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Abstract. The diagnosis of cardiovascular illnesses uses multiple modal-
ities in order to obtain a complete and as robust as possible assessment of
the heart. However, when addressing distinct pathologies, not all infor-
mation might be needed in order to achieve a confident-enough diagnosis.

We propose a probabilistic machine learning method to identify the pa-
tients for which the acquisition of more complex data would be useful. We
hypothesise that there exists a hierarchical relationship between modal-
ities: echocardiography is more accessible and has a lower economical
cost than other modalities (like magnetic resonance imaging (MRI)).
The framework consists of two classifier models, each predicting the ill-
ness from the echocardiographic and MRI views, and a sample-weighting
model that combines both predictions. This weighting model is used to
decide which individuals will not need an MRI acquisition additional to
the echocardiographic examination.

We illustrated this on a dataset of asymptomatic individuals with an
echocardiographic study (N = 480), a subset of those also includes a MRI
(N = 159). We analyse the effect of being overweight on cardiac geometry.
We identified that the type of remodelling depended on blood pressure:
overweight combined with high blood pressure resulted in an increase of
ventricular mass, while only size changes were preserved for low-pressure
individuals. With our method, we established that boundary cases of the
former group could be correctly classified after incorporating MRI, while
it was not the case for the latter.
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1 Introduction

Medical imaging is a central component in the diagnosis of cardiovascular ill-
nesses. Several modalities can be used to assess cardiac function and geometry,
each offering a different view on the properties of the heart, and each being more
or less appropriate for detecting different pathologies. In order to have the most
complete assessment of the heart, it could be desirable to use as many modal-
ities as possible, however multiple acquisitions result in higher economic cost,
time, discomfort/danger to the patient. Moreover, the heart is a dynamic organ,
and changes from beat to beat, difficulting the integration of data acquired in
different beats.

Echocardiography is the most common modality used in cardiology, due to
its low cost and accessibility, being able to be operated at bedside or in the
clinician’s office. Other modalities, such as magnetic resonance imaging (MRI)
are also available, but are often used after echocardiographic findings are not
conclusive enough to produce a diagnosis. The study of what kind of information
can be determined from each modality, and when it is more appropriate to use
one or the other, has not been quantitatively discussed beyond some consensus
established by clinical experts [5].

In this work, we explore the feasibility of identifying the individuals who
would benefit from more complex (and therefore costly) acquisitions. Our ra-
tionale is that there are individuals for whom echocardiography is not able to
provide an accurate diagnosis, yet acquiring MRI will not improve diagnosis. We
aim to identify those patients to avoid unnecessary MRI. This problem shares
similarities with active learning [15, 6], which is a subfield of machine learning
that allows to identify in a semi-annotated dataset the unannotated samples that
would be more helpful for training a model, and to Bayesian optimisation [4], a
black-box optimisation method for functions that are expensive to evaluate.

Our approach is similar to data fusion, which is still a challenging research
topic in machine learning [9]. Grossly, there are two strategies: obtaining a fused
representation of the different views and then perform predictions in that space,
or perform predictions independently and then combine them. Some methods,
specially the ones based on a probabilistic framework such as [13] allow missing
data (it is mostly assumed that the data is missing at random) and assume
no hierarchical relationship between views. This is the main difference with our
method, since our assumption is that we can identify the individuals for which
the more complex acquisition is unnecessary, and therefore “missing” data will
not be at random.

We illustrate the framework on a dataset including echocardiography and
MRI from healthy asymptomaptic individuals, for which we study the cardiac
changes related to body mass index (BMI). Overweight and obesity are well
known cardiovascular risk factors [14]. The most reported risk is an increased
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probability of myocardial infarct due to the presence of cholesterol in the ves-
sels, but also obesity is related to pressure (due to an increase of systolic blood
pressure (SBP)) and volume loading of the left ventricle (LV) (since it needs
to produce higher cardiac output (CO) to sustain the increased body mass).
Its effect is most noticeable on the left ventricle: myocardial hypertrophy and
also a dilation of the heart [7]. The changes are more easily seen in the cardiac
geometry, but also affect the function, specially in the diastolic function [12].

2 Methodology

2.1 Echocardiographic and MRI dataset

More details on the dataset are found in [2]. Its original purpose was to find the
effect on the cardiac system of adults (30-40 years old) who were born low-weight.
Its effect was found to be subtle, so the individuals with low weight at birth were
kept in the current work in order to have a higher population size. We reused
this dataset to study the effect of elevated body mass index, using the WHO
classification for overweight (BMI > 25) [1]. We used overweight (BMI > 25)
over strictly obese (BMI > 30) because our MRI population contained only 20
obese individuals. Overweight definition also includes individuals who are in the
transition zone between obesity and appropriate weight, and they are therefore
expected to have minor remodelling. A short description of the demographics
of the adequate weight and overweight population can be found in Table 1. We
did not consider the interaction between weight at birth and overweight, and its
effect is treated as noise in this analysis.

BMI < 25 BMI ≥ 25
Echo MRI Echo MRI

N 320 83 178 64
Weight [kg] 60.6 ± 10. 61.5 ± 9.8 84.4 ± 13.0 85.2 ± 11.1
Height [cm] 167 ± 9 168 ± 9 169 ± 10 171 ± 9
BSA [m2] 1.67 ± 0.18 1.69 ± 0.17 1.99 ± 0.19 2.01 ± 0.16
Male gender [%] 39 36 63 67
Age [y] 30.0 ± 4.9 33.2 ± 3.7 31.7 ± 4.9 33.6 ± 4.1
Heart rate [bpm] 68.4 ± 11.2 66.9 ± 11.3 69.7 ± 12.3 71.2 ± 12.9
Systolic BP [mmHg] 114.6 ± 11.8 115.1 ± 13.4 121.9 ± 12.2 122.8 ± 13.3
Ejection Fraction [%] 65.4 ± 6.8 66.7 ± 7.9 64.5 ± 6.5 64.3 ± 6.7

Table 1: Demographic description of the population. Variables are described by
their mean and STD.

In short, the data consist of echocardiographic measurements from 480 in-
dividuals, and MRI biventricular shapes from a subset 159 individuals. The
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echocardiographic measurements were: LV long axis, LV basal dimension, RV
long axis and LV Mmss (from M-mode), all measured using the recommendations
of the European Society of Cardiology [8]. The shapes are the result of fitting
a deformable model to each individual, producing meshes at end-diastole (ED)
in point-to-point correspondence. Both the measurements and the meshes were
indexed by body size area (BSA) to remove cardiac size variability due to the
body dimensions, as is commonly used in the clinics. The data was preprocessed
using unsupervised dimensionality reduction in order to reduce the noise: princi-
pal component analysis (PCA) for the MRI shapes (keeping 5 dimensions), and
Isomap for the echocardiographic measurements (keeping 2 dimensions).

2.2 Hierarchical framework

We propose a probabilistic model to express the probability of the label (Y ) given
the simple (X0) and complex (X1) data features. The estimated probability is
a weighted combination of two single-view classification models, with a sample
weight. We note w as the vector containing the weights for all individuals, and wi

its value for the i-th individual. This weight is close to 1 when the information
in Xi

0 is enough to make the prediction and close to 0 when considering the
next level of the hierarchy Xi

1 is compulsory. The novelty in our approach lies in
these weights, for which we add a prior on w forcing it to be a smooth function
of X0 = [Xi

0]. These weights serve as an estimator of the need of acquiring
X1 = [Xi

1].

P (Y |X0,X1) = (
∏
i

(wiP (Y i|Xi
0, θ0) + (1− wi)P (Y i|Xi

1, θ1)))P (w|X0), (1)

where θ0 and θ1 are the parameters of the single view prediction models. Any
probabilistic classification model for the single view models can be chosen, as long
as sample-weights can be incorporated in such model. In our case, we arbitrarily
chose a Gaussian process (GP) Classifier, with a Bernoulli likelihood [11] using a
publicly available implementation [10]; but the framework allows the use of any
classification method that estimates probabilities.

To ensure smoothness of w from X0, we use a GP prior:

P (w|X0) ∼MVN(0,KX0), (2)

where MVN is the density function of the multivariate normal, and KX0 is the
classical kernel matrix with a Gaussian kernel.

2.3 Optimisation

After including the prior on wi and the parameters of the classification models
θ0 and θ1, the posterior log-probability model for the full dataset is:

logP =
∑
i

log
(
wiP (Y i|Xi

0, θ0) + (1− wi)P (Y i|Xi
1, θ1)

)
+ logP (w|X0). (3)
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We optimise a lower bound L of the expression obtained by applying Jensen’s
inequality on the logarithm:

logP ≥
∑
i

wi logP (Y i|Xi
0, θ0) + (1− wi) logP (Y i|Xi

1, θ1) + logP (w|X0) = L.

(4)
As direct joint optimisation of all the parameters is troublesome and leads to

instability, we optimise iteratively the classification model and the combination
weights until convergence, until the weights w of two consecutive iterations are
not significantly different. The optimisation of the θ paremeters of the classifi-
cation model is:

max
θ0,θ1

log(L) = max
θ0

∑
i

wi logP (Y i|Xi
0, θ0)

+ max
θ1

∑
i

(1− wi) logP (Y i|Xi
1, θ1)) +

∑
i

log(P (wi)),
(5)

which corresponds to two standard sample-weighted classification problems that
can be solved using classical classifiers.

The weights w will be estimated by maximising the joint probability, together
with the prior. Putting everything together, we can see that L has terms that
do not include the wi, and therefore do not affect the optimisation. We can pull
them out of the optimisation as a term C:

max
w

log(L) = max
w

∑
i

wi(logP (Y i|Xi
0, θ0)−log(P (Y i|Xi

1, θ1))−wtK−1
X0

w/2+C,

(6)
where C = −d/2 log(2π)− d/2 log(detKX0) + log(P (Y i|Xi

1, θ1)) is independent
of w and does not need to be considered for optimisation. The previous equation
corresponds to a quadratic optimisation problem for which the exact solution
can be computed.

2.4 Prediction

The previous formulation needs both X0 and X1 for all samples to compute
the label probability. However, we would like to obtain some of the predictions
without having to use X1, thus avoiding a costly acquisition. For that, we will
fix a threshold k for the weights wi (which can be computed from X0 only), and
only use X1 when the predicted value of wi is below that threshold. A higher
value of the threshold will result in lower usage of the second level data. The
estimated probability is as follows:

P (Y i|Xi
0, X

i
1) =

{
P (Y i|Xi

0) wi ≥ k,
wiP (Y i|Xi

0) + (1− wi)P (Y i|Xi
1) wi < k.

(7)

Note that since we have imposed a GP prior over the wi, these weights can
be estimated from Xi

0 only.
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Fig. 1: Scatter plots with the synthetic dataset. We can see that uncertainty
(left) is concentrated in the decision boundary x = −y, while the weight (right)
is also contained near the decision boundary, but excludes the points for which
the label is random (black).

3 Results

3.1 Synthetic experiment

We first verify our framework using a synthetic dataset. This dataset contains
two levels of features (X0 and X1) and a binary label Y . The label is determined
by X1 and some noise, but to create the situation that not all information can
be well predicted from X1, we set the label of the points of a particular region in
the decision boundary of X1 completely at random. The expected result is that
our algorithm gives high weights wi near the decision boundary, except in the
area that the labels are completely random. The data generation is as follows,
where N and Ber denote the normal and Bernoulli distributions respectively:

(f0, f1, f2) ∼ N (0, 1)×N (0, 1)×N (0, 1),

l ∼
{

Ber(0.5) f20 + f21 < 0.32,
Ber(sigmoid(f0 + f1 + f2)) otherwise.

(8)

The low and high complexity views are defined as the first two coordinates
(X0 = (f0, f1)) and the three coordinates (X1 = (f0, f1, f2)) respectively. Fig-
ure 1 shows the result of applying the hierarchical model to these synthetic
data, comparing the predicted weight w to the model uncertainty, a classical
method in active learning/Bayesian optimisation to decide which samples to
annotate/acquire. We can observe that the uncertainty is concentrated in the
decision boundary, but is not affected by the central area with no information,
while the weight submodel predicting the probability of improvement correctly
detects that labels in the central area are random and therefore no further ac-
quisition would be beneficial.

3.2 Real dataset

Using the real dataset, we tested the basic single-view classification models
for the echocardiographic measurements and shape embedding only, an aver-
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Fig. 2: The left plot depicts the AUC for different amounts of MRI data used.
Transparent lines are the different bootstrap cross-validations, and the blue line
is the mean trace. The maximal AUC is attained at 30%. The central figure is
a boxplot (orange lines depict the median, the boxes stand for the interquantile
range) of the AUC for different models. We can see that there is a small im-
provement for considering both X0 and X1 simultaneously compared to using
only X0 or X1. This improvement is similar, either when the full population is
used, or just a fraction of it. The right plot shows the correlation between the
probability scores and the raw BMI value.

age combination of the previous single-view models, and the combination of the
two spaces using our weighting approach. 20-fold cross-validation splits were
repeated over 10 different seeds to obtain more statistically-stable results, and
we compared the area under curve (AUC) of predicting elevated BMI. We also
tested the version of our approach which did not use all the Xi

1, with different
values for the threshold k in equation 7. For each value, we report the AUC
and the fraction of weights wi that fell below the threshold, thus the number of
times that X1 data were used. This AUC as a function of X1 can be found in
Figure 2, along with the AUC of the different models.

An interesting result is that MRI shapes (X1) had lower prediction power
than simple echocardiographic measurements (X0). This can be explained as
obesity has a global effect on the heart, then just a few measurements are enough
to characterise the changes in size and LV hypertrophy related to obesity, so there
is little advantage in using shape models instead of simple measurements. How-
ever, the combination of both models, either by simple addition or by sample-
weights, showed an improvement of prediction power, indicating benefit on the
combination of both modalities. For achieving this improvement, it is not nec-
essary to acquire the MRI for the full population, but it could be achieved with
approximately 30% of the cases. In the right side of Figure 2 we can see the
correlation between the predicted probability of the hierarchical model, and the
BMI. We can see that they share a fair correlation (ρ = 0.70), showing that
our classification model correctly assigns higher probability to the more obese
individuals.

In Figure 3a, we show the probability contours of the BMI model. The BMI
models shows a nice separation between the two classes, with overweights being
mostly on the right, and slim individuals on the left. The black line represents
the decision boundary of the BMI model. We manually selected synthetic rep-
resentative points of both thin and overweight individuals, that are depicted in
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(a) Overweight

(b) Predicted weights

Fig. 3: The subfigures show a scatter plot of the X0 embedding with contours
of the probability of being overweight (top) and of the w weights indicating
the usefulness of the MRI (bottom). The subfigures also contain a spider plot
with the characteristics of extreme individuals, selected in the scatter plot as the
colored stars.

the same figure as stars. In the right part of the figure, a spider plot compares
the two synthetic representative individuals. The characteristics of the synthetic
individuals were interpolated using a GP. We examined the characteristics that
our model associated with a high BMI: a higher ventricular mass and smaller
ventricle (indexed by BSA), specially in the long axis. While this might seem
surprising, the smaller ventricle is mostly due not to a shrinking of the heart but
to an increase of the BSA.

We also studied what were the characteristics of the individuals for whom
the MRI would add more information. In Figure 3b, we can see that far from the
decision boundary the weight is high, indicating that X0 is enough for predicting
the output. Near the decision boundary, we can observe a differential behaviour:
in the upper part the weight is lower than in the lower part. We manually
selected two points representative of a low and high wi, and we studied their
characteristics. We found that high weight (i.e. those for which the MRI is most
useful) presented a higher LV mass, specially when compared to the ventricular
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size, and SBP, suggesting hypertrophic remodelling due to pressure loading. Low
weight was associated with a higher fat percentage, and a smaller ventricle in
both dimensions and mass after indexing by BSA, suggesting a remodelling that
is preserving the mass-volume relationship: a change that is mostly size-related.
Since the former remodelling involves a change in shape, while the later is mostly
in size (which can be already be well approximated by echocardiography), it
makes sense that adding MRI shape information helps mostly individuals to
belong to the first group [3].

4 Conclusion

We have presented a framework to combine predictions from different models,
potentially each trained with different data. The main novelty of this model is
its ability to identify the cases that are more likely to improve when adding more
data, therefore reducing the number of high-cost data used.

We applied the model to an obesity dataset, and we were able to identify
different remodelling patterns in the decision boundary, corresponding to indi-
viduals whose diagnosis accuracy would improve after acquiring the MRI data.
Our framework reached an accuracy similar to the combination of both models,
while only using 30% of the data.
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