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UNIVERSAL SEQUENCES OF COMPOSITION OPERATORS

S. CHARPENTIER, A. MOUZE

Abstract. Let G and Ω be two planar domains. We give necessary and sufficient condi-
tions on a sequence (φn) of eventually injective holomorphic mappings from G to Ω for the
existence of a function f ∈ H(Ω) whose orbit under the composition by (φn) is dense in
H(G). This extends a result of the same nature obtained by Grosse-Erdmann and Mortini
when G = Ω. An interconnexion between the topological properties of G and Ω appears.
Further, in order to exhibit in a natural way holomorphic functions with wild boundary
behaviour on planar domains, we study a certain type of universality for sequences of con-
tinuous mappings from a union of Jordan curves to a domain.

1. Introduction

Let Ω be a domain (i.e. a connected open set) in C and let H(Ω) denote the Fréchet
space of holomorphic functions on Ω, endowed with the locally uniform topology. Given two
domains G and Ω, we say that a sequence Φ = (φn)n of holomorphic functions from G to Ω
is universal if there exists a function f ∈ H(Ω) such that the set

{f ◦ φn : n ∈ N}

is dense in H(G). If such function f exists, we call it a (Φ, G,Ω)-universal function.
When G = Ω, universal sequences of holomorphic selfmaps of Ω have been subject of

many researches. In this setting, the first examples were provided for Ω = C by Birkhoff
[7] with sequences (φn)n of the form φn(z) = z + n. In 1995, Bernal and Montès [2] have
characterised the sequences of automorphisms admitting a universal function, provided Ω is
not conformally equivalent to the punctured plane C∗. Later, Grosse-Erdmann and Mortini
obtained a complete description of those sequences Φ = (φn)n of eventually injective holo-
morphic functions from a domain Ω into itself that are universal [11, Theorem 3.19]. In this
setting, it appears that the existence of such universal sequences depends on the geometry
of Ω. For instance, while every simply connected domain supports a universal sequence of
holomorphic automorphisms [2], a finitely connected domain supports universal sequences of
injective holomorphic mappings if and only if it is simply connected. Without the injectivity
assumption, the problem becomes more involved and pathological examples of universal se-
quences of non-injective holomorphic selfmaps of a domain (possibly finitely connected but
not simply connected) can be exhibited (see [11, Remark 3.7]). Roughly speaking, the reason
for the injective case to be so restrictive is that injective holomorphic mappings preserve the
most important topological property of compact sets in complex approximation, namely the
number of connected components of their complement.

We refer to the references listed in [11] for a complete overview of the subject before
2009. The topic has been extensively continued in various directions later on, see for e.g.
[1, 3, 4, 5, 6, 13, 14, 15, 17, 22].
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Despite the large amount of contributions, it seems that the problem of the existence
of holomorphic functions universal for sequences of composition operators have never been
studied when the domains G and Ω differ. Let us however mention a very recent paper by
Meyrath [17] in which the author gives necessary and sufficient conditions on a sequence
(φn)n of holomorphic functions from one domain G to an other domain Ω that guarantee
the existence of meromorphic functions in H(Ω) such that the set {f ◦ φn : n ∈ N} is dense
in the Fréchet space of meromorphic functions on G. Rather naturally, it appears that no
topological conditions are needed on G and Ω. The reason is practically that allowing (uni-
versal) approximation by meromorphic functions allows one to "create" holes anywhere in
the domain Ω. This is also why requiring holomorphic approximation becomes more involved
and makes the above problem natural and interesting, in particular from a topological point
of view.

Now let us make a simple observation. Clearly, the existence of universal sequences of
holomorphic functions is in some sense conformally invariant: if G′ is conformally equivalent
to G, and Ω′ conformally equivalent to Ω, then a sequence (φn)n of holomorphic functions
from G to Ω is universal whenever the sequence (ϕ ◦φn ◦ψ) from G′ to Ω′ is itself universal,
where ϕ and ψ are conformal maps. In particular, the case where G and Ω are conformally
equivalent reduces to G = Ω. Thus, investigating the case where G and Ω are not conformally
equivalent is of particular interest.

In the first part of this paper, for any domains G and Ω, we obtain a complete character-
isation of the sequences Φ = (φn)n of eventually injective holomorphic mappings from G to
Ω for which (Φ, G,Ω)-universal functions exist. More precisely:

Theorem. Let G and Ω be two domains and let Φ = (φn)n be a sequence of eventually
injective holomorphic mappings from G to Ω. A necessary and sufficient condition that
guarantees the existence of (Φ, G,Ω)-universal functions is that for any G-convex compact
subset K of G, any Ω-convex compact subset L of Ω and any N ∈ N, there exists n ≥ N
such that φn(K) ∩ L = ∅ and φn(K) ∪ L is Ω-convex.

We recall that a compact subset K of a domain G is G-convex if any non-empty bounded
connected component of C \ K contains a point of C \ G. It will be deduced from this
theorem that if there exist universal eventually injective sequences Φ from G to Ω, then
G is simply connected or Ω is infinitely connected. Let us recall that if G = Ω, then G
supports universal eventually injective sequences of holomorphic selfmaps only if it is simply
connected or infinitely connected [11]. Illustrating the difference with the case where G is
equal to Ω, we will see that for any bounded domain G, there exist (non-trivial) domains
Ω for which there exist universal injective sequences Φ from G to Ω. Furthermore, if G is
simply connected or has at least two holes, the Ω-convexity of φn(K) ∪ L can be replaced
with the Ω-convexity of φn(K). In particular, our results cover that of [11, Section 3]. When
G is doubly connected and Ω infinitely connected, we will see that the condition φn(K) ∪ L
cannot be replaced with the Ω-convexity of φn(K).

In a second part of the paper, motivated by exhibiting holomorphic functions with wild
boundary behaviour, we will study another kind of compositional universality. To start with,
let us consider a very simple setting. We denote by D = {z ∈ C : |z| < 1} the unit disc of
the complex plane, and by T its boundary. Let (rn)n be a sequence in [0, 1) converging to
1, and let φn : T → D defined by φn(z) = rnz. As a particular case of a result stated in [8],
there exists a function f ∈ H(D) such that the set {f ◦ φn : n ∈ N} is dense in the Banach
space C(K) of all continuous functions on K (endowed with the sup-norm), for any subset
K of T different from T. Such functions enjoy a very singular behaviour near the boundary
of T. In general, this type of boundary behaviour is (strictly) wilder than having a dense
cluster set along any continuous path to the boundary - another example of erratic boundary
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behaviour which was considered in several papers, see [19] and the references therein. Note
that the sequence (φn)n can also be seen as a sequence of holomorphic selfmaps of D and
that in this case, it is obviously not universal in the sense considered in the first part of this
introduction. Our aim is to define another setting for compositional universality making the
last result a natural example of which. Let G be a closed subset of C with empty interior,
let M be a family of compact subsets of G with empty interior, and let Ω be a domain in
C. We say that a sequence Φ = (φn)n of continuous functions from G to Ω is M-universal
if there exists a function f ∈ H(Ω) such that, for any K ∈ M, the set {f ◦ φn : n ∈ N}
is dense in C(K). Such a function f will be called a (Φ,M)-universal function. In order
to simplify the notation, we omit the dependence in G and Ω. This definition may look a
bit articifial, so let us comment on some justifications. First of all, in order not to fall in
the definition of universality considered in the beginning, it is natural to consider that the
functions φn’s are only assumed to be continuous. Now, because we still want our universal
function f to be holomorphic, we will have to use complex polynomial approximation to
approximate continuous functions on some sets of the form φn(K), where K is a compact
subset of G. This can often be impossible if K does not have empty interior.

The second part of this paper is thus devoted to give conditions, necessary or sufficient,
for some sequence Φ to be universal in this new setting. We will focus especially on the more
suitable - and quite illustrative - case where G is a union of Jordan curves. As desired, this
will allow us to exhibit in a simple way functions holomorphic on rather general domains
that enjoy a wild boundary behaviour.

2. Preliminaries

In the whole paper, N denotes the set {0, 1, 2, 3, . . .} of all non-negative integers. A
sequence of general terms un, n ∈ N, will be denoted by (un)n.

Let us introduce some notations and terminology related to topological notions.

• If E is a subset of C, we denote by ∂E its boundary and by int(E) its interior.
• If Ω is a domain in C, we call an exhaustion of Ω a sequence (Kn)n of non-empty

compact subsets of Ω which satisfy the following: Kn ⊂ int(Kn+1) and for any
compact set K ∈ Ω, there exists n ∈ N such that K ⊂ Kn. We recall that any
domain in C admits an exhaustion.

• Let Ω be a domain and Φ = (φn)n a sequence of holomorphic functions on Ω. We
say that Φ is eventually injective if for any compact set K, there exists N ∈ N such
that φn is injective on K (or equivalently on a neighbourhood of K) for any n ≥ N .

• A Jordan curve is the image of the unit circle by an injective continuous map. A
Jordan arc is the image of [0, 1] by an injective continuous map (note that with our
definition a Jordan curve is not a Jordan arc, and vice versa).

• We say that a compact subset K of C is regular if ∂K is a union of Jordan curves.
• If E is a subset of C, we call a hole of E a non-empty bounded connected component

of the complement C \ E of E.
• A domain is said to be simply connected if it has no hole, doubly connected if it has

one hole, finitely connected if it has a positive finite number of holes, and infinitely
connected if it has infinitely many holes.

• If K is a compact subset of C, we denote by K̂ its polynomial hull, that is the union
of K and of all its holes.

• If K is a regular compact subset of C, we call outer boundary of K the boundary
(in C) of the unbounded component of its complement, and by inner boundary the
boundary of the union of its holes.
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• A compact subset K of an open set Ω in C is said to be Ω-convex if every hole of K
contains a point of C \ Ω.

Note that if a compact subset K of an open set Ω has a hole that contains a point
of C \ Ω, then this hole contains the hole of Ω containing this point.

• Let Ω be a domain. We say that a non-empty compact set K in Ω is Ω-connected
if it has no hole whenever Ω is simply connected, and does have a hole if Ω is not
simply connected.

• If Ω is a domain, the notation M(Ω) will stand for the set of all compact subsets of
Ω which are regular, connected, Ω-connected and Ω-convex.

Runge and Mergelyan Theorems are at the core of the construction of universal holomor-
phic functions. Let us recall them.

Theorem 2.1 (Runge Theorem, see [20]). Every function holomorphic in a neighbourhood
of a compact set K ⊂ C can be uniformly approximated on K by rational functions with
poles off K.

We recall that any Ω-convex compact subset of a domain has at most finitely many holes
(see for example [11, Lemma 3.10]). Thus we deduce from Runge Theorem and [9, Theorem
4, p119] the following version of Mergelyan Theorem.

Theorem 2.2 (Mergelyan Theorem). Let Ω be a domain and K a compact Ω-convex set.
Every continuous function on K, holomorphic in its interior, can be approximated uniformly
on K by rational functions with poles off Ω.

To finish, the following lemma can be seen as a very special case of Kallin’s lemma (see,
for e.g., [21, Theorem 1.6.19]).

Lemma 2.3. Let Ω be a domain and let K,L be two Ω-convex compact sets. If K ⊂ C \ L̂

and L ⊂ C \ K̂, then K ∪ L is Ω-convex.

3. The case where G is a domain

In this section, we consider two domains G and Ω, and a sequence Φ = (φn)n of holomor-
phic mappings from G to Ω. We will focus on the following definition.

Definition 3.1. We say that f ∈ H(Ω) is (Φ, G,Ω)-universal if the set {f ◦ φn : n ∈ N} is
dense in H(G).

This definition coincides with [11, Definition 1.1 (a)] in the case where G = Ω. The
Birkhoff universality theorem provides a criterion for compositional universality which will
be useful in the sequel. The proof is standard and left to the reader.

Proposition 3.2. There exists a (Φ, G,Ω)-universal function if and only if for any ε > 0,
any compact set K in G, any compact set L in Ω, any function g ∈ H(G) and any function
h ∈ H(Ω), there exists f ∈ H(Ω) and n ∈ N such that

sup
z∈K

|f ◦ φn(z)− g(z)| ≤ ε and sup
z∈L

|f(z)− h(z)| ≤ ε.

The following lemma is a direct consequence of the beginning of the proof of [11, Theorem
3.12].

Lemma 3.3. Let Ω ⊂ C be a domain. There exists an exhaustion (Ln)n of Ω by compact
sets in M(Ω).

We immediately deduce from Proposition 3.2 and the previous lemma the following fact.
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Fact 1. There exists a (Φ, G,Ω)-universal function if and only if for any ε > 0, any compact
set K ∈ M(G), any compact set L in M(Ω), any function g ∈ H(G) and any function
h ∈ H(Ω), there exists f ∈ H(Ω) and n ∈ N such that

sup
z∈K

|f ◦ φn(z)− g(z)| ≤ ε and sup
z∈L

|f(z)− h(z)| ≤ ε.

The main theorem of this section states as follows.

Theorem 3.4. Let us assume that Φ = (φn)n is eventually injective. There exists a
(Φ, G,Ω)-universal function if and only if for every compact set K ∈ M(G), every com-
pact set L ∈ M(Ω), and every N ∈ N, there exists n ≥ N such that φn(K) ∩ L = ∅ and
φn(K) ∪ L is Ω-convex.

Moreover, if G is not simply connected and Ω is not infinitely connected, then there do
not exist (Φ, G,Ω)-universal functions.

We need a lemma.

Lemma 3.5. Let L and L′ be two disjoint connected Ω-convex compact sets. Then L∪L′ is
Ω-convex if and only if one of the following conditions holds:

(1) L ⊂ C \ L̂′ and L′ ⊂ C \ L̂;

(2) there exists a hole O of L such that L′ ⊂ O and O \ L̂′ contains a hole of Ω;

(3) there exists a hole O′ of L′ such that L ⊂ O′ and O′ \ L̂ contains a hole of Ω.

Proof. Let assume that (1) holds. Then the set of holes of L ∪ L′ is the union of the sets of
all holes of L and L′. Since both L and L′ are Ω-convex, each hole of L∪ L′ contains a hole
of Ω, which means that L ∪ L′ is Ω-convex (the same remains true if L or L′ does not have
holes).

Since L and L′ are disjoint and connected, if (1) does not hold then L̂ is contained in a

hole of L′, or L̂′ is contained in a hole of L. The two situations being symmetrical, let us

assume that L̂ is contained in a hole of L′, that we call O′. Then, again by connectivity,
the set of holes of L ∪ L′ consists in the union of the holes of L and L′, except O′, and the

(connected) set O′ \ L̂. Since the holes of L and L′ each contains a hole of Ω, the set L ∪ L′

is thus Ω-convex if and only if O′ \ L̂ contains a hole of Ω. �

Let us turn to the proof of Theorem 3.4.

Proof of Theorem 3.4. The if part is straightforward. It simply consists in applying Fact 1,
by using Runge’s theorem on φn(K) ∪ L to the function

κ(z) =

{
h(z) if z ∈ L
g ◦ φ−1

n (z) if z ∈ φn(K).

Let us start with the necessity condition. Let us fix N ∈ N, K ⊂ G and L ⊂ Ω as in the
statement. Note that K and L have only finitely many holes [11, Lemma 3.10].

We first assume that G is not simply connected. Then since K is Ω-connected, it has p ≥ 1
holes. Let us denote by γ0 the outer boundary of K and by γi, 1 ≤ i ≤ p, the connected
components of the inner boundary of K. We assume that γ0 is positively oriented and that
γi, 1 ≤ i ≤ p, is negatively oriented. Consider p Jordan arcs Ii, 1 ≤ i ≤ p, in G such that
one extremity of Ii is in γ0 and the other is in γi. Since K is connected, we may and shall
assume that the Ii’s are contained in K and pairwise disjoint. Let us fix b ∈ K \ ∪p

i=1Ii and
λi, 1 ≤ i ≤ p, in the hole of K bounded by γi. Since K is G-convex, we may and shall
assume that each λi lies in some hole of G. We now consider the functions

gm(z) = m
(z − b)p+1

∏p
i=1(z − λi)

, m ∈ N.
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They all belong to H(Ω). By the argument principle, we have for every m ∈ N,

(3.1)
1

2iπ

∫

γ0

g′m(z)

gm(z)
dz =

1

2iπ

∫

γi

g′m(z)

gm(z)
dz = 1, i = 1 . . . p.

Let f ∈ H(Ω) be a (Φ, G,Ω)-universal function. For every m ∈ N, there exists a sequence

(nk)k such that f ◦φnk
→ gm in H(G) and

(f ◦ φnk
)′

f ◦ φnk

→
g′m
gm

in H(G\{b}). Then by definition

of gm and by (3.1), and upon choosing m large enough, there exists an integer m1 ≥ N such
that φm1

is injective in a neighbourhood of K,

(3.2) min
z∈∂K∪

⋃p
i=1

Ii
|f ◦ φm1

(z)| > max
z∈L

|f(z)|

and

(3.3)
1

2iπ

∫

φm1
(γ0)

f ′(z)

f(z)
dz =

1

2iπ

∫

φm1
(γi)

f ′(z)

f(z)
dz = 1, i = 1, . . . , p.

Equation (3.3) implies that φm1
(K) is Ω-convex. Indeed, assume by contradiction that it is

not. Since φm1
is injective on K, φm1

(K) has p holes, and f is holomorphic on one of them.
The boundary of this hole is φm1

(γi) for some i = 0, . . . , p and is negatively oriented, since
injective holomorphic mappings send boundaries to boundaries and preserve orientation.
It follows from the argument principle and (3.3) that f has −1 zero in this hole, which
is impossible. A straight consequence of this fact is that Ω cannot be simply connected
(in other words, there do not exist (Φ, G,Ω)-universal functions whenever G is not simply
connected and Ω is simply connected).

To finish with the case where G is not simply connected, we thus assume from now on
that Ω is not simply connected. In particular, since L ∈ M(Ω), L has at least one hole.
Now, Equation (3.2) clearly implies that φm1

(∂K ∪
⋃p

i=1 Ii) ∩ L = ∅. Since again injective
holomorphic mappings send boundaries to boundaries, and since L is connected, has at least
one hole and is Ω-convex, we infer that φm1

(K) ∩ L = ∅.
If φm1

(K)∪L is Ω-convex, then we are done. Assume that it is not the case. Since L and
φm1

(K) are connected, then by Lemma 3.5, either L is contained in a hole - let say O1 - of

φm1
(K), or φm1

(K) is contained in a hole - let say O′
1 - of L, and O1 \ L̂ and O′

1 \ φ̂m1
(K)

contain no point of the complement of Ω. Applying exactly the same argument as above
with L replaced with the compact set

L1 := L ∪ φm1
(K) ∪ (O1 \ L̂) ∪ (O′

1 \ φ̂m1
(K)),

we get the existence of an integer m2 > m1 such that φm2
is injective on a neighbourhood

of K, φm2
(K) is Ω-convex, φm2

(K) ∩ L1 = ∅ and (3.3) holds with m2 instead of m1.
Since L ⊂ L1 and the holes of L1 are contained in that of L by assumption, if φm2

(K)∪L1

is Ω-convex, then φm2
(K) ∪ L is also Ω-convex. So if this is the case, then we are done. If

not, by Lemma 3.5, then either φm2
(K) is contained in a hole O′

2 of L1, or L1 is contained

in a hole O2 of φm2
(K), and O2 \ L̂1 and O′

2 \ φ̂m2
(K) contain no point of the complement

of Ω. So we can again reproduce the same step with L1 replaced with

L2 := L1 ∪ φm2
(K) ∪ (O2 \ L̂) ∪ (O′

2 \ φ̂m2
(K)).

Doing so, since the complement of L has only finitely many connected components, we can
exhibit, after finitely many steps of such construction, a pair of integers (mk1 , mk2) with
mk1 < mk2 such that, for i = 1, 2, φmki

is injective on a neighbourhood of K, φmki
(K) is

Ω-convex, φmki
(K) ∩ L = ∅, (3.3) holds with mki instead of m1, and such that one of the

following holds:

(a) φmk1
(K) ∪ L or φmk2

(K) ∪ L is Ω-convex;
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(b) φmk1
(K)∪L and φmk2

(K)∪L are not Ω-convex, and φmk2
(K) and φmk1

(K) are contained
in a hole of the other.

In Case (a) we have the conclusion of the theorem. Let us then focus on Case (b) and let
us assume that φmk2

(K) is contained in a hole Ok1 of φmk1
(K). The proof is similar in the

other situation. Then, by construction, φmk1
(K) and φmk2

(K) are contained in a same hole
of L. Thus, since φmk2

(K) ∪ L is not Ω-convex, the set Ok1 \ φmk2
(K) contains no point of

the complement of Ω. In particular, f is holomorphic in a neighbourhood of Ok1 \ φmk2
(K).

Using one more time that injective holomorphic mappings preserve orientation, we get that
the outer boundary Γ1 of Ok1 \ φmk2

(K) is φmk1
(γi) for some i = 0, . . . , p and is negatively

oriented, while its inner boudary Γ0 is the outer boundary of φmk2
(K), which is φmk2

(γi) for
some i = 0, . . . , p and is positively oriented.

It then follows that the quantity −
∫
Γ0+Γ1

f ′(z)
f(z)

dz is equal to the number of zeroes of f in

Ok1 \ φmk2
(K). Yet this quantity is also equal to −2 by (3.3) applied with mki, i = 1, 2,

instead of m1. This shows that Case (a) occurs.

Before turning to the case where G is simply connected, let us prove the last assertion of
the theorem. To do so, we thus assume that Ω is not infinitely connected. It is enough to
see that, in the previous construction, Case (a) never occurs for some choice of the compact
set L. Let us denote by 1 ≤ q < +∞ the number of holes of Ω, and let us assume that L
has exactly q holes. Then, since φmi

(K) ∩ L = ∅ for i = 1, . . . , k2, the set φmi
(K) ∪ L has

at least p + q > q holes and one of this hole does not contain any point of the complement
of Ω. Hence, for any i = 1, . . . , k2, φmi

(K) ∪ L is not Ω-convex and Case (b) occurs. As we
have seen, it leads to a contradiction.

To conclude the necessity part, let us consider the easy case where G is simply connected.
Let K and L as in the statement. In particular, K has connected complement. Let f ∈ H(Ω)
be a (Φ, G,Ω)-universal function and consider M ∈ R such that ε :=M − supz∈L |f(z)| > 0.
By universality, there exists an integer n ≥ N such that φn is injective in a neighbourhood
of K and

sup
z∈K

|f ◦ φn(z)−M | < ε.

This implies that φn(K) has connected complement and that φn(K)∩L = ∅. Hence φn(K)∪L
is Ω-convex. �

Remark 3.6. We observe that if G has at least two holes and Ω is not infinitely connected,
then for any compact set K ∈ M(G) and any compact set L ∈ M(Ω), there cannot exist
n ∈ N such that φn(K) is Ω-convex and φn(K) ∩ L = ∅. Indeed, as in the proof of the last
assertion of Theorem 3.4, this would imply that Ω has at least q + p− 1 > q holes, which is
impossible.

The previous proof makes it appear that if there exists a (Φ, G,Ω)-universal function,
then for any N ∈ N, any compact set K ∈ M(G) and any compact set L ∈ M(Ω) (hence
also for any arbitrary compact set L in Ω, by Lemma 3.3), there exists an integer n ≥ N
such that φn(K) is Ω-convex and φn(K) ∩ L = ∅. In the particular case where G is simply
connected, we used the fact that these properties automatically imply that φn(K) ∪ L is
Ω-convex. Thus, in this case, there exist (Φ, G,Ω)-universal functions if and only if for any
N ∈ N, any compact set K ∈ M(G) and any compact set L ∈ M(Ω), there exists an integer
n ≥ N such that φn(K) is Ω-convex and φn(K) ∩ L = ∅.

The following corollary shows that this equivalence holds not only if G is simply connected.

Corollary 3.7. We assume that Φ = (φn)n is eventually injective and we make one of the
following assumptions:
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(1) G is simply connected;
(2) G has at least two holes.

Then there exists a (Φ, G,Ω)-universal function if and only if for every compact set K ∈
M(G), every compact set L ∈ Ω, and every N ∈ N, there exists n ≥ N such that φn(K)∩L =
∅ and φn(K) is Ω-convex.

Proof. The "if" part when G is simply connected and the "only if" part in both cases (1)
and (2) have already been explained before the statement. Let us then focus on the "if"
part when G has at least two holes, and let us fix a compact set K ∈ M(G), a compact set
L ∈ M(Ω), and N ∈ N. By Theorem 3.4, it is enough to show that if φn(K) ∩ L = ∅ and
φn(K) is Ω-convex for some n ≥ N , then φn(K) ∪ L is Ω-convex. By Remark 3.6, we may
and shall assume that Ω is infinitely connected (and in particular has more than two holes).
We can proceed exactly as in the proof of [11, Lemma 3.13]: consider an exhaustion (Kl)l
of G by compact sets in M(G), with K1 = K, and an exhaustion (Ll)l of Ω by compact
sets in M(Ω), with L1 = L. We use the hypothesis to get an increasing sequence (nl)l ⊂ N

such that for any l ∈ N, φnl
is injective on a neighbourhood of Kl, φnl

(Kl) is Ω-convex and
φnl

(Kl) ∩ Ll = ∅ (which implies φnl
(K) ∩ L = ∅); then we reproduce the same geometric

argument as in the proof of [11, Lemma 3.13], with φnl
(K) ∪K replaced by φnl

(K) ∪ L, to
get that φnl

(K) ∪ L is Ω-convex (here we use the assumption that K and L have at least
two holes). The details are left to the reader. �

Let us come back to the statement of Theorem 3.4. Even if it provides a necessary
and sufficient condition for the existence of (Φ, G,Ω)-universal functions, a detail may look
unpleasant: the fact this condition is stated for compact sets (K and L) in M(G) and M(Ω).
The purpose of the next two lemmata is to make it understand that the condition is also
necessary for compact subsets with less regularity.

Lemma 3.8. Let K and K ′ be two compact subsets of G, with K ⊂ K ′. Let also φ be
a holomorphic mapping from G to Ω that is injective in a neighbourhood of K ′. If K is
G-convex and φ(K ′) is Ω-convex, then φ(K) is Ω-convex.

Proof. It is very similar to that of [11, Lemma 3.11], so is left to the reader. �

Lemma 3.9. Let K and L be two compact sets, G-convex and Ω-convex respectively. Let φ
be a holomorphic mapping from G to Ω. We assume that Ω is not simply connected and that
there exist two compact sets K ′ ⊃ K in M(G) and L′ ⊃ L in M(Ω) such that φ is injective
in a neighbourhood of K ′, φ(K ′)∩L′ = ∅ and φ(K ′)∪L′ is Ω-convex. Then φ is injective in
a neighbourhood of K, φ(K) ∩ L = ∅ and φ(K) ∪ L is Ω-convex.

Proof. Let K,K ′, L, L′ be as in the statement of the lemma. Notice that L′ has at least one
(non-empty) hole, since L′ ∈ M(Ω) and Ω is not simply connected. Let us first show that
φ(K ′) is Ω-convex. If not, it has a hole U contained in Ω. Since L′ is connected, has a hole
and is Ω-convex, L′ does not intersect U . So U is also a hole of φ(K ′) ∪ L′, a contradiction.
By Lemma 3.8, it implies that φ(K) is Ω-connected.

Now, by assumption, it is obvious that φ is injective in a neighbourhood of K and that
φ(K)∩L = ∅. It remains to check that φ(K)∪L is Ω-convex. By Lemma 3.5, we are in one
of the three following situations:

(1) φ(K ′) and L′ are in the unbounded connected component of the complement of the
other, and so are φ(K) and L. Since the latter sets are both Ω-convex respectively,
φ(K) ∪ L is Ω-convex.

(2) φ(K ′) lies in a hole O′ of L′ and O′ \ φ̂(K ′) contains a hole O of Ω. If φ(K) and L
are in the unbounded connected component of the complement of the other, then we
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are done. If not, then since φ(K) ⊂ φ(K ′) and L ⊂ L′, φ(K) lies in a hole O′′ of L

such that O′′ \ φ̂(K) contains O′ \ φ̂(K ′), and thus contains O. It follows that any
hole of φ(K) ∪ L contains a hole of Ω, so φ(K) ∪ L is Ω-convex.

(3) L′ lies in a hole of φ(K ′). The proof is very similar to that of (2) and is omitted.

�

The following statement, which is a direct consequence of Theorem 3.4, Corollary 3.7 and
the last two lemmata, summarizes the main result of this section, in the case Φ = (φn)n is
eventually injective.

Theorem 3.10. Let us assume that Φ = (φn)n is eventually injective. Then

(1) There exists a (Φ, G,Ω)-universal function if and only if for every G-convex compact
set K, every Ω-convex compact set L, and every N ∈ N, there exists n ≥ N such
that φn(K) ∩ L = ∅ and φn(K) ∪ L is Ω-convex.

(2) If G is simply connected or has at least two holes, there exists a (Φ, G,Ω)-universal
function if and only if for every G-convex compact set K, every compact set L ⊂ Ω,
and every N ∈ N, there exists n ≥ N such that φn(K)∩L = ∅ and φn(K) is Ω-convex.

(3) If G is not simply connected and Ω is not infinitely connected, there do not exist
(Φ, G,Ω)-universal functions.

In the next example, we exhibit finitely connected domains G, that are not simply con-
nected, and infinitely connected domains Ω for which (Φ, G,Ω)-universal functions may exist,
with Φ injective. It also shows that the necessary and sufficient condition of Corollary 3.7 is
not sufficient any more if G is doubly connected. Note that, by Remark 3.6, the assumption
of Corollary 3.7 is never satisfied if G has at least two holes and Ω is not infinitely connected.

Example 3.11. (1) Let G = {z ∈ C : 2 < |z| < 4}. For n ∈ N, we set Rn = 2−2n and
rn = 2−2n−1. Let us also denote by Dn the closed disc centred at 3.2−2n−2 with radius 22n−2,
and set

Ω = C \ ({0} ∪
⋃

n∈N

Dn).

Then Ω is an infinitely connected domain. Moreover, since rn−1/Rn = 2, G is conformally
equivalent to each annulus {z ∈ C : Rn < |z| < rn−1}, n ∈ N. Let us then denote by φn a
conformal map from G onto {z ∈ C : Rn < |z| < rn−1}, n ∈ N. By construction, it is plain
to check that if K is a G-convex compact set and L is an Ω-convex compact set, then there
exists n ∈ N such that each connected component of C \ (L ∪ φn(K)) contains a hole of Ω.
So L∪φn(K) is an Ω-convex compact set and we can apply Theorem 3.10 to infer that there
exist (Φ, G,Ω)-universal functions.

(2) Let us consider Ω = C \ ({0} ∪
⋃

n∈NBn) where the Bn’s are any open disjoint discs
contained in C\D. Then, by the maximum modulus principle, we can check that with G and
Φ as in (1), there cannot exist (Φ, G,Ω)-universal functions (see Remark 4.14 for a similar
argument). However, for every G-convex compact set K, every Ω-convex compact set L,
and every N ∈ N, there exists n ≥ N such that φn(K) is Ω-convex and φn(K) ∩ L = ∅.

(3) Let G be a bounded domain with p holes, 0 ≤ p ≤ ∞. The first example suggests
an ad-hoc construction of a domain Ω and of an injective sequence Φ from G to Ω that is

universal. Denote by φ an arbitrary injective entire function such that 0 6∈ ̂φ(G) (for e.g., φ
can be chosen as a translation). Let also (al)l ⊂ C be a sequence tending to 0. Since φ(G)
is bounded, we can define by induction an increasing sequence (ln)n, with l0 = 0, of positive
integers and a decreasing sequence (Rn)n of positive numbers, with Rn → 0, such that if we
set φn = alnφ, then

φn+1(G) ⊂ A(0, Rn+1, Rn),
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where A(0, Rn+1, Rn) := {z ∈ C : Rn+1 < |z| < Rn}, n ∈ N. Let O denote the set consisting

of all the holes of ∪n∈Nφn(G). Then, for any O ∈ O, let DO denote a non-empty closed disc
contained in O and consider the set

Ω := C \

(
{0} ∪

⋃

O∈O

DO

)
.

By construction, it is readily checked that Φ := (φn)n is a sequence of injective holomorphic
mappings from G to Ω such that if K is a G-convex compact set and L is an Ω-convex
compact set, then there exists n ∈ N such that each connected component of C\ (L∪φn(K))
contains a hole of Ω. Thus, by Theorem 3.10, the sequence Φ is universal (with respect to
G and Ω).

The last example implies the following proposition.

Proposition 3.12. Let G be a bounded domain. There exist a domain Ω, a number a ∈ C

and an increasing sequence (kn)n of integers such that the sequence (φn)n, defined by φn(z) :=
(z + a)/kn, is a universal sequence of injective holomorphic mappings from G to Ω.

If we do not impose eventual injectivity, it is not difficult to find pathological examples of
sequences Φ = (φn)n acting from G to Ω, possibly both finitely connected and not simply
connected, for which there exist (Φ, G,Ω)-universal functions. This can be seen from [11,
Proposition 3.6]. However, the same proof as that of (a)⇒(b)⇒(c) of [11, Theorem 3.2]
shows that for any sequence Φ, the existence of (Φ, G,Ω)-universal functions always implies
the existence of an increasing sequence (nj)j such that for any compact set K ⊂ G and
any compact set L ⊂ Ω, there exists J ∈ N such that Φnj

is injective on a neighbourhood
of K and Φnj

(K) ∩ L = ∅ for any j ≥ J . Since the image of compact set with connected
complement by a function which is injective and holomorphic on a neighbourhood of it still
has connected complement, we deduce from Theorem 3.10 (2) the following statement.

Theorem 3.13. If G is simply connected, then there exists a (Φ, G,Ω)-universal function
if and only if for any compact set K in G and any compact set L in Ω, there exists n ∈ N

such that φn(K) ∩ L = ∅ and φn is injective on a neighbourhood of K.

4. The case where G is a closed set with empty interior

Let us introduce some notations that we will use in the rest of the paper.

• We denote by T the unit circle {z ∈ C : |z| = 1}.
• If K is a compact set in C, we denote by C(K) the Banach space of continuous

functions endowed with the supremum norm.
• If f ∈ H(D) and r ≥ 0, we denote by fr the function defined by z 7→ f(rz),
z ∈ D(0, 1/r).

In the whole section, Ω is a domain and G ⊂ C is a closed set with empty interior. Let
Φ = (φn)n be a sequence of continuous mappings from G to Ω. In this paragraph, we focus
on the following definition. Let M be a family of compact subsets of G.

Definition 4.1. We say that f ∈ H(Ω) is (Φ,M)-universal if, for every compact set K ∈ M,
the set {f ◦ φn : n ∈ N} is dense in C(K).

A typical example of holomorphic function universal in the sense of this definition is that
of Abel universal functions.

Example 4.2 (Abel universal functions). Let Ω = D, G = T, Φ = (φn)n with φn(z) = rnz,
where (rn)n is an increasing sequence in [0, 1), convergent to 1. Let also M be the set of
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all compact subsets of T, different from T. We call Abel universal functions any (Φ,M)-
universal function.

The existence of Abel universal series was pointed out in [8]. These are functions with a
wild radial boundary behaviour. The terminology Abel universal functions refers to the fact
that a function f ∈ H(D) is said to be Abel summable at ζ ∈ T if it has radial limit at ζ .

We will first state several sufficient or necessary conditions for the existence of (Φ,M)-
universal functions. Examples will be given at the end of the section. In particular, we will
focus on applications to wild boundary behaviour of holomorphic functions.

We have the following Birkhoff’s type criterion for (Φ,M)-universality when M is count-
able. The proof, similar to that of Fact 1, is also left to the reader.

Fact 2. Assume that M is a countable family of compact subsets of G. Then there exists
a (Φ,M)-universal function if and only if for any ε > 0, any compact set K in M, any
compact set L of Ω, any function h ∈ C(K) and any function g ∈ H(Ω), there exist f ∈ H(Ω)
and n ∈ N such that

sup
z∈K

|f ◦ φn(z)− h(z)| ≤ ε and sup
z∈L

|f(z)− g(z)| ≤ ε.

The set of (Φ, G)-universal functions is either empty, or a dense Gδ-subset of H(Ω).

Thanks to this criterion, we can deduce a sufficient condition for the existence of (Φ,M)-
universal functions.

Proposition 4.3. Assume that M is a countable family of compact subsets of G. There
exists a (Φ,M)-universal function in H(Ω) whenever for any compact set K ∈ M and any
compact set L of Ω, there exists n ∈ N such that φn is injective on K, φn(K) ∩ L = ∅ and
φn(K) ∪ L is Ω-convex.

Proof. In order to apply Fact 2, let us fix K ∈ M(G), L a compact subset of Ω, g ∈ H(Ω),
h ∈ C(K) and ε > 0. By assumption, there exists n ∈ N such that φn is injective on K,
L∩φn(K) = ∅ and L∪φn(K) is Ω-convex. Since K has empty interior and φn is continuous
on K, φn(K) has empty interior as well and, by Mergelyan’s theorem, we can find a function
f ∈ H(Ω) such that

sup
L∪φn(K)

|f(z)− l(z)| ≤ ε/2,

where

l(z) =

{
g(z) for z ∈ L
h ◦ φ−1

n (z) for z ∈ φn(K).

One checks that f is ε-close to g on L and that f ◦ φn is ε-close to h on K, and concludes
by Fact 2. �

Remark 4.4. Under the assumptions of Proposition 4.3, the above sufficient condition
ensures that the set of (Φ,M)-universal functions is a dense Gδ-subset of H(Ω). This will
be used in Corollary 4.5.

Investigating when one can apply Proposition 4.3 requires to understand when L∪φn(K)
is Ω-convex, for any given Ω-convex compact set L and any K ∈ M. Comparing to the situ-
ation of Section 3 where one may use the hole invariance by injective holomorphic mappings,
here the problem is certainly too general to have a complete solution. Still, it becomes
yet more realistic if we impose some conditions on G, or on Φ. For instance, L ∪ φn(K)
is Ω-convex whenever φn(K) has connected complement, L is Ω-convex and L ∩ φn(K) is
empty. Under the only assumption that φn is injective and continuous, it is not automatic
that φn(K) has connected complement. Yet it holds true if K is regular.
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In the next corollary, we use the following terminology: a family F of subsets of C is called
uniformly separated if there exists δ > 0 such that for any E, F ∈ F , dist(E, F ) ≥ δ, where
dist(E, F ) := inf{|z − w| : z ∈ E, w ∈ F}.

Corollary 4.5. We assume that G is a countable union of uniformly separated Jordan arcs
or closed Jordan curves and that M is the set of all compact subsets of G with connected
complement. There exists a (Φ,M)-universal function in H(Ω) whenever for any compact
subset L of Ω and any compact set K ∈ M there exists n ∈ N such that φn is injective on
K and φn(K) ∩ L = ∅.

The proof of this corollary is a consequence of Proposition 4.3, up to two lemmata. The
first one asserts that if K a Jordan arc and φ is continuous and injective on K, then φ(K)
has connected complement as well:

Lemma 4.6 (Lemma 1.8 in [16], for example). If φ : [0, 1] → C is continuous and injective
then φ([0, 1]) has connected complement.

The second one states as follows.

Lemma 4.7. Let G be a finite union of pairwise disjoint Jordan arcs or Jordan curves. There
exists a sequence (Kn)n of compact subsets of G, each of them with connected complement,
such that for any compact set K ⊂ G, with connected complement, there exists n ∈ N such
that K ⊂ Kn.

Proof. Let us write G = G̃ ∪
⋃p

k=1Gk, where G̃ is a finite union of Jordan arcs and where

each Gk is a Jordan curve, with Gk ∩ G̃ = ∅ and Gk ∩ Gk′ = ∅, 1 ≤ k 6= k′ ≤ p. Let

(z
(1)
n , . . . , z

(p)
n )n ⊂ G be a dense sequence in G1 × . . . × Gp, and let (ηn)n be a sequence in

(0, 1), tending to 0. For each 1 ≤ k ≤ p, let γk : [0, 1] → Gk be a continuous mapping,

injective on [0, 1), with γk(0) = γk(1), and let rkn := γ−1
k (z

(k)
n ). For any n ∈ N and any

1 ≤ k ≤ p, we define the set

Γk
n := γk

(
[0, rkn − ηn] ∪ [rkn − ηn, 1]

)
.

By definition, for any n ∈ N, the set Kn := G̃ ∪
⋃p

k=1 Γ
k
n is a finite disjoint union of Jordan

arcs, hence it is compact and has connected complement by Lemma 4.6. Now it is clear that
any compact subset of G, with connected complement, is contained in some Kn, n ∈ N. �

Proof of Corollary 4.5. Let us write

G =
⋃

k≥1

gk and Gn =

n⋃

k=1

gk

where each gk is a Jordan arc or a Jordan curve, with gk ∩ gk′ = ∅ for any k 6= k′. First, if G
is replaced with any Gn, n ≥ 1, then, by Lemma 4.7, we can assume that M is countable.
Thus it directly follows from Proposition 4.3 (more precisely Remark 4.4) that the set Un

of (Φ|Gn,Mn)-universal functions is a dense Gδ-subset of H(Ω), for any n ≥ 1, where Mn

denotes the set of all compact sets in M which are contained in Gn. Now, since G is assumed
to be a uniformly separated union of the gk’s, any set of M is an element of Mn for some n,
n ≥ 1. Therefore, it is easily seen that the set U of all (Φ,M)-universal functions coincides
with the intersection of all the Un, and hence is also a dense Gδ-subset of H(Ω) by Baire’s
theorem. �

It is natural to wonder whether the sufficient condition for the existence of (Φ,M)-
universal functions given by Proposition 4.3 or Corollary 4.5 is also necessary. The next
proposition tells us that it is the case if Φ is eventually injective. More generally, Φ cannot
be "too much non-injective".
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Proposition 4.8. Assume that M is a countable family of compact subsets of G. If there
exists a (Φ,M)-universal function in H(Ω), then for any compact set L ∈ Ω, any compact
set K ∈ M, and any disjoint compact subsets I1, I2 ∈ M with K ∪ I1 ∪ I2 ∈ M, there exist
infinitely many n ∈ N such that the following two conditions hold:

(1) φn(K) ∩ L = ∅;
(2) φn(I1) ∩ φn(I2) = ∅;

Proof. Let us fix L, K and I1, I2 as in the statement. We set δ = dist(I1, I2) > 0. If f ∈ H(Ω)
is a (Φ,M)-universal function, then for any j ≥ 1, there exists nj ∈ N such that

(4.1)
∣∣f ◦ φnj

(z)− (j + z)
∣∣ < δ

2
, z ∈ K ∪ I1 ∪ I2.

Thus for any z ∈ K, |f ◦ φnj
(z)| > j + |z| − δ and we can find J ∈ N large enough so that

infK |f ◦ φnj
| ≥ supL |f | for any j ≥ J , whence φnj

(K) ∩ L = ∅ for any j ≥ J .
For the second condition, let us assume by contradiction that there exists J ′ ∈ N, J ′ ≥ J ,

such that φnj
(I1) ∩ φnj

(I2) 6= ∅ for any j ≥ J ′. Then there exists (ζj)j ⊂ I1 and (ξj)j ∈ I2
such that φnj

(ζj) = φnj
(ξj). Now, by (4.1) we get that for any j ≥ J ′ and any z ∈ I1 ∪ I2,

∣∣f ◦ φnj
(ζj)− (j + ζj)

∣∣ < δ

2
and

∣∣f ◦ φnj
(ξj)− (j + ξj)

∣∣ < δ

2
,

hence |ζj − ξj| < δ. This contradicts the definition of δ. �

Example 4.9. Let Ω = D, G = T and let M be the set of all compact subsets of T, different
from T. The assumption (2) in Proposition 4.8 is not satisfied if there exist ζ, ξ ∈ T with
ζ 6= ξ, and two sequences (ζn) → ζ and (ξn) → ξ in T such that φn(ζn) = φn(ξn) for any n.

For example, let (rn)n be any sequence in [0, 1) tending to 1. If Ψ = (ψn)n is defined
for ζ ∈ T by ψn(ζ) = rnζ

k, for some fixed k ≥ 2, or by ψn(ζ) = rnζ
n, then there is no

(Ψ,M)-universal functions.
This can be compared with the existence of Abel universal functions (Example 4.2), that

are (Φ,M)-universal functions with Φ = (φn)n defined by φn(ζ) = rnζ , ζ ∈ T.

To conclude this section, we shall exhibit sequences Φ of continuous mappings from T

to D for which (Φ,M)-universal functions exist, even if no subsequence of Φ is eventually
injective. This indicates that the previous proposition is not far from being optimal, and this
highlights the contrast with the setting considered in the previous section (see the comment
before Theorem 3.13). For simplicity, we will assume that G is the unit circle T but one
could also consider that G is a union of uniformly separated Jordan arcs or Jordan curves.

We recall the following notation. For φ : T → C continuous and K ⊂ T, we denote by

φ̂(K) the union of φ(K) and all bounded connected components of C \ φ(K). Observe that
since the set φ(K) is compact, C \ φ(K) has only one unbounded connected component and

that φ̂(K) is a compact set with connected complement. Without possible confusion, we will
use the following notations, only in the next statement, in its proof, and in Example 4.12:
if 0 ≤ α ≤ β ≤ 2π, we will denote by [eiα, eiβ] the set {eiθ : α ≤ θ ≤ β}, by ]eiα, eiβ] the set
{eiθ : α < θ ≤ β}, et caetera.

Proposition 4.10. Let G = T and let M be the set of all compact subsets of T, different
from T. We assume that for any compact set L ⊂ Ω, any proper closed arc K = [eiα, eiβ] ⊂ T

and any δ > 0, there exists n ∈ N such that the following two conditions hold:

(1) φn(K) ∩ L = ∅;
(2) there exist α ≤ δ1 ≤ δ2 < δ3 ≤ δ4 < . . . < δ2l−1 ≤ δ2l ≤ β, such that if we set

Im =
[
eiδ2m−1 , eiδ2m

]
, then

(a) length(Im) ≤ δ, m = 1, . . . , l;
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(b) φ̂n(Im) ∩ φn(K \ Im) = ∅, m = 1, . . . , l;
(c) φn|U is injective where U = K \ ∪mIm.

Then there exist (Φ,M)-universal functions.

For the proof of this proposition, we will make use of the following easy geometric lemma.
It is a straightforward consequence of Kallin’s lemma about polynomial convexity of the
union of polynomially convex subsets of Cn, n ≥ 1 (see, for e.g., [18, Theorem 1]). Yet, since
the case n = 1 is quite simple, we outline a proof here.

Lemma 4.11. Let K1 and K2 be two compact subsets such that K1 ∩K2 contains at most
1 element. If K1 and K2 both have connected complement, then K1 ∪K2 also has connected
complement.

Proof. We only prove the case where K1 ∪ K2 = {w0}, the case where K1 and K2 are
disjoint being contained in Lemma 2.3. Let z1, z2 ∈ C \ K1 ∪ K2. By compactness of

K1 ∪ K2, we can find two closed Jordan domains V1 and V2 such that K1 \ {w} ⊂
◦

V1,

K2 \ {w} ⊂
◦

V2, V1 ∩ V2 = {w0} and z1, z2 ∈ C \ V1 ∪ V2. Since V2 has connected complement
and V1\{w0} ⊂ C\V2, there exist two continuous paths γ1 and γ2 such that, for i = 1, 2, one
of the extremity ξi,1 of γi is zi, the other ξi,2 is in ∂V1\{w0}, and γi\{ξi,2} ⊂ C\V1∪V2. Since
V1 is a Jordan domain, ∂V1 \ {w} is path connected and there exists a path γ ∈ ∂V1 \ {w}
whose extremities are ξ1,2 and ξ2,2. The union γ1 ∪ γ2 ∪ γ is a continuous path, which by
construction lies in C \ (K1 ∪K2). Thus the latter set is path connected. �

Proof of Proposition 4.10. By conformal invariance, we can assume that Ω = D. In order to
apply Fact 2, let us fix ε > 0, a compact set K ⊂ T with connected complement, a compact
set L ∈ Ω, a function h ∈ C(K) and a function g ∈ H(Ω). By Mergelyan’s theorem, we may
and shall assume h is a polynomial and that K is an arc of the form [eiα, eiβ]. It is enough
to prove that there exist f ∈ H(Ω) and n ∈ N such that

sup
z∈K

|f ◦ φn(z)− h(z)| ≤ ε and sup
z∈L

|f(z)− g(z)| ≤ ε.

Since h is uniformly continuous on K, there exists δ > 0 such that for any ζ, ξ ∈ K,

(4.2) |ζ − ξ| ≤ 2δ =⇒ |h(ζ)− h(ξ)| ≤
ε

2
.

By assumption, there exist n ∈ N and closed arcs I1, . . . , Il ⊂ K as in the statement (in
particular satisfying (1) and (2)). Let us first prove that the compact set

l⋃

m=1

φ̂n(Im) ∪ φn(U) ∪ L

has connected complement. By (1) and Lemma 4.11, it is enough to prove that

l⋃

m=1

φ̂n(Im) ∪ φn(U)

has connected complement. Let J0 =
[
eiα, eiδ1

[
, Jl =

]
eiδ2l , eiβ

]
and Jm =

]
eiδ2m , eiδ2m+1

[
,

m = 1, . . . , l− 1. Now, the assumption (2) (c) and Lemma 4.6 imply that φn(Jm) = φn(Jm),
m = 0, . . . , l, has connected complement. Moreover, the assumption (2) (b) implies that

φ̂n(Im) and φn(Jm−1) do intersect at, at most, one point. Thus, by Lemma 4.11, for any
m = 1, . . . , l, the set

φ̂n(Im) ∪ φn(Jm−1)
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has connected complement. Furthermore, by assumptions (2) (b) and (2) (c), for any m′ ∈
{1, . . . , l − 1}, the sets

(
m′⋃

m=1

φ̂n(Im) ∪ φn(Jm−1)

)
∩
(

̂φn(Im′+1) ∪ φn(Jm′)
)

and (
l−1⋃

m=1

φ̂n(Il) ∪ φn(Jl−1)

)
∩ φn(Jl),

contain at most one element. Therefore Lemma 4.11 and a finite induction allow us to
conclude that

l⋃

m=1

φ̂n(Im) ∪ φn(U) =

l⋃

m=1

φ̂n(Im) ∪ φn(U)

has connected complement.
Let us now fix ηm > 0, m = 1, . . . , l such that for any m = 1, . . . , l

(a) δ2m + ηm < δ2m+1;
(b) δ2m − δ2m−1 + ηm < 2δ.

For any m = 1, . . . , l, let also hm be any continuous map such that

hm
([
eiδ2m , ei(δ2m+ηm)

])
=
[
eiδ2m−1 , ei(δ2m+ηm)

]
,

hm
(
eiδ2m

)
= eiδ2m−1 and hm

(
ei(δ2m+ηm)

)
= ei(δ2m+ηm). Then we consider the function h̃ :

φn(K) → C defined by

h̃(z) =





g(z) if z ∈ L
h (φ−1

n (z)) if z ∈ φn(J0)

h
(
eiδ2m−1

)
if z ∈ φ̂n(Im), m = 1, . . . , l

h (hm ◦ φ−1
n (z)) if z ∈ φn

(]
eiδ2m , ei(δ2m+ηm)

])
, m = 1, . . . , l

h (φ−1
n (z)) if z ∈ φn

([
ei(δ2m+ηm), eiδ2m+1

[)
, m = 1, . . . , l − 1

h (φ−1
n (z)) if z ∈ φn(Jl).

One can check that by construction h̃ is continuous on

A :=
l⋃

m=1

φ̂n(Im) ∪ φn(U) ∪ L,

holomorphic in its interior, and we can thus apply Runge’s theorem to get a function f ∈
H(Ω) such that

sup
z∈A

∣∣∣f(z)− h̃(z)
∣∣∣ ≤ ε

2
,

Since φn(K) ⊂ A, we get

sup
ζ∈K

∣∣∣f(φn(z))− h̃(φn(z))
∣∣∣ ≤ ε

2
.

By construction, it is clear that for any ζ ∈ J0 ∪ Jl ∪
⋃l−1

m=1

[
ei(δ2m+ηm), eiδ2m+1

]
, one has

|f ◦ φn(z)− h(ζ)| ≤
ε

2
.

Moreover, for ζ ∈ Im, m = 1, . . . , l, since φn(ζ) ∈ φ̂n(Im) and because of (4.2) and the choice
of ηm, we have

|f ◦ φn(ζ)− h(ζ)| ≤
∣∣f ◦ φn(ζ)− h(eiδ2m−1)

∣∣+
∣∣h(eiδ2m−1)− h(ζ)

∣∣ ≤ ε.
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The same argument gives that for any ζ ∈
[
eiδ2m , ei(δ2m+ηm)

]
, m = 1, . . . , l,

|f ◦ φn(ζ)− h(ζ)| ≤ ε,

which concludes the proof. �

In order to illustrate Proposition 4.10, let us give an example of a sequence (φn)n of
continuous mappings from T to D, that is not eventually injective, and for which (Φ,M)-
universal functions exist (where M is the set of all compact subsets of T, different from
T).

Example 4.12. For any n ∈ N, n ≥ 2, we set ψn(e
iϑ) = ei

nϑ−π
n−1 , ϑ ∈ [π/n, 2π − π/n], and

define

φn(z) :=





1− 3
2n

− z̄n

2n
if z ∈ [1, eiπ/n](

1− 1
n

)
ψn(z) if z ∈ [eiπ/n, e2iπ−iπ/n]

1− 3
2n

− zn

2n
if z ∈ [e2iπ−iπ/n, 1].

The image of each φn is the union of two circles, tangent at 1 − 1/n. It is clear that the
sequence (φn)n satisfies the assumptions of Proposition 4.10. Moreover, it is also clear that
for any arc K ⊂ T with 1 ∈ K, only finitely many φn are injective on K, hence (φn)n fails
to be eventually injective.

What makes the example satisfy the assumptions of Proposition 4.10 is the fact that on
the preimage of the small circle of φn(T) (i.e. on [1, eiπ/n] and [e2iπ−iπ/n, 1])), the derivative
of the map z 7→ arg(φn(z)) is large. In particular, it appears that the parametrization of
φn(T) by φn is of importance: one could find another sequence (ψn)n, with ψn(T) = φn(T)
for any n ∈ N, but so that the sequence (ψn)n is not universal.

The sequence (φn)n can easily be modified to get more sophisticated examples.

It may seem natural to seek for necessary and sufficient condition for the existence of
(Φ,M)-universal functions, even in the case where Ω = D, G = T and M is the set of all
compact subsets of T, different from T. Yet this problem seems (at least to us) too general
to expect a solution.

Application to the boundary behaviour of holomorphic functions. Corollary 4.5
can be interpretated in terms of boundary behaviour of holomorphic functions in several
manners. Let us illustrate this by the following examples.

(1) It is well-known that for any f ∈ H(C∗) having an essential singularity at 0, there
exists a sequence (zn)n ⊂ C∗, converging to 0 such that the set {f(zn) : n ∈ N} is dense
in C. One can immediately deduce from Corollary 4.5 that, given a sequence of complex
numbers (λl)l, with no accumulation points, and sequences of complex numbers (zln)n, l =
1, 2, . . ., such that zln → λl for any l = 1, 2, . . ., there exists a dense Gδ set of functions
f ∈ H(C \ {λn : n = 1, 2, . . .}) such that the sets {f(zln) : n ∈ N}, l = 1, 2, . . ., are dense in
C.

(2) Let Ω = C \ D, G = T and Φ = (φn)n from T to D, defined by φn(z) = Rnz, where
(Rn)n is a sequence in ]1,+∞[ converging to 1. Corollary 4.5 gives us the existence of
functions f in H(Ω) such that for any compact sets K ⊂ T, the set {f ◦φn : n ∈ N} is dense
in C(K).

More generally, let Ω = C\∪l∈NDl where (Dl)l is uniformly separated closed discs, and let
G = ∪l∈N∂Dl. Let also (φn)n be a sequence of injective continuous mappings from G to Ω.
Then there exist functions f in H(Ω) such that for any compact set K ⊂ G, with connected
complement, the set {f ◦ φn : n ∈ N} is dense in C(K). Note that each φn can be defined
independently on each ∂Dl. Moreover, the discs Dl can be replaced by Jordan domains.
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For instance, choosing the functions φn such that φn(z) → z as n → ∞, we obtain
examples of functions holomorphic on domains, possibly infinitely connected, with very wild
boundary behaviour.

(3) Let Ω = C \ [0, 1]. The results of this section yields the existence of a Gδ-dense set of
functions f in H(Ω) such that the sequence of functions (f(z + i/n)) is dense in C([0, 1]).

(4) Let us fix a sequence (rn)n in (0, 1), tending to 1, and let Ω be a bounded finitely
connected domain with C1 boundary (i.e. each connected complement of ∂Ω is a C1 Jordan
curve, that is the image of T by a C1-diffeomorphism). Let M be the set of all compact
subsets of ∂Ω with connected complement. For z ∈ ∂Ω, let us denote by νz the inward unit
normal vector to ∂Ω at z, and set φn(z) = z + (1 − rn)νz, z ∈ ∂Ω. Note that φn(z) → z
as n → ∞ for any z ∈ ∂Ω. It is easily checked that (φ′

n)n tends to the constant map 1
uniformly on ∂Ω so that, for any n large enough, Φ := (φn)n is a sequence of injective
continuous mappings from ∂Ω to Ω. Then, for such n, φn(∂Ω) defines the boundary of a
compact subset Kn of Ω such that (Kn)n is an exhaustion of Ω. Finally, it is clear that for
any K ∈ M and any compact set L ∈ Ω, there exists n ∈ N such that φn(K) ∩ L = ∅.

Thus Corollary 4.5 implies the existence of some (Φ,M)-universal function. By construc-
tion, the boundary behaviour of such function is erratic near any compact subset of ∂Ω.

Up to non-essential modifications, the previous can be extended to infinitely connected
domain whose boundary is a uniformly separated family of C1 Jordan curves.

(5) Let now Ω be a Jordan domain and let H : ∂Ω × [0, 1) → Ω be continuous and such
that H(z, r) → z as r → 1, for any z ∈ ∂Ω, and such that for any r ∈ [0, 1), the map
z 7→ H(z, r) is injective on ∂Ω. Note that such map exists for any Jordan domain Ω (for
example, the map H(z, r) = ω(rz), where ω is a conformal map from D to Ω). Let (rn)n
be an increasing sequence in [0, 1) tending to 1 and, for n ∈ N, denote by ψn : ∂Ω → Ω the
continuous map defined by ψn(z) = H(z, rn). Clearly, (ψn)n satisfies the sufficient condition
in Corollary 4.5, so we can derive the following extension of the notion of Abel universal
functions to any Jordan domain.

Corollary 4.13. Let Ω and (ψn)n be as above. There exists a function f ∈ H(Ω) such that
for any compact set K ⊂ ∂Ω different from ∂Ω, the set {f ◦ ψn : n ∈ N} is dense in C(K).

Let us finish by a remark.

Remark 4.14. Let Ω = C \D, G = T and Φ = (φn)n from T to D, defined by φn(z) = Rnz,
where (Rn)n is a sequence in ]1,+∞[ converging to 1. We have seen in the above example
(1) that there exist (Φ,M)-universal functions, where M is the set of all compact subset
of G, different from G. There cannot exist functions f ∈ H(Ω) that are (Φ, {G})-universal.
Indeed, if f were such a function, there would exist three closed Jordan curve Γ1, Γ2 and Γ3

(respectively images of T by φn1
, φn2

and φn3
with n1, n2 and n3 large enough), such that the

closed Jordan domain bounded by Γ2 is contained in the interior of that bounded by Γ1, and
the closed Jordan domain bounded by Γ3 is contained in the interior of that bounded by Γ2,
so that f is close to 0 on Γ1∪Γ3 and as big as any fixed positive number on Γ2, contradicting
the maximum modulus principle applied to f on the domain bounded by Γ1 ∪ Γ3.

The same kind of argument ensures that, if Ω = D, G = T and Φ = (φn)n from T to D,
defined by φn(z) = rnz, where (rn)n is a sequence in ]0, 1[ converging to 1, then there do not
exist (Φ, {G})-universal functions.

References

[1] L. Bernal-González, Compositionally universal entire functions on the plane and the punctured plane,
Complex Anal. Oper. Theory, 7 (2013), 577–592.



18 S. CHARPENTIER, A. MOUZE

[2] L. Bernal-González, A. Montes-Rodríguez, Universal functions for composition operators, Complex Vari-
ables Theory Appl., 27 (1995), 47–56.

[3] L. Bernal-González, M.C. Calderón-Moreno, A. Jung, J.A. Prado-Bassas, Subspaces of frequently hy-
percyclic functions for sequences of composition operators, Constr. Approx., 50 (2019), 323–339.

[4] L. Bernal-González, M.C. Calderón-Moreno, J.A. Prado-Bassas, Large subspaces of compositionally
universal functions with maximal cluster sets, J. Approx. Theory, 164 (2012), 253–267.

[5] J. Bès, Dynamics of weighted composition operators, Complex Anal. Oper. Theory, 8 (2014), 159–176.
[6] J. Bès, Dynamics of composition operators with holomorphic symbol, Rev. R. Acad. Cienc. Exactas

Fís. Nat. Ser. A Mat. RACSAM, 107 (2013), 437–449.
[7] G.D. Birkhoff, Démonstration d’un théorème élémentaire sur les fonctions entières, C. R. Acad. Sci.

Paris, 189 (1929), 473–475.
[8] S. Charpentier, Holomorphic functions with universal boundary behaviour, J. Approx. Theory, 254

(2020), 105391.
[9] D. Gaier, Lectures on complex approximation, tr. by R. McLaughlin, Birkhauser, Boston, 1987

[10] T.L. Gharibyan, W. Luh, J. Müller, Approximation by lacunary polynomials and applications to uni-
versal functions, Analysis, 23 (2003), 199–214.

[11] K.-G. Grosse-Erdmann, R. Mortini, Universal functions for composition operators with non-
automorphic symbol, J. Anal. Math., 107 (2009), 355–376.

[12] K.-G. Grosse-Erdmann, A. Peris Manguillot, Linear Chaos, Universitext, Springer, London, 2011.
[13] A. Jung, Universality of composition operators with applications to complex dynamics [PhD disserta-

tion], Germany: University of Trier, 2015.
[14] A. Jung, Universality of composition operators and applications to holomorphic dynamics, J. Anal.

Math., 137 2 (2019), 845–874.
[15] A. Jung, J. Müller, Spherical universality of composition operators, Complex Var. Elliptic Equ., 63 7-8

(2018), 1033–1043.
[16] B. Kolev, Plane Topology and Dynamical Systems, École thématique. Summer School ”Systèmes Dy-

namiques et Topologie en Petites Dimensions“, Grenoble, France, 1994, pp.35. cel-00719540
[17] T. Meyrath, Compositionally universal meromorphic functions, Complex Var. Elliptic Equ., 6 9 (2019),

1534–1545.
[18] P.J. de Paepe, Eva Kallin’s lemma on polynomial convexity, Bull. London Math. Soc., 33 (2001), 1–10.
[19] J.A. Prado-Bassas, Maximal cluster sets on spaces of holomorphic functions, Analysis (Munich), 28

(2008), 283–298.
[20] W. Rudin, Real and complex analysis, Third edition, McGraw-Hill, New York, 1987.
[21] E.L. Stout, Polynomial convexity, Progress in Mathematics, vol. 261, Birkhäuser Boston, Inc., Boston,

MA, 2007.
[22] S. Zaja̧c, Hypercyclicity of composition operators in Stein manifolds, Proc. Amer. Math. Soc., 144 9

(2016), 3991–4000.

Stéphane Charpentier, Institut de Mathématiques, UMR 7373, Aix-Marseille Universite,
39 rue F. Joliot Curie, 13453 Marseille Cedex 13, France

Email address : stephane.charpentier.1@univ-amu.fr

Augustin Mouze, Laboratoire Paul Painlevé, UMR 8524, Cité Scientifique, 59650 Vil-
leneuve d’Ascq, France, Current address: École Centrale de Lille, Cité Scientifique,
CS20048, 59651 Villeneuve d’Ascq cedex, France

Email address : augustin.mouze@univ-lille.fr


	1. Introduction
	2. Preliminaries
	3. The case where G is a domain
	4. The case where G is a closed set with empty interior
	Application to the boundary behaviour of holomorphic functions

	References

