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ABSTRACT

The widespread of powerful personal devices capable of
collecting voice of their users has opened the opportunity to
build speaker adapted speech recognition system (ASR) or to
participate to collaborative learning of ASR. In both cases,
personalized acoustic models (AM), i.e. fine-tuned AM with
specific speaker data, can be built. A question that naturally
arises is whether the dissemination of personalized acoustic
models can leak personal information. In this paper, we show
that it is possible to retrieve the gender of the speaker, but
also his identity, by just exploiting the weight matrix changes
of a neural acoustic model locally adapted to this speaker.
Incidentally we observe phenomena that may be useful to-
wards explainability of deep neural networks in the context
of speech processing. Gender can be identified almost surely
using only the first layers and speaker verification performs
well when using middle-up layers. Our experimental study on
the TED-LIUM 3 dataset with HMM/TDNN models shows
an accuracy of 95% for gender detection, and an Equal Er-
ror Rate of 9.07% for a speaker verification task by only ex-
ploiting the weights from personalized models that could be
exchanged instead of user data.

Index Terms— Automatic speech recognition, acoustic
model, personalized acoustic models, collaborative learning,
speaker information

1. INTRODUCTION

Automatic speech recognition (ASR) is now at the heart of a
large number of applications used on a daily basis by a large
number of users. In order to improve the performance of their
ASR solutions, it is common that companies collect and cen-
tralize data to train new acoustic models. New data regula-
tions such as the General Data Protection Regulation in the
European Union change the rules in order to protect the citi-
zen privacy [1]. In order to improve the performance of ASR
models by leveraging user experience without accessing their
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data, solutions such as federated learning are increasingly be-
ing proposed. They consist on exchanging personalized mod-
els, or their gradients, instead of data [2, 3, 4, 5, 6] to preserve
the user privacy. In the framework of collaborative distributed
learning, a personalized model is a model that has been lo-
cally adapted to a user [7]. In a very recent work [8], we pre-
sented a such approach to personalize an hybrid HMM/TDNN
acoustic model [9] in a context of collaborative learning.

In this paper we investigate the information contained in
personalized acoustic models. Especially, we are interested in
the information related to the speaker identity or the speaker
gender that is retrievable from personalized acoustic models.
Previous works have studied speech intermediate representa-
tions computed within neural end-to-end models for speech
recognition. They illustrated the way such end-to-end mod-
els build phonetic and graphemic representations [10, 11], or
showed how speaker variability and noise are gradually re-
moved as the layer goes deeper [12]. To our knowledge, there
is no study on the information provided by the changes in neu-
ral weight due to an acoustic model personalization. Our as-
sumption is that the changes applied to the weights of a neural
acoustic model when this model is adapted to a speaker brings
information about this speaker. Thanks to our experimental
protocol we expect to evaluate the level of speaker informa-
tion that can be retrieved directly from these weight changes,
and also highlight in which neural layers these changes are
particularly discriminant for such information.

Section 2 describes the acoustic model personalization,
section 3 presents the approach proposed to retrieve gender
and speaker information from the personalized acoustic mod-
els, while section 4 describes the experimental set up and sec-
tion 5 the experimental results.

2. ACOUSTIC MODEL PERSONALIZATION

In our scenario, a global acoustic model is available, trained
on an initial public dataset. This global model is distributed to
many devices — each device is linked to only one speaker — on
which it is possible to fine-tune a local instance of the global
model by locally exploiting the user data. Fine-tuning con-
sists in continuing the training process of the generic acoustic
model on a small dataset of the target speaker, by taking care



on avoiding overfitting. The output of the fine-tuning process
is considered as a personalized model for the local speaker.
Figure 1 illustrates the model personalization explored in this
work. Used in the context of a collaborative distributed learn-
ing, for instance federated learning, such personalized mod-
els, or their gradients, would be exchanged in order to aggre-
gate and improve a global model without sharing user data in
an iterative way.
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Fig. 1. Model personalization: (a) A generic model is down-
loaded to each user device. (b) The generic model is locally
fine-tuned on the user data stored on the device.

Even if local data are not transmitted, a possible leakage
of personal information appears when personalized models
are exchanged. Therefore, our study explores the amount
of personal information that can be inferred from the model
weights of the personalized models.

3. SPEAKER INFORMATION RETRIEVAL

During the model personalization, the weights of the neural
generic model are updated. We assume that these weight up-
dates are dependent to some speaker characteristics. We ex-
pect that it is possible to extract such speaker information by
only studying these weight changes. We focus on gender and
on speaker identity. In addition, we investigate in which hid-
den layers these changes are particularly informative to re-
trieve such speaker information.

3.1. Gender information

In order to retrieve the gender information from the person-
alized models, we propose an approach based on clustering
into 2 classes. We assume the two clusters corresponds to
a female/male classification. We evaluate this hypothesis by
calculating the purity criterion, by using the gender labels as
ground truth.

We perform as many clustering as the number of layers
in the models. The inputs are the weights of the layers at
the same depth. The clustering algorithm is an agglomerative
clustering that merges the closest pair of clusters recursively,
building a hierarchy of clusters in bottom-up fashion. The dis-
tance between layers is the Euclidean distance and the Ward
linkage function is used to evaluate the distance between clus-
ters. It is based on the minimum variance method and allows
to minimize the total within cluster variance.

3.2. Speaker Identification

In the second part of this study, we want to evaluate the ability
to identify speakers, again by only considering the changes
applied to weight matrices during the personalization of an
ASR acoustic model. However, such weight matrices, and
even their hidden layers, are too large to characterize the
speaker. Reduction dimensionality approaches like Principal
Component Analysis (PCA) are a potential solution but the
large reduction factor targeted, combined to a limited number
of samples — one model by speaker — could result in this
case in a large loss of discriminant information. In order to
solve this dimension/discrimination problem, we propose to
apply a method inspired from [13], that consists in learning
a speaker embedding extractor. This neural network-based
extractor is trained on the weight matrices of a given hidden
layer from personalized neural ASR models. Training objec-
tive is a speaker discrimination task. But we have to face two
difficulties: the input matrices are very large, and the training
dataset is very small.

We propose to modify the training objective by using
classes of speakers as classification labels, in place of speak-
ers. This allows us to increase the number of examples per
class during the training phase, and so to reduce the risk
of overfitting. The classes of speakers used for the speaker
embedding extractor training are issued from hierarchical
clustering of i-vector of speakers present in the training data.

In order to drastically reduce the memory footprint of the
extractor and overcome this difficulty, we designed a specific
structure for our extractor. Starting from a classical deep neu-
ral network (DNN) classifier, we apply a multi-stream input
approach. The weight matrix is split into small blocks that are
separately linked to a dedicated hidden layer. A small block
of the input weight matrix is composed by all the weights re-
lated to a unit neural in the hidden layer targeted in the ASR
acoustic model. For instance, if the targeted hidden layer H;
of the ASR acoustic model architecture contains n units, the
weight matrix used as input of our speaker embedding extrac-
tor will be split into n different blocks. Next, the outputs of
the hidden layer dedicated to each block are concatenated to
feed the upper hidden layer of the DNN-based extractor, com-
posed of fully connected layers followed by the final softmax
layer.

The structure of the resulting embedding extractor is illus-



Hierarchical clustering of i-vectors

Threshold

1 1 1 1
1 1
1 M | 1 1
1 1 1 1 1
1 1 1 1 1
1 1 | 1 1
1 I 1 1 1
1 1 | 1 1
1 1 1 1 1
| N 1 1 i 1
1 N | 1 1
| 1 b N 1
le & » ¢ 1wl o~ | EE E
'8 8 838 gligs! 58 8!
Il ¥ ¥ X x1,xx | X X X
T8 ®© 8 ©,!s® - ,
® 90 0 9 0 100l o @
la 2 2 2 ol a2, [ - T - -
I I I I R ) 0@ )
P N e Pug
'o6 6 6 8 016901 169 1
- - -1 es 282
© © © 0 91,80, 10 0° 1
19 © © 9 0,00 09 |
22223 3! > >
i1 11 i1,1L, 1115,
L lem—a e e e 1
C C Cc

c, ¢, c.
144444

||
embedding s -

connected
layers

|
L |

[TI\ itully

‘ cor ted

layers

(SRS

i

Acoustic model weights for
speaker x

Fig. 2. Proposed DNN structure to train speaker’s embedding from neural network weights of acoustic models

trated in Figure 2. The embedding layer is the hidden layer
just below the softmax one. The resulting DNN model is able
to extract speaker embeddings from speech data, including for
speakers that were not present in the training.

4. EXPERIMENTAL FRAMEWORK

4.1. ASR system

Our experiments target (chain) HMM/TDNN acoustic mod-
els for speech recognition [14]. The ASR system is based
on the Kaldi toolkit [15]. The chain-TDNN setup is based
on 13 layers with 512 dimensions and is trained on cepstral
mean and variance normalized 40-dimensional MFCC fea-
tures. I-vectors are also incorporated as auxiliary input fea-
tures. The resulting context of TDNN models is 28 left and
28 right neighbour frames. The acoustic model has about 14
million parameters. For the generic model, the initial and final
scheduled learning rates are equal to 0.00025 and 0.000025
respectively. Training audio samples are randomly perturbed
in speed and volume during the training process.

4.2. Dataset

All experiments to train generic and fine-tune acoustic mod-
els are conducted with the TED-LIUM 3 dataset [16], a large
corpus of 452 hours of TED talks pronounced by 2,295 speak-
ers. For the study presented in this paper, an original setup
has to be defined. Similarly to [8], the dataset is splited into
three parts and the sets of speakers in each part are pairwise
disjoints. Characteristics of the three parts are reported in Ta-
ble 1. The first part is called generic and has been used to train
the initial acoustic model for ASR. The two other parts, called
pl and p2, are used for model personalization and evaluation.
In both subsets, the available audio material is split in order

to get two sessions of 5 minutes per speaker. Each session is
used to personalize a model.

Table 1 presents the statistics of the three subsets. For
pl and p2, the table presents the exact number of speakers
who have pronounced enough speech to have two sessions of
five minutes (463 from 650 speakers for p/ and 581 from 765
speakers for p2, respectively).

The TED-LIUM 3 dataset is provided without informa-
tion about the gender. Using the website of TED conference,
the annotation of the corpus in gender was done manually for
p2." Table 1 presents also statistics about the gender.

] \ generic \ pl \ p2 ‘

Duration (hours) 200 150 | 170
Duration of speech (hours) 170 125 | 150
# speakers 880 650 | 765
# speakers (duration>10 min) | - 463 | 581
# men - - 553
# women - - 212

Table 1. TED-LIUM 3 dataset

4.3. Personalized models

The initial generic model is trained on the generic part.
Personalized models are obtained by fine-tuning the generic
model on the speaker’s data from p/ and p2: for each speaker,
we personalize the generic model twice using separately
his/her two five-minutes sessions. Thus, for most of the
speakers (speakers with duration > 10 minutes), two differ-
ent personalized models are obtained.

When fine-tuning the generic model on target speaker
data, we modify only the value of learning rate (the initial

1For the reproductibility of experimental results by research community,
we will make available this annotation.



and final learning rates were equal to 0.000025 and 0.000015
respectively) and all hyperparameters (i.e. learning rate and
local epochs number) are assumed to be homogeneous among
all workers.

5. RESULTS AND ANALYSIS

5.1. Gender identification

There are several methods used to evaluate clustering perfor-
mance. In our study, we use the purity. Purity focuses only
on maximising the total number of true positive responses per
cluster. Purity values range between 0 and 1 (perfect cluster-
ing). It is defined as Purity = & S | max;|c; Nt;| where
N is the number of speakers, k is the number of clusters, ¢; is
a cluster and ¢; is the classification count for cluster c;.

Figure 3 shows the results for the different hidden layers
of neural network of ASR acoustic models from which we
extract weights for data in p2. We observe that it is possible
to get two gender-based clusters with a purity value of 0.96
for the layer 5. Results show that gender information can be
identified for the five first layers.
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Fig. 3. Clustering purity of hidden layer weights of the acous-
tic model using women and men labels as a reference.

5.2. Speaker verification

Speaker verification is evaluated in terms of false alarm (FA)
and false reject (FR) error rates and reported using equal error
rate (EER), with EER = FA = FR.
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Fig. 4. Speaker verification performance depending on the
hidden layer of the acoustic model used to extract weights.

First, a speaker embedding extractor is trained using each
layer of our acoustic models as input. To train the extrac-
tors, we use 926 personalized speaker models corresponding
to 463+463 unique subsets from pl. The trained extractor
models are then used on p2 data to extract the speaker’s em-
bedding (knowing that there is no overlap between p/ and p2
speakers). Respectively, a second experiment is conducted
with pl as a test set and p2 as a training set for the extrac-
tor. The number of target classes (issued from a hierarchi-
cal clustering of i-vectors of speakers present in the training
data) used to train our extractor is fixed to 20 and the dimen-
sion of the output vectors, the speaker embeddings, is fixed
to 100. We use a speaker verification task to evaluate the
ability to recognize the speakers from a given layer weights.
A simple cosine distance is used to compute the verification
score for a trial (enrolment,test). The data of each speaker
(see Section 4.2) is divided into two sessions, denoted s1 and
s2. It gives one target trial, (x5!, 25?), per speaker z;. Non-
target trials, (¢, x§2), are formed by crossing the first ses-
sion of a given speaker with all the second sessions of the
other speakers. It gives respectively 463 / 581 target trials
and 213906 / 336 980 non-target trials for p/ and p2. Fig-
ure 4 shows the comparative results in terms of EER.

The best performance is obtained using layer 9 (9.07%
EER for p2 and 10% EER for pl), showing clearly that
speaker specific information could be extracted from the
weights of a personalised ASR acoustic model. For com-
parison purposes, we also computed the performance when
the weight vectors are used directly to compute the cosine
distance, without the embedding extractor. The EER is about
48% in this case for p2 (close to the random performance).
This proves the effectiveness of the proposed approach to ex-
tract a speaker embeddings from the weights of personalized
acoustic model.

6. CONCLUSION

In this study, we showed that it is possible to retrieve the
gender and the identity of a speaker from the analysis of
the changes applied to the weights of her/his personalized
acoustic model. Experiments conducted on the TED-LIUM 3
dataset show that the gender information is mainly brought by
the updates impacting the first five layers of a HMM/TDNN
acoustic models composed of 13 hidden layers, when the
speaker identity is mainly embedded in the middle-up hidden
layers (5 to 9). To obtain the latter result, we also proposed
an original way to build a speaker embedding extractor from
personalized weight matrices. We obtained a gender purity of
0.96 on the five first layers and a speaker verification EER of
9% for layer 9. These results would be particularly interesting
for future works focusing on distributed learning for privacy
preservation. In this direction, we propose in a parallel study
dedicated to attack approaches against federated learning for
speech recognition, to use external speech data in order to



analyze the behavior of personalized models on such data,
see [17].

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

7. REFERENCES

A Nautsch, C Jasserand, Els Kindt, M Todisco, I Tran-
coso, and N Evans, “The GDPR & Speech Data: Reflec-
tions of legal and technology communities, first steps to-

wards a common understanding,” in Interspeech. ISCA,
2019.

David Leroy, Alice Coucke, Thibaut Lavril, Thibault
Gisselbrecht, and Joseph Dureau, “Federated learning
for keyword spotting,” in ICASSP 2019-2019 IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2019, pp. 6341-6345.

Andrew Hard, Kurt Partridge, Cameron Nguyen, Ni-
ranjan Subrahmanya, Aishanee Shah, Pai Zhu, Igna-
cio Lopez Moreno, and Rajiv Mathews, “Training key-
word spotting models on non-iid data with federated
learning,” in Interspeech 2020, 2020.

Dhruv Guliani, Frangoise Beaufays, and Giovanni
Motta, “Training speech recognition models with fed-
erated learning: A quality/cost framework,” in ICASSP
2021-2021 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). 1EEE,
2021, pp. 3080-3084.

Wentao Yu, Jan Freiwald, Soren Tewes, Fabien Huen-
nemeyer, and Dorothea Kolossa, “Federated learning in
ASR: Not as easy as you think,” in ITG Conference on
Speech Communication, 2021.

Xiaodong Cui, Songtao Lu, and Brian Kingsbury, “Fed-
erated acoustic modeling for automatic speech recogni-
tion,” in ICASSP, 2021, pp. 6748-6752.

Yishay Mansour, Mehryar Mohri, Jae Ro, and
Ananda Theertha Suresh, “Three approaches for per-
sonalization with applications to federated learning.,”
CoRR, vol. abs/2002.10619, 2020.

Salima Mdhaffar, Marc Tommasi, and Yannick Esteve,
“Study on acoustic model personalization in a context
of collaborative learning constrained by privacy preser-
vation,” SPECOM, vol. 19, 2021.

Vijayaditya Peddinti, Daniel Povey, and Sanjeev Khu-
danpur, “A time delay neural network architecture for
efficient modeling of long temporal contexts,” in In-
terspeech 2015, 16th Annual Conference of the Inter-
national Speech Communication Association, Dresden,
Germany, September 6-10, 2015. 2015, pp. 3214-3218,
ISCA.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

Yonatan Belinkov and James Glass, “Analyzing hidden
representations in end-to-end automatic speech recogni-
tion systems,” in Proceedings of the 31st International
Conference on Neural Information Processing Systems,
2017, pp. 2438-2448.

Yonatan Belinkov, Ahmed Ali, and James Glass, “Ana-
lyzing Phonetic and Graphemic Representations in End-
to-End Automatic Speech Recognition,” in Proc. Inter-
speech 2019, 2019, pp. 81-85.

Chung-Yi Li, Pei-Chieh Yuan, and Hung-Yi Lee, “What
does a network layer hear? analyzing hidden repre-
sentations of end-to-end asr through speech synthesis,”
in ICASSP 2020-2020 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2020, pp. 6434—6438.

David Snyder, Daniel Garcia-Romero, Gregory Sell,
Daniel Povey, and Sanjeev Khudanpur, “X-vectors: Ro-
bust dnn embeddings for speaker recognition,” in 2018
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). 1EEE, 2018, pp.
5329-5333.

Daniel Povey, Vijayaditya Peddinti, Daniel Galvez, Pe-
gah Ghahremani, Vimal Manohar, Xingyu Na, Yim-
ing Wang, and Sanjeev Khudanpur, “Purely sequence-
trained neural networks for asr based on lattice-free
mmi.,” in Interspeech, 2016, pp. 2751-2755.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas
Burget, Ondrej Glembek, Nagendra Goel, Mirko Han-
nemann, Petr Motlicek, Yanmin Qian, Petr Schwarz,
et al., “The Kaldi speech recognition toolkit,” in IEEE
2011 workshop on automatic speech recognition and
understanding. IEEE Signal Processing Society, 2011.

Francois Hernandez, Vincent Nguyen, Sahar Ghannay,
Natalia Tomashenko, and Yannick Esteve, “TED-
LIUM 3: twice as much data and corpus repartition
for experiments on speaker adaptation,” in Speech and
Computer. 2018, pp. 198-208, Springer International
Publishing.

Natalia Tomashenko, Salima Mdhaffar, Marc Tommasi,
Yannick Esteve, and Jean-Francois Bonastre, “Privacy
attacks for automatic speech recognition acoustic mod-
els in a federated learning framework,” in Submitted to
ICASSP 2022, 2022.



