel function that
do not have any known analytic expression). An important result is the quantification
of the relevant similarity parameters, essential to provide guidelines in numerical and
experimental studies.

In § 3 the wall temperature distribution is calculated from the combined thermoacoustic
effect in the fluid, heat conduction in the wall and convection from the outside air.
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The maximum transverse temperature difference to be expected due to convective transport
can then be estimated, since it is proportional to the maximum longitudinal temperature
difference (figure 3).

These results are then combined in § 4 to exhibit a new criterion characterizing the
transition in streaming pattern.

This criterion is shown in § 5 to be in good agreement with the experimental results in
the literature reported by Thompson et al. (2005) and Reyt et al. (2014). It thus provides the
first quantitative explanation of the evolution of streaming observed in these experiments.
Moreover, it explains for the first time the influence of thermal boundary conditions
observed in previous experiments.

2. Analytical solution for Rayleigh streaming flow under a transverse
gradient of temperature

In this section the effect of a transverse gradient of temperature on acoustic streaming
is investigated. As stated in the Introduction, previous studies by Chini et al. (2014),
Cervenka & Bednarrik (2017, 2018) and Michel & Chini (2019) have already shown that
transverse variations of the fluid temperature lead to drastic changes in the streaming flow
structure. Our goal here is to quantify these changes in Rayleigh streaming with respect
to the geometrical parameters of the guide, thermophysical characteristics of the gas and
transverse temperature difference.

The configuration under study consists in a waveguide filled with a perfect gas initially
at rest. A plane standing acoustic wave of angular frequency ω is installed inside the
channel. The channel has a length L and a half-width R. Figure 1 shows the flow
domain, the symmetry conditions and the thermal boundary conditions. The reference
state corresponds to uniform temperature T0, density ρ0, pressure p0. The corresponding
sound velocity is c0 = √

γ p0/ρ0, with γ the ratio of specific heats. The angular frequency
is equal to ω0 corresponding to the acoustic standing wave resonating at its first mode
along x (so-called λ/2 mode), in the case of a non-viscous gas (ω0 = πc0/L). The channel
length is large compared to its width, L � R. The effects of gravity are not included in this
study.

In the following, coordinates x, y and velocity components u, v correspond respectively
to the axial and transverse directions. The origin is at the centre of the channel.
Pressure, density and temperature are denoted respectively p, ρ and T . The following
non-dimensional quantities are used:

ŷ = y/δν, x̂ = x/L, R̂ = R/δν, L̂ = L/δν, (2.1a–d)

where δν = √
2μ/(ρ0ω0) is the oscillating viscous boundary layer thickness, μ being the

dynamic viscosity of the gas. For symmetry reasons only a half-channel is considered,
that is, the velocity and temperature fields are calculated and shown for −1/2 � x̂ � 1/2
and 0 � ŷ � R̂ only. The propagation of a low amplitude plane acoustic wave is associated
with a perturbation of the initial state (defined by p0, ρm and Tm) for the fluid yielding

p = p0 + p′, u = u′, v = v′, T = Tm + T ′, ρ = ρm + ρ′. (2.2a–e)

We introduce the complex acoustic amplitudes p̃, ρ̃, ũ, ṽ, T̃ such that p′ =
Re(p̃ exp(i2πt̂)), ρ′ = Re(ρ̃ exp(i2πt̂)), etc., where t̂ = ω0/(2π)t is the non-dimensional
time.
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Using Reynolds decomposition, any fluid variable φ is separated into a fluctuating,
periodic, component φ′, and a steady component φ̄ according to

φ = φ̄ + φ′, (2.3)

where the overline denotes the average over an acoustic period. It should be noted that the
averaged product of variables φ and ψ writes

φψ = φ̄ ψ̄ + φ′ψ ′. (2.4)

It is assumed that the transport properties of the gas such as specific heats cp and cv ,
heat conductivity k and viscosity μ are constant, since the effect of their variation with
temperature is expected to be very small for the range of temperature variations under
study. Only gases with Prandtl number Pr < 1 are considered here (where Pr = μcp/k).

The wall temperature is constant and equal to the reference temperature T0. The
temperature difference in the fluid between the wall and the resonator axis is noted ΔT . As
stated before, for our application, ΔT is supposed to be small, that is Θ = (ΔT/T0) � 1.
This corresponds to temperature differences of few degrees when working at room
temperature. In the following, terms in O(Θ2) and smaller will be neglected. Axial
symmetry for temperature induces ∂T/∂ ŷ|ŷ=0 = 0.

The initial temperature distribution is taken as the simplest function Tm(ŷ) satisfying
both boundary and symmetry conditions

Tm

T0
= 1 +Θ

(
1 − ŷ2

R̂2

)
= f (ŷ). (2.5)

This temperature distribution can be obtained by adding a source term Q = 2k(ΔT/R2)
in the energy equation, which in the absence of fluid motion reduces to k(∂2Tm/∂x2 +
∂2Tm/∂y2) = −Q.

The equation of state for a perfect gas is p = rρT (where r = cp − cv), resulting for
the average state in the approximate equation p0 = rρmTm, where the averaged fluctuating
term ρ′T ′ is neglected (since it is second order in Mach number).

The temperature distribution (2.5) induces a density distribution in order to satisfy the
equation of state p0 = rρmTm, and the average density ρm(ŷ) takes the form

ρm

ρ0
= 1

f (ŷ)
. (2.6)

The imposed temperature distribution also induces a modification of the acoustic
quantities. The following paragraph is devoted to establish the modified expression of the
acoustic field.

2.1. Acoustics
Since R � L the acoustic wave is plane. For the configuration under study
(∂u′/∂x)/(∂u′/∂y) scales as δν/λ� 1, therefore ∂2u′/∂x2 � ∂2u′/∂y2 and the first-order
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equations governing the acoustics are

c0

2
∂ρ′

∂ t̂
+ ρm

∂u′

∂ x̂
+ L̂

∂

∂ ŷ
(ρmv

′) = 0,

ρm
c0

2
∂u′

∂ t̂
+ ∂p′

∂ x̂
= ρ0

π

2
c0
∂2u′

∂ ŷ2 ,

∂p′

∂ ŷ
= 0,

ρm
∂T ′

∂ t̂
= ρ0

π

Pr
∂2T ′

∂ ŷ2 + 1
cp

∂p′

∂ t̂
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.7a–d)

The first-order equation of state for density is

ρ′

ρm
= p′

p0
− T ′

Tm
. (2.8)

The boundary and symmetry conditions for u′, v′ and T ′ with respect to ŷ give

u′ = 0 at ŷ = R̂; ∂u′

∂ ŷ
= 0 at ŷ = 0,

v′ = 0 at ŷ = R̂ and at ŷ = 0,

T ′ = 0 at ŷ = R̂; ∂T ′

∂ ŷ
= 0 at ŷ = 0.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.9a–c)

Considering that the acoustic wave is plane, the acoustic pressure amplitude p̃ is supposed
to be real and of the form

p̃ = ρ0c0Uac sin(πx̂). (2.10)

The complex acoustic velocity amplitude ũ should verify the following equation:

iũ − 1
2

f (ŷ)
∂2ũ
∂ ŷ2 = − 1

ρ0πc0
f (ŷ)

dp̃
dx̂
. (2.11)

Because we were not able to find an exact formal solution for (2.11), the following
approximate solution is proposed ũ = ũ1f (ŷ), where ũ1 is the solution of

iũ1 − 1
2
∂2ũ1

∂ ŷ2 = − 1
ρ0πc0

dp̃
dx̂
, (2.12)

that is the usual equation written when temperature is homogeneous. The corresponding
solution for ũ1 is

ũ1 = i
ρ0πc0

(1 − exp((1 + i)(ŷ − R̂)))
dp̃
dx̂
. (2.13)

Therefore ũ is equal to

ũ = iUac f (ŷ)(1 − exp((1 + i)(ŷ − R̂))) cos(πx̂). (2.14)

In order to test the validity of this approximation, ũ is replaced in (2.11), resulting in

iũ − 1
2

f (ŷ)
∂2ũ
∂ ŷ2 = − 1

ρ0πc0
f (ŷ)

dp̃
dx̂

[
1 + δ(Θ, ŷ, R̂)

]
, (2.15)

with δ(Θ, ŷ, R̂) = Θ/R̂2(−i + exp((1 + i)(ŷ − R̂))(i + R̂2 − 2(1 − i)ŷ − ŷ2)).
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Figure 4. Values of |δ(Θ, R̂, R̂)|; Θ varies between 0 and 5/294, R̂ between 6 and 200.

The residual function δ (shown in figure 4) has maximum modulus values for ŷ = R̂,
where |δ(Θ, R̂, R̂)| = 2

√
2(Θ/R̂). Therefore, |δ(Θ, R̂, R̂)| remains less than 8 × 10−3

for 0 � Θ � 5/T0 (T0 = 294 K) and 6 � R̂ � 200. The applications under study in the
present paper correspond to a small enough transverse temperature gradient and large
enough guides to validate the approximation of the solution of (2.11) by (2.14).

The oscillating temperature amplitude T̃ verifies an equation similar to (2.11)

iT̃ − 1
2Pr

f (ŷ)
∂2T̃
∂ ŷ2 = i

1
ρ0cp

f (ŷ)p̃. (2.16)

Following the same approach as for the velocity amplitude, the solution is approximated
as

T̃ = 1
ρ0cp

f (ŷ)(1 − exp((1 + i)
√

Pr(ŷ − R̂)))p̃. (2.17)

Finally the transverse acoustic velocity amplitude ṽ is calculated by integrating the
continuity equation. The density amplitude ρ̃ is obtained from the equation of state

ρ̃

ρm
= p̃

p0
− T̃

Tm
. (2.18)

Substituting (2.18) in (2.7a) gives the following differential equation for ṽ:

L̂ f (ŷ)
∂

∂ ŷ

(
1

f (ŷ)
ṽ

)
= −iπc0

(
p̃
p0

− 1
f (ŷ)

T̃
T0

)
− ∂ ũ
∂ x̂
. (2.19)
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Figure 5. Transverse profiles of axial (x̂ = 0, a) and transverse (x̂ = −1/2, b) acoustic velocities (m s−1),
R̂ = 50. With ΔT = 5 K (solid), ΔT = 0 K (dashed) and Uac = 1 m s−1, air at standard conditions.

The resulting expression for ṽ provided by formal integration is very lengthy and will
not be given here. Instead, figure 5 shows the transverse profiles of ũ and ṽ for ΔT = 0 and
5 K. This figure shows that the two velocity component profiles are not modified inside the
boundary layer. Outside the boundary layer, the axial velocity amplitude is barely modified
(maximum variation of 5/294 = 1.7 %) while the transverse velocity amplitude varies by
a maximum of approximately 15 %. We have previously shown in Daru et al. (2017a) that
such variations on the transverse velocity amplitude can lead to significant modifications
of the streaming flow. In that previous study, the modification of the transverse velocity
was identified as coming from the nonlinear interaction between streaming and acoustic
flows. The present development confirms that, as shown by Chini et al. (2014) and Michel
& Chini (2019), another source of modification of transverse acoustic velocity and thus of
acoustic streaming is the presence of a transverse temperature gradient, via a baroclinic
mechanism.

As can be seen in figure 5, the influence of the inhomogeneity of temperature is less
apparent on the axial acoustic velocity than on the radial one. However, as shown in
the next section, both components have comparable resulting influence on the streaming
velocity.

2.2. Streaming flow
In this section, the effect of a small transverse temperature gradient on acoustic streaming
is investigated using the acoustic quantities calculated in the previous section.
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Thermal effects on Rayleigh streaming

Using the hypothesis that ∂2ū/∂x2 � ∂2ū/∂y2, the Navier–Stokes equations are
averaged in time over one acoustic period, linearized and simplified as

∂

∂ x̂
(ρmū)+ L̂

∂

∂ ŷ
(ρmv̄) = − ∂

∂ x̂
(ρ′u′)− L̂

∂

∂ ŷ
(ρ′v′),

ρ0
π

2
c0
∂2ū
∂ ŷ2 = ∂ p̄

∂ x̂
+ ∂

∂ x̂
(ρmu′u′)+ L̂

∂

∂ ŷ
(ρmu′v′),

∂ p̄
∂ ŷ

= 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.20)

where ū, v̄ and p̄ are the averaged velocity components and pressure, and the fluid mean
density ρm is given by (2.6). The averaged terms on the right-hand side of system (2.20) are
the averaged products (Reynolds stresses) of acoustic quantities. They are the sources of
streaming. In the present study, two of the three sources of streaming that were investigated
in Baltean-Carlès et al. (2019) are taken into consideration. This is because the third source
is negligible for the configuration presently studied.

The boundary conditions for ū and v̄ are

ū = 0 at ŷ = R̂; ∂ ū
∂ ŷ

= 0 at ŷ = 0,

v̄ = 0 at ŷ = 0 and ŷ = R̂,∫ R̂

0
ρmū dŷ = 0.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.21a–c)

The third condition in (2.21a–c) is obtained by integrating the continuity equation in (2.20)
over the half-width of the channel.

Following Westervelt (1953), we take the curl of the momentum equations, which
eliminates pressure, and use the assumption 1/L∂v̄/∂ x̂ � 1/δν∂ ū/∂ ŷ, to obtain

π

2
c0
∂3ū
∂ ŷ3 = ∂

∂ ŷ

(
1

f (ŷ)
∂(u′u′)
∂ x̂

)
+ L̂

∂2

∂ ŷ2

(
1

f (ŷ)
u′v′

)
. (2.22)

Since the formulae are very lengthy, formal integration is simplified for large guides
and a small transverse temperature gradient by neglecting terms proportional to e−R̂ and
smaller as well as terms quadratic in Θ and smaller.

The solution of the problem given by (2.22) is the superposition of solutions associated
with each source term. Therefore, in the following, the two problems associated with the
two source terms in (2.22) are solved successively.

2.2.1. First problem
The equation to be solved for the axial streaming velocity corresponding to the first source
term is

π

2
c0
∂3ū1

∂ ŷ3 = ∂

∂ ŷ

(
1

f (ŷ)
∂(u′u′)
∂ x̂

)
. (2.23)

The solution results in a lengthy expression not developed here. However, along the axis
when smaller terms can be neglected the solution can be simplified into

ū1(x̂, 0)
ūR

= 2
3

− 5

R̂
− 4

45
ΘR̂2, (2.24)
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where the reference Rayleigh solution has been used for normalization

ūR = − 3
16

U2
ac

c0
sin(2πx̂). (2.25)

2.2.2. Second problem
The equation to be solved for the axial streaming velocity corresponding to the second
source term writes

π

2
c0
∂3ū2

∂ ŷ3 = L̂
∂2

∂ ŷ2

(
1

f (ŷ)
u′v′

)
. (2.26)

Again, only the streaming velocity along the axis is given here, neglecting smaller terms
and normalizing with Rayleigh’s solution; it writes

ū2(x̂, 0)
ūR

= 1
3

+ 2
3
(γ − 1)

√
Pr

1 + Pr

+ 1

6R̂

[
1 + 2(γ − 1)

Pr3/2(1 + Pr)2

(
3 + 5Pr + 6Pr3/2 − 8Pr2 − 4Pr3

)]
+ 2

45
ΘR̂2.

(2.27)

Note that the additional term in Θ is of a sign opposite to the one in the first problem.

2.2.3. Total axial streaming velocity
The total axial streaming velocity is given by ū = ū1 + ū2, resulting along the axis in

ū(x̂, 0)
ūR

= 1 + 2
3
(γ − 1)

√
Pr

1 + Pr
− 29

6
1

R̂
− 2

45
ΘR̂2

+ 1

6R̂

[
2(γ − 1)

Pr3/2(1 + Pr)2
(3 + 5Pr + 6Pr3/2 − 8Pr2 − 4Pr3)

]
. (2.28)

The first two terms in the right-hand side of (2.28) correspond to the solution given by Rott
(1974), and also to that given in Hamilton et al. (2003) in the limit of wide channels. This
expression depicts the huge effect of transverse temperature variation on the streaming
velocity field, due to the term that varies in R̂2. Note that, under the hypotheses of the
present study, the order of magnitude of the term 2

45ΘR̂2 is up to unity. This term,
proportional to ΘR̂2, may be at the origin of the generation of an additional vortex.
Expression (2.28) shows that this additional vortex rotates in the same direction as the
Rayleigh outer cell if Θ is negative (corresponding to the fluid near the axis being colder
than the fluid near the wall), increasing the global amplitude of the outer streaming flow.
In the opposite case, where Θ � 0 (fluid near the axis hotter than near the wall), the
additional cell rotates in the opposite direction, thus decreasing the outer streaming flow.
This phenomenon can eventually result in streaming flowing reversely with respect to the
usual Rayleigh streaming flow. Unlike the case where Θ = 0, for which the fluctuating
velocity field is rotational only in the boundary layer, when Θ /= 0 it is rotational in the
whole fluid which induces a baroclinic-type streaming flow as shown in Chini et al. (2014)
and Michel & Chini (2019). In our case, there are two mechanisms creating streaming:
one inside the boundary layer, as for classical Rayleigh streaming, and one related to
the transverse temperature gradient. This is consistent with findings by Cervenka &
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Figure 6. Transverse profiles of axial streaming velocity normalized by Rayleigh streaming for different
transverse temperature gradients. Here, R̂ =50, x̂ = −1/4, Θ varies between 0 (solid line) and 3K/T0 (dotted
line).
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Figure 7. Transverse profiles of axial streaming velocity normalized by Rayleigh streaming for different
transverse temperature gradients. Here, R̂ =150, x̂ = −1/4,Θ varies between 0 (solid line) and 0.3K/T0 (dotted
line).

Bednarrik (2017, 2018). The interest of the present work is to provide simple expressions
that quantify this phenomenon in cases of small temperature gradients.

Let us consider the condition for reversing streaming flow for two guide widths, with
air at standard conditions (T0 = 294 K). Figure 6 shows the axial streaming velocity
normalized with the reference Rayleigh solution ūR as a function of ŷ for R̂ = 50 and
for four values of Θ (Θ × T0 = 0, 1, 2, 3 K). In this case, a temperature gradient of
a few degrees changes drastically the velocity, which becomes negative on the axis.
Figure 7 shows analogous curves for a wider guide, corresponding to R̂ = 150, and for
four values of Θ (Θ × T0 = 0, 0.1, 0.2, 0.3 K). Here, the effect of temperature is even
more important: only a few tenths of a degree is enough to reverse the velocity on the
axis. Comparing these two figures illustrates the fact that, as R̂ increases, the ΔT needed
to reverse the streaming flow on the axis decreases since it is inversely proportional to R̂2.

2.2.4. Comparison with direct numerical simulation
To validate the simplifications made in our analytical study, we run a numerical simulation
using the code described in Daru et al. (2013), that solves the complete compressible
Navier–Stokes equations. In the code, the acoustic wave is created by shaking the channel
periodically in the axial direction. The displacement amplitude is small in order to remain
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Figure 8. Comparison between numerical simulation and analytical solution, R̂ =50, x̂ = −1/4;
(a) Θ = 3 K/T0, (b) Θ = 5 K/T0.

in the monofrequency acoustic regime. An initial temperature profile (2.5) is imposed,
and maintained by adding the corresponding source term in the energy equation. The
configuration used in this case corresponds to an acoustic wave frequency of 20 000 Hz
in a plane channel of width R̂ = 50, filled with air at standard conditions (T0 = 294 K).
The results are shown in figure 8, showing the normalized axial streaming velocity along
the transverse direction, in the middle of the streaming cells x̂ = −1

4 . A very good
agreement between numerical and analytical solutions is observed, showing that our
analytical approach gives a very good approximation to the complete problem.

3. Temperature distribution along the resonator wall

In order to describe the interaction between acoustic streaming and thermal effects in
a standing waveguide, as stated in the Introduction, we now focus on the resonator mean
wall temperature and its longitudinal variation. The wall temperature distribution is a result
of the combination of thermoacoustic effect in the fluid, heat conduction in the wall and
possible convection by the outside air.

The channel walls are assumed to be of thickness w and made with a material of
thermal conductivity ks, density ρs and specific heat cs. The initial temperature field
is supposed to be uniform in the fluid, in the wall and outside the waveguide, that
is T = T0 everywhere. Three different thermal boundary conditions on the resonator
wall are encountered in experimental studies: isothermal, uncontrolled and insulated. In
the following, the temperature distribution along the wall is set first for the so-called
‘isothermal’ condition, where the outer side of the wall is maintained at temperature T0.
Secondly, the influence of convection outside the guide is taken into account by using
a heat transfer coefficient. This second case should mimic the so-called ‘uncontrolled’
boundary conditions in experimental studies. The third boundary condition encountered
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in experimental studies is the insulated condition. In experiments, there always remains a
very small heat exchange with the outside air. Therefore, this condition is equivalent to an
uncontrolled boundary condition with a much smaller effective wall conductivity.

3.1. Isothermal condition
In the isothermal case, the temperature of the fluid outside the guide is supposed constant
and equal to T0. The equation governing heat transfer by the fluid inside the waveguide
is written by averaging over an acoustic period and neglecting terms smaller than second
order in M (Swift 1988)

∂

∂ x̂
u′T ′ + L̂

∂

∂ ŷ
v′T ′ = 1

2
πc0

1
Pr
∂2T̄
∂ ŷ2 . (3.1)

Integrating (3.1) from 0 to R̂ yields

∫ R̂

0

∂

∂ x̂
u′T ′ dy = 1

2
πc0

1
Pr
∂T̄
∂ ŷ

|ŷ=R̂. (3.2)

It is assumed that a steady state is established within the wall so that the temperature
profile is linear across the wall, that is between ŷ = R̂ and ŷ = R̂ + ŵ, with ŵ = w/δν .
Let us denote by T̄w,in the mean temperature on the inner side of the wall. The boundary
condition for the heat flux at the wall is

k
∂T̄
∂ ŷ

∣∣∣∣
ŷ=R̂

= ks
T0 − T̄w,in

ŵ
. (3.3)

Combining (3.2) and (3.3) gives an expression for the temperature of the inner side of
the wall

T̄w,in = T0 − 2Pr
πc0

k
ks

ŵ
∫ R̂

0

∂

∂ x̂
u′T ′ dy. (3.4)

In order to calculate the integral in (3.4), we use the classical acoustic velocity u′ given by
(2.14) with f (ŷ) = 1

u′ = Re[iUac(1 − exp((1 + i)(ŷ − R̂))) cos(πx̂) exp(i2πt̂)], (3.5)

and the fluctuating temperature for conducting walls given by Swift (1988) and simplified
for large enough guides (R̂ � 6)

T ′ = Re
[

1
ρ0cp

p′
(

1 − 1
1 + ε0

exp((1 + i)
√

Pr(ŷ − R̂))
)]
. (3.6)

In this expression p′ = p̃ exp(i2πt̂), with p̃ given by (2.10) and ε0 = √
(ρ0/ρs)(k/ks)(cp/cs).

Also, the convective term depending on the average temperature gradient in the x direction
has not been included, as opposed to Swift (1988). This is because in Swift (1988), the
axial temperature gradient was supposed to be of order O(1), which is not the case in our
study, where the initial temperature is uniform.

Replacing the expressions for the first-order quantities, the simplified solution

(neglecting terms smaller than e−R̂) for T̄w,in is obtained after time and space integration
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in (3.4) as

T̄w,in = T0 + ŵ
k
ks

U2
ac

2cp

√
Pr

[
−1 + Pr3/2 + ε0

√
Pr(1 + Pr)

(1 + ε0)(1 + Pr)

]
cos(2πx̂). (3.7)

It is apparent from (3.7) that the inner-wall temperature depends neither on the length
of the channel nor on its width. It only depends on the thickness of the wall, the fluid to
solid conductivity ratio, the acoustic velocity amplitude, the Prandtl number and the fluid
specific heat cp. The parameter ε0 being generally very small has a very small effect on
the wall temperature. Note that a similar dependence on the Prandtl number was reported
by Gopinath et al. (1998) in the expression of the mean driving temperature gradient at the
inner fluid–solid interface in a resonant channel.

3.2. Uncontrolled condition
In the ‘uncontrolled’ condition, the air surrounding the guide is heated and not maintained
at the reference temperature T0. In this case, convection occurs and the outside boundary
condition is modified following Newton’s law of cooling. Taking into account heat
conduction within the wall results in

k
∂T̄
∂y

∣∣∣∣
R

= ks
T̄w,out − T̄w,in

w
= h(T0 − T̄w,out), (3.8)

where T̄w,out is the outside wall temperature and h the heat transfer coefficient. Now, T0
is the temperature outside of the heated layer of air surrounding the guide. For convection
in calm air, h takes values between 2 and 25 (e.g. Incropera et al. 2013). The resulting
expression for the inner-wall temperature becomes

T̄w,in = T0 +
(

k
ks

ŵ + k
hδν

)
U2

ac

2cp

√
Pr

[
−1 + Pr3/2 + ε0

√
Pr(1 + Pr)

(1 + ε0)(1 + Pr)

]
cos(2πx̂).

(3.9)

Equation (3.9) shows that the surrounding air layer has a very strong influence on the
wall temperature, since k/ks is generally small, implying that the dominant term in the
coefficient ((k/ks)ŵ + k/(hδν)) is k/(hδν). The outside wall temperature takes the form

T̄w,out = T0 + ks

ks + hŵδν
(T̄w,in − T0). (3.10)

As an example, figure 9 shows both temperature differences T̄w,in − T0 and T̄w,out − T0

as a function of x̂, in a case representative of experiments, corresponding to R̂ = 150, air at
standard conditions, ks = 1.2 W (m K)−1, ŵ = 20, h = 3 W m−2 K−1, Uac = 10 m s−1,
δν = 1.4 × 10−4 m. As expected, the wall is cooled in the middle of the channel, and
heated at the edges (Merkli & Thomann 1975). The temperature difference between the
inner and outer wall is very small. Indeed, if the heat transfer coefficient h is varied
between 2 and 25 W m−2 K−1, the ratio (T̄w,out − T0)/(T̄w,in − T0) varies from 0.997
to 0.96. It is thus adequate to consider that the mean wall temperature T̄w is the same
inside and outside the wall T̄w � T̄w,in � T̄w,out.
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Figure 9. Temperature difference, in Kelvin, Tw,in − T0 (solid red) and Tw,out − T0 (dashed black); R̂ = 150,
air at standard conditions, ks = 1.2 W (m K)−1, ŵ = 20, h = 3 W m−2 K−1, Uac = 10 m s−1, δν = 1.4 ×
10−4 m.

Therefore, using (3.9), the longitudinal wall temperature difference ΔTlong between the
acoustic velocity node (x̂ = −1/2) and the antinode (x̂ = 0) can be written as

ΔTlong =
(

k
ks

ŵ + k
hδν

)
1
cp

√
Pr

[
−1 + Pr3/2 + ε0

√
Pr(1 + Pr)

(1 + ε0)(1 + Pr)

]
U2

ac, (3.11)

which shows that ΔTlong is proportional to the square of the acoustic velocity amplitude,
U2

ac. This was verified experimentally, and will allow us to estimate the heat transfer
coefficient h (see § 5).

4. Transition criterion

The transition in streaming pattern occurs when the streaming velocity vanishes on the
guide axis in between the acoustic node and antinode. Equation (2.28) shows that the
streaming velocity on the axis can vanish or become negative for Θ � 0, when neglecting
terms in 1/R̂ as a first approximation, if

ΔT
T0

� 45
2

1

R̂2

(
1 + 2

3
(γ − 1)

√
Pr

1 + Pr

)
, (4.1)

where ΔT is the transverse temperature difference. As previously stated, ΔT is
proportional to the longitudinal temperature difference between cold and hot regions
generated by the thermoacoustic effect. We choose to estimate the average value of ΔT
at the middle of the cell, corresponding to x̂ = −1/4. For this longitudinal position,
the wall temperature is T0 and the temperature on the axis is approximately equal to
T̄win(x̂ = −1/2) because of convective heat transport (see figure 3). Neglecting small terms
in ε0 in (3.9), this results in

ΔT = T̄w,in(x̂ = −1/2)− T0 =
(

k
ks

ŵ + k
hδν

)
U2

ac

2cp

√
Pr
[

1 − Pr3/2

(1 + Pr)

]
, (4.2)
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Experiment R w λ/2 δν T0 Tw,max
cm mm m mm K K

Thompson et al. (2005) 2.325 2 0.56 0.124 296 297.1
Reyt et al. (2014) 1.96 2.5 0.712 0.139 291 297.25

Table 1. Geometrical and thermal parameters of experiments reported in Thompson et al. (2005) and
Reyt et al. (2014).

which, using the relation cpT0 = c2
0/(γ − 1), can equivalently be written as

ΔT
T0

= 1
2

(
k
ks

ŵ + k
hδν

)
(γ − 1)M2

√
Pr

1 − Pr3/2

1 + Pr
, (4.3)

where M is the Mach number.
Replacing (4.3) in (4.1) results in

1
2

(
k
ks

ŵ + k
hδν

)
(γ − 1)M2

√
Pr

1 − Pr3/2

1 + Pr
� 45

2
1

R̂2

(
1 + 2

3
(γ − 1)

√
Pr

1 + Pr

)
, (4.4)

or, equivalently, since ReNL = M2R̂2

ReNL � KC, (4.5)

where

KC = 30
ks/k

ŵ + ks/(hδν)

(
1 + 3

2
1 + Pr

(γ − 1)
√

Pr

)
1

(1 − Pr3/2)
. (4.6)

This shows that the parameter ReNL is indeed adequate for the study of streaming at high
acoustic levels, and KC given by (4.6) is a new parameter characterizing the transition of
the streaming pattern. The value of KC depends on the thermo-physical characteristics of
the fluid and the wall, as well as on the wave frequency and on the heat transfer coefficient.
In the case of isothermal wall conditions (no air convection effects), the term ks/(hδν)
in (4.6) should be set to zero. Therefore the value of KC depends strongly on the wall
temperature boundary conditions.

5. Comparison with experimental results

In order to compare results from the previous sections with experimental data available
in the literature, we have selected experiments by Thompson et al. (2005) and Reyt et al.
(2014) that include temperature and Rayleigh streaming velocity measurements for low
and high acoustic amplitudes and several thermal boundary conditions. Note that these
experiments were conducted in cylindrical waveguides and therefore some discrepancy
with our theoretical results (obtained for a plane geometry) is to be expected. Geometrical
and thermal parameters related to both experiments are detailed in table 1, with Tw,max the
highest value of Tw reported.

In both cases, air at standard conditions was used as the working fluid, so
that ρ0 = 1.2 kg m−3, μ = 1.795 × 10−5 kg m−1 s−1, k = 0.026 W m−1 K−1,
cp = 1004.5 J kg−1 K−1 resulting in Pr = 0.726. The tube wall was constituted of
borosilicateglass(Thompsonetal.2005)orPyrex(Reytetal.2014)ofsimilar thermophysical
properties, ρs = 2230 kg m−3, ks = 1.2 W m−1 K−1, cs = 830 J kg−1 K−1.
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Figure 10. Longitudinal wall temperature difference (in Kelvin) between the acoustic node and antinode
ΔTlong as a function of U2

ac. Unpublished data corresponding to experiments in Reyt et al. (2014).

Ref. experiment h RaD NuD h̄
W m−2 K−1 W m−2 K−1

Thompson et al. (2005) 2.35 10 862 4.47 2.5
Reyt et al. (2014) 3.19 38 909 6.12 4.1

Table 2. Values of the parameters.

In the experiments reported in Thompson et al. (2005), (uncontrolled boundary
condition), the inner temperature was found to be less than 0.1 K higher than the outer
temperature. This confirms that it is adequate to consider that the wall temperature is the
same inside and outside the wall. Thompson et al. (2005) also verified experimentally that
the longitudinal wall temperature difference between acoustic velocity node and antinode
(ΔTlong) is proportional to the square of the acoustic velocity amplitude, even for high
acoustic amplitudes, in agreement with (3.11).

In figure 10, the dots indicate the longitudinal outer-wall temperature differences across
a streaming cell measured with thermocouples in the experimental set-up described in Reyt
et al. (2014), in the case of uncontrolled thermal conditions for several acoustic velocity
amplitudes. A best linear fit (solid line in figure 10) shows that, as previously, ΔTlong is
proportional to U2

ac with a slope equal to 0.0089 K s2 m−2. We assume also that the wall
temperature is the same inside and outside the wall. Using (3.11) gives an estimate of the
heat transfer coefficient h. Similarly, h is estimated for the experiments of Thompson et al.
(2005). Corresponding values of h are reported in table 2 for both reference experiments.

For a horizontal cylinder of radius R with outside wall temperature Tw, placed in air at
temperature T0, the average heat transfer coefficient h̄ can be calculated using the following
correlation giving the global Nusselt coefficient NuD (Churchill & Chu 1975), valid for
RaD � 1012:

NuD = h̄D
k

=

⎛
⎜⎜⎜⎜⎜⎝0.6 + 0.387Ra1/6

D(
1 +

(
0.559

Pr

)9/16
)8/27

⎞
⎟⎟⎟⎟⎟⎠

2

, (5.1)
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with RaD = (2gρ0cp/(μk))(Tw − T0)/(Tw + T0)D3 the Rayleigh number based on the
tube diameter D = 2R and g the gravitational acceleration. The Rayleigh number RaD
is calculated based on Tw,max.

Corresponding values of RaD, NuD and h̄ are reported in table 2 for both reference
experiments. The values of h and h̄ are very comparable and therefore reliable.

In the case of experiment by Thompson et al. (2005), using the value found for h
(h = 2.35 W m−2 K−1) in (4.6) yields KC = 7.57. In Thompson et al. (2005), the axial
streaming velocity was shown to almost vanish on the axis for ReNL = 10 and to reach
zero on the axis for ReNL = 20 in the case of uncontrolled thermal boundary conditions.
Therefore, we expect KC to fall in between these two values. The agreement is pretty
good keeping in mind that the theoretical approach was conducted in the plane case. In
cylindrical tubes at low acoustic amplitudes, the maximum axial streaming velocity on the
axis is twice that of the plane case. This could explain that KC slightly underestimates the
transition in streaming pattern.

The situation is very similar in Reyt et al. (2014). Using the value found for h (h =
3.19 W m−2 K−1) in (4.6) yields KC = 11. In these experiments, the axial streaming
velocity was shown to almost vanish on the axis for ReNL = 14 and to reach zero on the
axis for ReNL = 30 in the uncontrolled case. Here again, KC slightly underestimates the
transition. However, our prediction of the ReNL value corresponding to the transition is
higher for the experiments in Reyt et al. (2014) than for those of Thompson et al. (2005),
for the same ratio as the measured values of ReNL.

Conditions corresponding to the change in streaming flow patterns are very different
in the case of isothermal walls. In this case, for values of parameters corresponding to
Thompson et al. (2005), we obtain KC = 931. This shows that, in these experiments, the
Mach number should be larger than 0.16 in order to satisfy the inequality (4.5), implying
Uac � 56 m s−1. In Thompson et al. (2005), the largest acoustic amplitude, equal to
8.6 m s−1 (corresponding to ReNL = 20), is much smaller than this limit velocity. This
is why the streaming flow measured by Thompson et al. (2005) in the isothermal case is
almost unchanged compared to the low acoustic amplitude case.

6. Conclusion

Coupling between inhomogeneity of temperature and Rayleigh streaming flow in a
half-wavelength resonating waveguide at high acoustic levels was analysed by following a
combined formal and phenomenological approach. In such a waveguide, a longitudinal
temperature difference in the boundary layer near the wall is first created by the
thermoacoustic effect. Due to convective transport by the streaming flow towards the
acoustic velocity antinode near the waveguide axis and towards the acoustic velocity node
near the wall, a large zone of transverse temperature stratification appears in the central
part of the streaming cells.

We thus started by solving equations for both acoustic and streaming flows with an
imposed background transversely stratified temperature distribution. For this, we solved
the linear equations of streaming flow, by considering the effect of the dominant Reynolds
stress source terms. It was determined (as in Cervenka & Bednarrik 2018) that when
the fluid near the axis is hotter than close to the wall, the total axial streaming velocity
can vanish on the guide axis in between the acoustic velocity node and antinode. This
eventually results in streaming flowing in the reverse sense with respect to the usual
Rayleigh streaming flow, hence a modification of the streaming pattern. The temperature
reorganization therefore has a large impact on streaming patterns. In fact, the streaming
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pattern is modified primarily as a consequence of the temperature reorganization. We
concluded that, by solving linear equations for both acoustic and streaming flows with an
imposed background that has a transversely stratified temperature distribution, we could
reproduce the mechanism of the modification of the streaming flow pattern at high acoustic
levels.

In order to estimate the transverse temperature difference to be expected at high acoustic
levels, we started by estimating the wall temperature. Inner and outer wall temperature
distributions were calculated from the combined thermoacoustic effect in the fluid, heat
conduction in the wall and convection from the outside air. It was shown that, for all
considered applications, the temperature difference between the inner and outer wall
remains very small.

At high acoustic levels, since heat is transported by the streaming flow towards the
acoustic velocity antinode near the waveguide axis, the maximum transverse temperature
difference was expected to be proportional to the longitudinal temperature difference
between cold and hot regions generated by the thermoacoustic effect. The results were then
combined to exhibit a new criterion characterizing the transition in streaming pattern: the
transition occurs when the classical nonlinear Reynolds parameter ReNL becomes greater
than a transition parameter we called KC. The value of KC depends on the thermophysical
characteristics of the fluid and the solid constituting the tube wall, as well as on the wave
frequency. This new criterion allows us to explain the role of thermal boundary conditions
on the dynamics of streaming flow at high acoustic levels. In particular, it can explain
the different behaviours observed under uncontrolled or isothermal boundary conditions
that had not been understood previously. In the case of isothermal wall conditions, the
transition value becomes so large that it is not usually attained so that streaming Rayleigh
flow patterns are almost unmodified. For ‘uncontrolled’ thermal boundary conditions, the
new criterion gives a lower bound for the transition in the streaming pattern.

To conclude, we highlighted in this paper the interaction between the mean temperature
distribution and the streaming flow. This interaction is somehow similar to, but with a
much stronger effect than, the nonlinear coupling between acoustic and streaming flows
exhibited numerically in Daru et al. (2017a) in the isentropic case. A complete numerical
simulation in a configuration similar to existing experiments is under study and will be
addressed in a follow-up paper.
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