
HAL Id: hal-03534360
https://hal.science/hal-03534360

Submitted on 19 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

FlexVF: Adaptive network device services in a
virtualized environment

Brice Ekane, Dinh Ngoc Tu, Boris Teabe, Daniel Hagimont, Noel de Palma

To cite this version:
Brice Ekane, Dinh Ngoc Tu, Boris Teabe, Daniel Hagimont, Noel de Palma. FlexVF: Adaptive
network device services in a virtualized environment. Future Generation Computer Systems, 2022,
127, pp.14-22. �10.1016/j.future.2021.08.011�. �hal-03534360�

https://hal.science/hal-03534360
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


FlexVF: Adaptive network device services in a virtualized environment

Brice Ekanea, Tu Dinh Ngocb, Boris Teabeb, Daniel Hagimontb, Noel De Palmaa

aUniversity of Grenoble, France
bUniversity of Toulouse, France

Abstract

Single-root I/O virtualization (SR-IOV) allows virtual machines direct access to physical network cards through so-called virtual
functions (VFs), considerably reducing networking overhead compared to paravirtualized interfaces by avoiding the hypervisor’s
network stack. However, the maximum number of VFs on each card is often limited compared to the number of VMs running on
each host, leading to the problem of choosing which VMs to allocate these VFs. In this paper, we introduce FlexVF, a mechanism
for dynamically allocating and switching between VFs and paravirtualized networking on VMs based on network activity monitoring.
We show that FlexVF improves VM network performance by 75% without affecting network operation.

1. Introduction

Virtualization has become a must in both private and pub-
lic clouds such as Amazon, Microsoft and Google. It allows
sharing of hardware resources between virtual machines (VM)
using a system software called a hypervisor. Hypervisors use
several techniques for sharing these resources among all VMs:
a scheduler for the CPU, a memory management unit (MMU)
for RAM, and a set of techniques for the I/O devices which we
detail below.

Hypervisors expose accesses to I/O devices via one of three
main mechanisms: (1) device emulation of a particular hardware
model, such as a network card (e.g Intel’s “e1000” network
adapters); (2) paravirtualized interfaces, where the hypervisor
exposes an optimized API to the VM for accessing the device
through a common transport [1], (e.g. through a shared memory-
mapped region); and finally via (3) device passthrough, where
the VM is granted direct access to a physical device, which is in
turn isolated from the rest of the system using an I/O memory
management unit (IOMMU). These techniques listed above have
different tradeoffs and are not applicable to all virtualization
workloads. For example, device emulation is mostly used to
ensure compatibility with legacy operating systems (OS) that
are not virtualization-aware. Paravirtualized interfaces perform
faster than device emulation thanks to virtualization interface-
specific optimizations; however, they still impose an overhead
by needing to communicate with the hypervisor and PV device
model for every I/O request, and require the guest OS to be aware
of paravirtualization extensions available on the host hypervisor.

In contrast, device passthrough requires giving the guest ex-
clusive access to a hardware device. This means that the number
of guests that can benefit from passthrough is constrained by the

?© 2021. This manuscript version is made available under the CC-BY-NC-
ND 4.0 license https://creativecommons.org/licenses/by-nc
-nd/4.0/.
??https://doi.org/10.1016/j.future.2021.08.011

number of devices installed in the host. In the particular case of
PCI passthrough, the restriction is per PCI physical function; for
example, each 2-port ethernet card having 1 physical function
(PF) per port, and therefore 2 PFs in total, can only be assigned
to a maximum of 2 VMs. To overcome this restriction, the PCI
Express specification defines single-root input/output virtual-
ization (SR-IOV), where one PF can be partitioned into multiple
virtual functions (VF). These VFs can then be assigned sepa-
rately to different VMs, increasing the number of VMs that can
utilize passthrough I/O on each host. However, implementing
SR-IOV is not without cost. First of all, datacenter operators
need to select the correct network card for their requirements,
while taking into account factors such as SR-IOV support, num-
ber of VFs needed for their workload, etc. Secondly, SR-IOV
requires additional logic in the hardware for each VF, therefore
limiting the maximum number of VFs that can be implemented
on each device [2]. This limitation leads to a VF allocation
problem, namely: in a situation with more VMs needing VFs
than is available, which VMs should be allocated a VF?

We conducted a study on the servers of two research data
centers: Grid5000 [3] and CloudLab [4]. We found that the
majority of servers are equipped with one SR-IOV-enabled dual-
port Ethernet card for network communication, and that most
cards have support for up to 64 VFs per network port. On
Grid5000 servers in particular, out of these two ports, one port
is used exclusively for host administration and management
purposes, leaving only one port (and therefore 63 VFs on their
Ethernet card model) available to all VMs that could be executed
on the host. At the same time, these servers are installed with
anywhere from 250 GB to 768 GB of memory, leaving plenty
of resources for VM usage. Microsoft Research showed that
70% of VMs running on Azure datacenters have less than 3 GB
of RAM [5]; this figure is especially true regarding serverless
application hosts, where one server can host thousands of micro-
VMs each with little CPU and memory resources [6].

In short, in a virtualized datacenter with servers providing
large amounts of RAM, considering most of the time RAM

Preprint submitted to Elsevier



capacity is the limiting factor for packing VMs on hosts, it
is likely that each physical server will host more VMs than
the number of VFs available on said host (e.g. 63 VFs). As a
result, with the current trend of increasing core counts, RAM
sizes and VM density, we would need to decide which VM to
equip with a passthrough device, and therefore better I/O
performance.

In fact, public cloud services already advertise different price
tiers for different levels of network performance on their cloud
VMs. Features like AWS enhanced networking [7] or Azure
accelerated networking [8] directly expose SR-IOV-enabled net-
work cards to the cloud guest at an increased price compared to
the standard offering. However, this pricing model is not always
applicable to private cloud scenarios; instead, it’s more benefi-
cial to assign these resources on a case-to-case basis depending
on application demands in order to optimize general application
performance across the whole datacenter. Nevertheless, private
cloud administrators may lack the necessary tools to sufficiently
understand running applications in VMs, as well as the necessary
tooling and know-how to allocate VFs to VMs automatically as
the workload changes.

To answer this problem, we present a flexible and generic
framework named FlexVF that allocates VFs to VM based on
their network activity. To this end, FlexVF allocates to each
VM two virtual network interfaces: one paravirtualized interface
and a VF configured using device passthrough. During the life-
time of the VM, FlexVF monitors its network activity, decides
which network virtualization technique is appropriate for the
current utilization levels, and then activates the corresponding
interface. Building such a platform raised several challenges,
namely the mechanism for monitoring a VM’s network activity
on a VF knowing that it has a direct access to the hardware, the
fast hot-plugging and unplugging of network interfaces to VM,
and finally avoiding impacting application performance during
network reconfiguration. Furthermore, we designed FlexVF as
a generic framework that can be integrated into private cloud
platform such as OpenStack for automating VM resource alloca-
tion. We systematically evaluated each aspect of our framework
using both micro- and macro-benchmarks; we find that FlexVF
can help improve network application performance by up to 75%
in virtualized environments.

The rest of the paper is structured as follows. Section 2
presents an overview of networking in virtualization. Section 3
presents the motivations of the work. Section 4 presents the gen-
eral overview of FlexVF. Section 5 presents the implementation
of FlexVF. Section 6 presents the evaluation results. Section 8
discusses the related works. Section 9 concludes the paper.

2. Background

As stated in the previous section, hypervisors provide access
to I/O devices using three main techniques: device emulation,
paravirtualization, and device passthrough. In this section, we
detail the implementations and characteristics of these interfaces,
and assess their suitability in various I/O scenarios.

2.1. Device emulation

Device emulation aims to support an OS’s I/O needs by
mimicking the behavior of a certain hardware device. With this
technique, the hypervisor needs to trap and emulate accesses to
hardware resources to perform tasks such as managing virtual
hardware states, delivering interrupts, responding to I/O from the
guest OS, and so on. The emulation itself is often performed not
directly inside the hypervisor kernel, but rather in a userspace
process to minimize the kernel code base and separate the error-
prone emulation component from the rest of the system. In
general, the main goal of device emulation is not performance,
but to closely follow the device model that it’s imitating, in
order to support legacy operating systems that lack knowledge
of virtualization extensions. As a result, device emulation is
naturally more complex and slower than its alternatives, and no
longer used in high-performance I/O scenarios.

2.2. Paravirtualization

As opposed to device emulation, paravirtualization (PV)
aims to provide a simple and performant I/O interface to VM
guests. To this end, a virtualization-aware guest OS performs
I/O requests through specialized channels defined by the hyper-
visor. These requests are then interpreted and serviced by the
hypervisor’s corresponding I/O component. Note that while a
paravirtualized device might not resemble any particular hard-
ware model, it is based on the same set of hardware resources
as any other device class; for example, paravirtualized network
devices often communicate with the guest by appearing as a
virtual PCI interface, configured using the typical PCI config-
uration mechanisms, and exchanges data with the guest using
shared memory-based “DMA” and virtual interrupts. Using
these optimization techniques, paravirtualization mostly solves
the problem of I/O performance in virtual machines; however,
I/O requests to a PV device still need to be serviced by the hy-
pervisor rather than by hardware. For example, every time a
VM needs to send a network packet, this packet needs to pass
through the hypervisor’s network stack before it’s received by
the physical NIC. Consequently, these interfaces still cannot
match the performance of a bare-metal OS running directly on
hardware.

2.3. Device passthrough

Device passthrough gives guest VMs direct exclusive access
to the underlying hardware. It is often used with devices needing
high I/O performance, for example PCI Express network inter-
faces supporting high bandwidth. With device passthrough, the
recipient guest VM directly communicates with the hardware us-
ing its own drivers, bypassing most of the costs associated with
hypervisor-based trap-and-emulate during I/O operations. The
hypervisor remains actively involved for certain management
tasks; for a PCI device, this involves namely setting up the PCI
configuration space, managing DMA, and brokering interrupt
delivery into the VM’s virtual interrupt controller. In general,
device passthrough helps guests bypass the host OS’s I/O stack,
bringing virtual I/O performance in line with bare-metal envi-
ronments.

2



As stated above, device passthrough requires exclusive ac-
cess to the underlying hardware. As a result, a device being used
in a passthrough configuration cannot be shared among multiple
running VMs. The PCI Express specification defined single-root
I/O virtualization (SR-IOV) as a solution to this issue, allowing
each physical PCI function (e.g. network port) to appear as
multiple PCI virtual functions (VF). Each VF is an isolated PCI
function instance that can be assigned to a different VM and
can communicate with the guest using the same driver as with
the physical device. Note that VFs hosted by a PF all share the
same physical capabilities of the PF; for example, each VF on
the same 10 Gb Ethernet port only has a portion of the total 10
Gb link as dictated by the network card.

3. Assessment

We carried out evaluations to estimate application perfor-
mance using the previously-mentioned network device virtu-
alization techniques. Section 6 presents more details on the
experimental environment, including hardware and software
configurations. The experiment consists of executing a network
benchmark in a VM with 4 GB of memory, 4 vCPU and a net-
work device provided using each of the mentioned techniques.
We used the results of the Xapian benchmark from TailBench [9],
a benchmark suite for latency-critical applications providing
request latency numbers under various workloads. Figure 1
presents the 95th percentile of request latency as obtained from
Xapian, an online search workload that performs queries on a
English Wikipedia-based corpus. We first observe that SR-IOV-
enabled VMs equipped with a VF performs better than any other
technique, whether PV (+22.7%) or device emulation (+30%),
reaching close to bare-metal performance.

Emu
PV VF Bare

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

La
te

nc
y 

(m
se

c)

Figure 1: Xapian latency (95th percentile) using various network virtualization
techniques.

With this result, using VFs on all VMs would therefore be
the ideal configuration for best performance; however this is not
possible given the limited number of VFs available on network
cards. For instance, most 10GbE Intel cards only support up to
63 VFs per port [10]. Our study of hardware configurations of
Grid5000 and CloudLab datacenters revealed that most servers
on these datacenters are equipped with only one dual-port Ether-
net card with up to 63 VFs per port; furthermore, one of these
ports is commonly dedicated to administration operations, leav-
ing only one port for use by VMs, or only 63 VFs. Knowing
that each server can host hundreds of small VMs in a datacenter
environment [5], this number of VFs is insufficient to cover all
running VMs; naturally, we must consider the problem of which
VMs can benefit from SR-IOV.

In public cloud environments such as Amazon AWS or Mi-
crosoft Azure, the allocation of VF is based on price tiers, where
customers can choose between cheaper VM sizes with paravirtu-
alized networking or more expensive VMs with SR-IOV enabled.
In a private cloud, this distinction does not exist; instead, the
cloud administrator must choose which VMs to equip with VFs
and which not to. Moreover, the performance gain from SR-IOV
compared to PV networking depends on the network activity of
the application running in the VM. For example, a VM running
an application with little network activity will benefit less from
having a VF assigned to it than another running an application
with significant network activity. To demonstrate this, we car-
ried out evaluations to estimate the performance gain from VFs
compare to PV networking. We used various TailBench work-
loads, including Xapian, Sphinx (a speech recognition work-
load), Masstree (C++-based key-value store), Silo (a in-memory
database) and img-dnn (a handwriting recognition application).
We set up TailBench in its networked configuration, where each
application under test runs on a VM configured with VFs or PV,
and with the application client (load generator) running on a
separate physical machine. Figures 2 and 3 respectively present
each benchmark’s packet rate and the performance gain from
switching to VFs. We note a large variability in results depend-
ing on the workload; for instance, Masstree shows a performance
gain of 12% compared to only 1.6% on the same configuration
with Sphinx, which almost parallels the packet rates emitted
by these two benchmarks. We therefore conclude that not all
VMs will benefit equally from the addition of SR-IOV, and there-
fore VF allocation should be carefully considered based on each
VM’s current workload.

Xapian
Sphinx

Masstree

Silo Img-dnn

0

500

1000

1500

2000

Pa
ck

et
 ra

te
 p

er
 se

c

111 3

1581

1120

210

Figure 2: TailBench benchmark packet rates.

Xapian
Sphinx

Masstree

Silo Img-dnn

0

10

20

30

40

Bo
os

t (
%

)

12.7

0.6

27.5

19.4 17.83

Figure 3: TailBench benchmark boost% from SR-IOV.

To answer the question of how to allocate VFs to VMs to
optimize network performance, we describe our contribution
FlexVF in the following section. FlexVF allows a cloud ad-

3



ministrator to dynamically apply a VF allocation policy to VMs
depending on their network activity.

4. Contributions

This section describes FlexVF, our framework for dynam-
ically allocating VFs to VMs. With this goal in mind, we de-
signed FlexVF using the following set of criteria:

• Low intrusiveness. FlexVF shall not require extensive
changes to guest operating system kernels.

• No application modification. The platform must not re-
quire any modifications of networked applications running
inside VMs.

• Low overhead. FlexVF shall have minimal overhead on
VM performance.

• Easily integrated. We aim to design FlexVF so that
it is easily integrated into an infrastructure-as-a-service
manager platform such as OpenStack [11].

Figure 4: General overview of FlexVF components.

4.1. General overview
The main idea behind FlexVF is monitoring VM network ac-

tivity and responding by dynamically hot-plugging/unplugging
VFs. To make this reconfiguration transparent to networked
applications, we combine multiple paravirtualized (PV) and VF-
based network interfaces using a single synthetic network team,
through which the VM can communicate with other hosts regard-
less of which interface type it is using. Figure 4 presents the two
main parts of FlexVF’s general architecture: a VM-side subsys-
tem to monitor its network activity and make this information
available to the hypervisor, and a hypervisor-side component for
selecting and allocating VFs to the selected VMs. The rest of
the section presents these two elements in detail.

4.2. FlexVF in VMs

FlexVF’s VM-side subsystem consists of three components:
Network teaming. This component aggregates multiple net-

work interfaces on each VM into a single logical teamed inter-
face. On Linux, network teams can operate in multiple modes:
active/backup, multiple load balancing modes or link aggrega-
tion. We configure VMs to use network teams in active/backup
mode to prioritize VFs for network transfers whenever available.
This component helps ensure VMs’ network connectivity even
in cases where the VF is disconnected from the VM, for example
during VM migration as described in [12].

Network activity hook. This component is a tracing hook
installed in each VM’s to monitor its network activity. The hook
extracts network statistics such as packet rate, then transmits this
information to the collector for processing.

FlexVF collector. Each VM’s collector gathers network ac-
tivity data from its corresponding hook, computes aggregate
network statistics, and subsequently makes this information
available to the hypervisor through shared memory for use by
the VF allocator. The FlexVF collector is also responsible for
following any commands issued by the host during network
reconfiguration.

4.3. FlexVF in the hypervisor

FlexVF has a single component in the hypervisor, called the
VF allocator. Its role is twofold: firstly to select VMs for VF
allocation, and secondly to hot-plug/unplug VFs to these VMs.
The VF allocator runs entirely in the userspace (as a background
daemon in the KVM host), and requires no modification to
either KVM or QEMU, thus fulfilling our requirement of low
intrusiveness to the running hypervisor host.

VM selection. While network adapters with SR-IOV such
as those from Intel already implement QoS mechanisms such as
round-robin queues and rate limiting [13], the choice of which
VM to bestow a VF can potentially impact the performance of
other VMs if these mechanisms are not correctly configured
in a situation of heavy network contention. To provide sys-
tem operators with an additional form of traffic prioritization,
FlexVF implements two strategies for VM selection, which the
system operator can choose from depending on their system
requirements:

– Fair allocation. In this allocation strategy, VFs are allo-
cated in a round-robin fashion between all VMs on the host. In
other words, each VM will have access to VFs for the same
amount of time. This strategy is useful in preventing starvation,
where multiple VMs with high network traffic demand compete
for access to a small number of VFs. For example, in coflows
that require barrier synchronization (e.g. MapReduce), the slow-
est flow decides the completion of the entire coflow [14]. In
such cases, a fair allocation strategy ensures that all flows can
progress at the same rate, therefore avoiding the starvation issue.

– Activity-based allocation. Section 3 showed our initial
assessment of networking performance with VFs as compared to
with PV interfaces, namely that applications with higher network
utilization (i.e. higher packet rate) benefits more from SR-IOV
than those with lower packet rates. To reiterate, we assume that

4



network latency is linearly correlated with potential performance
improvements from VFs, with minimal impact from packet sizes.
Following this observation, we created an activity-based VF allo-
cation strategy that aims to optimize network-heavy applications
by considering the network activity of each VM, therefore es-
tablishing a ranking of VMs based on their potential need for
network performance. We further evaluate and validate our
assumption in Section 6.

With the above goal in mind, the ranking of VM network
activity is simple. We sort the running VMs by descending order
of packet rate; assuming the host has access to N VFs, we simply
assign one VF to each of the N VMs with the highest packet
rate. In other words, VMs running applications sending many
small packets will be prioritized by the strategy, in contrast to
applications sending few large packets which are less penalized
by using PV networking. This strategy is aimed towards maxi-
mizing network utilization, and is useful in cases where a small
number of VMs utilize most of the available network resources
(e.g. in a large datacenter hosting multiple application types).

VF hotplugging. Once the VM selection is done, the VF
allocator instructs the hypervisor to hot-plug/unplug VFs from
VMs, using a simple rule: with N VFs available on the host, the
N selected VMs will get access to one VF each. The selection is
periodically refreshed after a configurable interval to ensure an
up-to-date distribution of networking resources.

Algorithm 1 General algorithm of FlexVF.

1: strategy = FAIR | ACTIVITY BASED
2: while 1 do
3: for vm in list V M do
4: extract statistics(vm)
5: end for
6: selected V Ms = select VMs(list V M, strategy, N)
7: for vm in list V M – selected V Ms do
8: unplug VF(vm)
9: end for

10: for vm in selected V Ms do
11: plug VF(vm)
12: end for
13: sleep(T )
14: end while

4.4. FlexVF allocation algorithm
Let us consider a server with N available VFs. When VMs

are started on the server, as long as there are sufficient VFs
for each VM (numV M ≤ N), all VMs will be assigned an idle
PV interface and an active VF. Once numV M > N, any new
VM will be initially associated with a PV interface. After each
scheduling interval T (configurable by the system administrator),
the VF allocator executes the VF allocation algorithm 1. The
VF allocator first extracts the network utilization statistics of
each VM (line) 4, then uses this information along with the
selected VF allocation strategy to decide which VMs will receive
a VF (line 6). Finally, the VF allocator performs the desired
hotplugging based on the aforementioned decision (lines 8 and
11).

5. Implementation

This section presents the implementation details of a FlexVF.
We implemented FlexVF on Ubuntu 18.04 with KVM/QEMU
version 5.1.0-git on Linux 4.1 using Libvirt as the VM control
interface. For our prototype, we opted for an implementation
based mostly in user-space. Such an implementation has several
advantages: Firstly, it takes advantage of existing libraries (e.g,
shared memory tools that can be used in a VM), and also network
statistics available in the Linux kernel, thus minimizing the
development effort. Secondly, it allows easy reuse of our system
across different virtualization technologies, for example the Xen
hypervisor [15]. Finally, it facilitates the installation of our
system by system administrators, as we don’t require an upgrade
of the current hypervisor before using our system, and it can also
be easily integrated with standard cloud computing platform
such as OpenStack [11].

5.1. FlexVF in the VM

Our synthetic networking feature in FlexVF is based on
the network teaming driver, and the network activity hook ex-
tracts its information from the /sys/class/net directory, both of
which are existing features in the Linux kernel. For the data
exchange between FlexVF collector and VF allocator, we rely
on the KVM-based zero-copy memory sharing mechanism as
described in [16] to let the host map a memory buffer allocated
in the guest environment. Upon VF assignment from the VF
allocator, the FlexVF collector is responsible for reacting to
the hotplug/unplug event initiated by the VF allocator. Each
time the VF allocator plugs/unplugs a VF to a VM, it triggers a
corresponding virtual interrupt to the VM, which is then handled
by the FlexVF collector running inside. The functionality of the
FlexVF allocator can be integrated into existing guest services
provided by most current hypervisors.

5.2. FlexVF in the hypervisor

During hot-plugging and unplugging of network interfaces,
the task of the VF allocator is twofold: firstly, it uses the Libvirt
API to reconfigure the VM’s network interfaces to match its VM
selection; and secondly, it notifies the VM of this change through
virtual interrupts so that the collector can take the corresponding
action. To ensure that our configuration correctly reflects the
current network usage, we chose an interval of 300 seconds
between each VM ranking. This interval was chosen so as to
collect sufficient networking information, while maintaining a
quick response to changes in network activity throughout the
datacenter.

6. Evaluations

In this section, we aim to answer the following questions:

• What is the overhead of FlexVF, including the costs of
hot-plugging and unplugging of network interface, as well
as the CPU and memory costs incurred by FlexVF com-
ponents?

5



Hardware Description
CPU 2x Intel(R) Xeon(R) CPU E5-2630 v3 @

2.40GHz (8 cores/16 threads each)
RAM 128 GB
NIC Intel Corporation 82599ES 10-Gigabit
Software Description
Host OS Ubuntu 18.04, Linux 4.15
Hypervisor KVM with QEMU 5.1.0
VM Description
Size 4 vCPU, 4GB of RAM
OS Ubuntu 18.04, Linux 4.15
NIC PV: virtio-net-pci; VF: 82599ES

Table 1: Hardware and software setup

• Is packet rate an appropriate VM ranking criterion for
activity-based allocation?

• What is the impact of FlexVF on application performance?

6.1. Experimental setup

Hardware and software. Our hardware and software setup
are described in Table 1.

Benchmarks. We used well-known micro- and macro-bench-
marks to evaluate the performance of FlexVF, using network
latency as the main evaluation metric. The list of benchmarks
used in our evaluations is as follows:

• TailBench. [9] A benchmark suite for latency-critical ap-
plications, it provides request latency figures for multiple
types of workloads including search, databases and ma-
chine learning.

• Sysbench and MySQL. We tested FlexVF on a system
running the MySQL relational database, using Sysbench
as the load generator software.

• Sockperf. A socket-based network benchmarking utility,
it provides network latency figures under various back-
ground loads at predefined packet rates.

6.2. FlexVF overhead

In this section, we estimate the overhead of FlexVF regard-
ing the hotplugging and unplugging of network interfaces, as
well as the computing resources used by FlexVF components.
In general, the hot-plugging/hot-unplugging process happens in
two steps, one in the initial hypervisor to configure the relevant
device, and another inside the guest VM itself to start up the nec-
essary device driver. From our observations, most of the device
hotplugging steps on a VM are handled by the VM itself and not
the hypervisor, and therefore should not affect the operation of
other VMs. Table 2 presents the time required for each opera-
tion on 1 VM. While each hotplug and unplug operation takes
up to 640 milliseconds, the network teaming inside each guest
maintains network connectivity during the transition thanks to
the PV interface remaining active throughout this process.

We additionally studied the CPU and memory costs of FlexVF
components. Profiling of the CPU activities shows that the CPU
usage from the FlexVF daemon remains under 1% both dur-
ing normal operation and network reconfiguration, showing
FlexVF’s efficient use of CPU resources. The FlexVF daemon
additionally consumes up to 10 MB of memory per guest for the
storage and processing of VM network statistics. This figure is
sufficiently small so as not to significantly impact the memory
capacity of the host.

Hot-plugging Hot-unplugging
Time (ms) 640 56

Table 2: Time taken by each network hotplug operation.

6.3. VM selection

As stated in Section 4.2, with an activity-based allocation
strategy, FlexVF creates a ranking of VMs based on their packet
rates, while assuming a linear relationship between the packet
rate and potential network performance improvements from
SR-IOV. To verify this assumption, we deployed 1 VM run-
ning Sockperf to measure network performance under multiple
network loads as characterized by the background packet rate
traversing in the VM’s network interfaces. We collected the
resulting median packet latency and calculated a SR-IOV per-
formance boost percentage for each network load using the
following equation:

Boost% =
latPV − latVF

latPV
× 100 (1)

where latPV and latVF are network latencies under PV net-
working and SR-IOV respectively. Figure 5 shows the results
obtained under various packet sizes: 16, 64, 256, 1024 and 1472
bytes. We observe that Boost% increases with the background
packet rate, yet is largely unaffected by the packet size used
in our experiment. This is explained by our benchmark loads
not fully saturating the 10 GbE network used by our machines.
Combined with the evaluation of TailBench as shown in Sec-
tion 3 we can conclude that improvements brought by SR-IOV
depends mostly on each VM’s network packet rate. Therefore, a
packet rate-based ranking is appropriate in this case.

6.4. Macro-benchmark evaluations

MySQL. In this section, we investigate the impact of FlexVF
on application latencies using the MySQL relational database.
We deployed MySQL on the VM under test, used Sysbench to
generate a OLTP mixed read/write workload, then measured
the resulting request latency. After approximately 15 seconds
of benchmarking, we triggered the network switchover using
FlexVF and observed the change in database performance. Fig-
ure 6 shows the resulting request latency as recorded by Sys-
bench. We observe that with a PV interface, the request latency
fluctuates between 7 to 10 msec throughout the benchmark; as
soon as FlexVF assigns a VF to the server VM, this latency
drops to a stable 2 msec with little to no fluctuation, representing
a 75% latency reduction. Additionally, we observe no increase in

6



0 50 100 150 200
KPackets/sec

0
20
40
60
80

100

Bo
os

t %

16 Bytes

0 50 100 150 200
KPackets/sec

64 Bytes

0 50 100 150 200
KPackets/sec

256 Bytes

0 50 100 150 200
KPackets/sec

1024 Bytes

50 100 150 200
KPackets/sec

1472 Bytes

Figure 5: Relation between Boost% and background packet rate

5 10 15 20 25 30
Time (sec)

0

4

8

12

La
te

n
cy

 (
m

se
c) Switch-over

 PV to SR-IOV

Figure 6: MySQL performance under FlexVF

latency during the interface switchover, suggesting that Linux’s
network teaming mechanism does not affect network perfor-
mance even during network reconfiguration by FlexVF.

Multiple VM evaluation. We aim to evaluate both alloca-
tion strategies proposed in Section 4.3. We started 100 VMs
each allocated with 1 vCPU and 1 GB of RAM on a physical
host, and launched Sockperf on each VM to simulate network
loads. These 100 VMs were divided into 4 groups, each sending
1472-byte packets under varying rates: 20 000, 40 000, 80 000
and 100 000 packets per second for groups 1, 2, 3 and 4 re-
spectively. We evaluated network performance under 4 different
scenarios: (1) all VMs use PV interfaces; (2) each available VF
is allocated to a random VM; (3) using FlexVF fair allocation;
and (4) using FlexVF activity-based allocation to VMs.

Figure 7 presents a boxplot of the resulting packet latency
as reported by Sockperf, with (a), (b), (c) and (d) corresponding
to the 4 previously-described scenarios. We observe that in
scenario (1) with only PV interfaces, packet latencies are the
highest; while in scenario (2), we see a range of latency figures.
This is simply due to random VF allocation, resulting in some
VMs having a VF and therefore having lower I/O latency, while
others with a PV interface having a higher I/O latency. Scenario
(3) results are quite similar to (2) because all VMs of each group
will have access to VFs (i.e. fairness). In scenario (4), we observe
that groups 3 and 4 with the highest packet rates (and therefore
benefiting the most from VFs) get prioritized for VF allocation
as expected. Only group 2 in this scenario shows a variation in
latency figures due to some VMs in this group having access to
VFs, while others only have access to PV interfaces. Overall,
we conclude that with activity-based allocation, FlexVF’s VF
allocator ensures that VMs benefiting from SR-IOV the most
are provided with a VF accordingly, following our criteria as

described in Section 4.3.
To further highlight the impact of the allocation strategy,

we kept our 100 VMs all running Sockperf along with another
VM running an FTP server hosting a 3 GB file. We executed
all these benchmarks in two different scenarios: (1) Sockperf
VMs are configured with a packet rate higher than that of the
FTP VM; and (2) the other way around, using both allocation
strategies (Fair allocation and Activity-based allocation). We
then measured the time taken to download the file from the FTP
VM; Figure 8 presents our results. We observe that with the fair
allocation strategy, the FTP VM provides a stable performance
regardless of the activity of neighboring VMs, while the activity-
based strategy causes a reduction in download throughput of up
to 93% depending on the network traffic of neighboring VMs.
In short, the two allocation strategy effectively provides a choice
between balanced performance of all VMs and optimization of
total system throughput.

7. Discussion

We note that FlexVF does not guarantee performance pre-
dictability in all cases as is often required in public clouds. The
performance of a VM with FlexVF depends on the allocation
strategy, the number of co-located VMs, and their network ac-
tivities. This is why FlexVF is designed to be used in a context
where raw throughput is preferable over performance predictabil-
ity, e.g in private clouds. In these cases, FlexVF guarantees a
good use of VFs on a server through its various allocation strate-
gies.

8. Related work

Multiple works have explored the problem of I/O perfor-
mance on virtual machines. In general, these works can be
categorized into the following approaches:

Placement-based approaches. This approach involves cal-
culating the placement of virtual resources using a graph-based
topology of the network. There have been numerous works such
as [17, 18, 19, 20, 21] using such an approach in a way that
optimizes service latency, bandwidth or energy consumption.
In particular, Carpio, Jia and Wang [18, 19, 20] focus on the
context of network function virtualization, aiming to answer the
question of virtual network function (VNF) placement. Simi-
larly, VNF-EQ [22] is a solution that uses genetic algorithms
to calculate a placement of VNFs in a network of datacenters

7



G1 G2 G3 G4

a) Full PV

0
40
80

120
160

La
te

nc
y 

(m
se

c)

G1 G2 G3 G4

b) Random

G1 G2 G3 G4

c) FlexVF Fair

G1 G2 G3 G4

d) FlexVF Activity-based

Figure 7: Multiple VMs evaluation with FlexVF

 Fair 
 allocation

Activity-based 
 allocation

0

20

40

60

80

100

Ti
m

e 
(m

in
) 

Scenario 1 Scenario 2

Figure 8: Allocation strategy impact on FTP performance when packet rate is
(1) lower than neighbor VMs and (2) higher.

to provide quality-of-service guarantees for network flows and
optimize energy efficiency.

Reactive adjustment (autoscaling) approaches. Works in
this approach are based on monitoring various system utilization
metrics, then adjusting system parameters for load-balancing
purposes. For example, Damola and Johnsson [23] propose a
framework for monitoring performance criteria such as packet
flow and jitter, then using the resulting metrics to migrate VMs
onto different servers to balance network loads and avoid perfor-
mance degradation. Related is Beda and Kadatch [24], whose
work monitors the usage of a virtual resource (e.g. virtual disk
instance), and adapts its performance by adjusting its I/O rate
and throughput as the utilization reaches a certain threshold.
Richter et al. [25] describe an anti-DoS mechanism for prevent-
ing packet flooding on SR-IOV-enabled guests by counting PCI
Express operations and throttling any malicious guest.

SR-IOV-based VNF implementations. Intel’s whitepa-
per [26] introduces the advancements brought by SR-IOV, in-
cluding its usage with DPDK, methods of utilizing SR-IOV
in NFV architecture, and evaluations of SR-IOV compared to
virtio and Vhost under various traffic flow patterns. Kourtis et
al. [27] describe and evaluate a deep packet inspection imple-
mentation based on SR-IOV and DPDK, while comparing its
performance to a libpcap-based implementation, and discusses
the usage of said solutions with consideration to cloud deploy-
ments. Leivadeas et al. [28] describe various VNF topologies
derived from multiple VNF chaining mechanisms: no chaining,
direct virtual Ethernet bridge in hardware, KVM bridge and
VEPA bridge. Hamed et al. [29] analyzes in detail VNF deploy-

ment scenarios with single- or multi-feature VNFs with different
chaining traffic paths, and evaluates the performance and scala-
bility of multiple-VNF setups under each scenario while taking
into account VNF oversubscription.

Other approaches and evaluations. These works investi-
gate general opportunities for increasing I/O performance, for
example by improving software-hardware interfaces as used by
operating systems. Taguchi et al. [30] introduces a packet ag-
gregation solution that dynamically merges and splits packets in
a VNF dataflow to reduce virtual network packet routing over-
head, thus increasing throughput while reducing latency. Dong
et al. [12] evaluates the characteristics of SR-IOV-based virtual
networking, designs an architecture for providing said virtual
interfaces to VM guests, and details how SR-IOV can be utilized
in a migration context by combining an SR-IOV virtual interface
with a paravirtualized interface through use of a bonding driver.
The same technique is used by Microsoft Azure to ensure VM
connectivity in case the VF is disconnected [8]. Shea et al. [31]
provides a detailed evaluation of network performance on vir-
tualized environments, including measurements of throughput,
roundtrip time and CPU load with different types of traffic, and
suggests a method for optimizing network performance of said
environments with changes in the Xen scheduler configuration.
Huang and Liu [32, 33] investigate the performance of SR-IOV-
enabled 10 GbE Ethernet NICs under various conditions; works
such as [32, 34, 35] particularly focus on the interrupt handling
by the operating system, and considers optimizations through in-
terrupt throttling, multithreaded processing or intelligent polling
to improve network performance on NICs.

Position of our work. To our best knowledge, we are the
first work to suggest using an adaptive I/O interface that dy-
namically allocates VFs for the purpose of optimizing network
accesses for virtual machines.

9. Conclusion

Hardware constraints limit the number of virtual functions
available on each SR-IOV-enabled virtualization host, raising the
question of which VMs should benefit and which VMs should
not.

We introduced FlexVF, a solution that monitors VMs and
dynamically allocates VFs with two strategies: fair allocation or
based on their network activity. We assessed FlexVF under vari-
ous workloads, and demonstrated that FlexVF takes advantage

8



of SR-IOV to improve network latencies without affecting com-
patibility with networked applications or causing application
overhead.

Acknowledgements

This work is supported by the French National Research
Agency (ANR-20-CE25-0005) and the CIMI research program.
Some experiments presented in this paper were carried out using
the Grid’5000 testbed, supported by a scientific interest group
hosted by Inria and including CNRS, RENATER and several
Universities as well as other organizations (see https://ww
w.grid5000.fr/).

References

[1] R. Shea, J. Liu, Network interface virtualization: challenges and solutions,
IEEE Network 26 (5) (2012) 28–34.

[2] Implementing Large Numbers of Virtual Functions with PCI Express SR-
IOV, https://www.synopsys.com/designware-ip/techn
ical-bulletin/implementing-large-numbers.html.

[3] D. Balouek, A. Carpen Amarie, G. Charrier, F. Desprez, E. Jeannot, E. Jean-
voine, A. Lèbre, D. Margery, N. Niclausse, L. Nussbaum, O. Richard,
C. Pérez, F. Quesnel, C. Rohr, L. Sarzyniec, Adding virtualization capabili-
ties to the Grid’5000 testbed, in: I. I. Ivanov, M. van Sinderen, F. Leymann,
T. Shan (Eds.), Cloud Computing and Services Science, Vol. 367 of Com-
munications in Computer and Information Science, Springer International
Publishing, 2013, pp. 3–20. doi:10.1007/978-3-319-04519-1 1.

[4] R. Ricci, E. Eide, C. Team, Introducing CloudLab: Scientific infrastructure
for advancing cloud architectures and applications, ; login:: the magazine
of USENIX & SAGE 39 (6) (2014) 36–38.

[5] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, R. Bian-
chini, Resource Central: Understanding and Predicting Workloads for
Improved Resource Management in Large Cloud Platforms, in: Proceed-
ings of the 26th Symposium on Operating Systems Principles, SOSP ’17,
Association for Computing Machinery, New York, NY, USA, 2017, p.
153–167. doi:10.1145/3132747.3132772.
URL https://doi.org/10.1145/3132747.3132772

[6] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer, P. Pi-
wonka, D.-M. Popa, Firecracker: Lightweight virtualization for serverless
applications, in: 17th {usenix} symposium on networked systems design
and implementation ({nsdi} 20), 2020, pp. 419–434.

[7] Enhanced networking on Linux, https://docs.aws.amazon.co
m/AWSEC2/latest/UserGuide/enhanced-networking.ht
ml.

[8] Create a Linux virtual machine with Accelerated Networking using Azure
CLI, https://docs.microsoft.com/en-us/azure/virtu
al-network/create-vm-accelerated-networking-cli.

[9] H. Kasture, D. Sanchez, Tailbench: a benchmark suite and evaluation
methodology for latency-critical applications, in: 2016 IEEE International
Symposium on Workload Characterization (IISWC), 2016, pp. 1–10.

[10] Intel Ethernet Converged Network Adapter X550, https://www.in
tel.com/content/dam/www/public/us/en/documents/p
roduct-briefs/ethernet-x550-brief.pdf.

[11] A. Shrivastwa, S. Sarat, K. Jackson, C. Bunch, E. Sigler, T. Campbell,
OpenStack: Building a Cloud Environment, Packt Publishing, 2016.

[12] Y. Dong, X. Yang, J. Li, G. Liao, K. Tian, H. Guan, High performance
network virtualization with SR-IOV, Journal of Parallel and Distributed
Computing 72 (11) (2012) 1471–1480.

[13] Configuring QoS Features with Intel Flexible Port Partitioning, https:
//www.intel.in/content/dam/www/public/us/en/docu
ments/white-papers/config-qos-with-flexible-port
-partitioning.pdf.

[14] M. Chowdhury, I. Stoica, Coflow: A networking abstraction for cluster
applications, in: Proceedings of the 11th ACM Workshop on Hot Topics
in Networks, 2012, pp. 31–36.

[15] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, A. Warfield, Xen and the Art of Virtualization, SIGOPS
Oper. Syst. Rev. 37 (5) (2003) 164–177. doi:10.1145/1165389.945462.
URL https://doi.org/10.1145/1165389.945462

[16] C. Pinto, B. Reynal, N. Nikolaev, D. Raho, A zero-copy shared memory
framework for host-guest data sharing in KVM, in: 2016 Intl IEEE Confer-
ences on Ubiquitous Intelligence Computing, Advanced and Trusted Com-
puting, Scalable Computing and Communications, Cloud and Big Data
Computing, Internet of People, and Smart World Congress (UIC/ATC/S-
calCom/CBDCom/IoP/SmartWorld), 2016, pp. 603–610.

[17] J. Dong, H. Wang, X. Jin, Y. Li, P. Zhang, S. Cheng, Virtual machine
placement for improving energy efficiency and network performance in
IaaS cloud, in: 2013 IEEE 33rd International Conference on Distributed
Computing Systems Workshops, IEEE, 2013, pp. 238–243.

[18] F. Carpio, S. Dhahri, A. Jukan, VNF placement with replication for Loac
balancing in NFV networks, in: 2017 IEEE International Conference on
Communications (ICC), IEEE, 2017, pp. 1–6.

[19] M. Jia, W. Liang, Z. Xu, QoS-aware task offloading in distributed cloudlets
with virtual network function services, in: Proceedings of the 20th ACM In-
ternational Conference on Modelling, Analysis and Simulation of Wireless
and Mobile Systems, 2017, pp. 109–116.

[20] F. Wang, R. Ling, J. Zhu, D. Li, Bandwidth guaranteed virtual network
function placement and scaling in datacenter networks, in: 2015 IEEE 34th
International Performance Computing and Communications Conference
(IPCCC), IEEE, 2015, pp. 1–8.

[21] L. Yu, Z. Cai, Dynamic scaling of virtual clusters with bandwidth guarantee
in cloud datacenters, in: IEEE INFOCOM 2016-The 35th Annual IEEE
International Conference on Computer Communications, IEEE, 2016, pp.
1–9.

[22] S. Kim, S. Park, Y. Kim, S. Kim, K. Lee, VNF-EQ: dynamic placement of
virtual network functions for energy efficiency and QoS guarantee in NFV,
Cluster Computing 20 (3) (2017) 2107–2117.

[23] A. Damola, A. Johnsson, Network performance monitor for virtual ma-
chines, uS Patent 9,063,769 (Jun. 23 2015).

[24] J. S. Beda III, A. Kadatch, Adjustable virtual network performance, uS
Patent 8,276,140 (Sep. 25 2012).

[25] A. Richter, C. Herber, S. Wallentowitz, T. Wild, A. Herkersdorf, A hard-
ware/software approach for mitigating performance interference effects in
virtualized environments using SR-IOV, in: 2015 IEEE 8th International
Conference on Cloud Computing, IEEE, 2015, pp. 950–957.

[26] SR-IOV for NFV Solutions - Practical Considerations and Thoughts, ht
tps://www.intel.com/content/dam/www/public/us/en
/documents/technology-briefs/sr-iov-nfv-tech-bri
ef.pdf.

[27] M.-A. Kourtis, G. Xilouris, V. Riccobene, M. J. McGrath, G. Petralia,
H. Koumaras, G. Gardikis, F. Liberal, Enhancing VNF performance by
exploiting SR-IOV and DPDK packet processing acceleration, in: 2015
IEEE Conference on Network Function Virtualization and Software De-
fined Network (NFV-SDN), IEEE, 2015, pp. 74–78.

[28] A. Leivadeas, M. Falkner, N. Pitaev, Analyzing service chaining of virtu-
alized network functions with SR-IOV, in: 2020 IEEE 21st International
Conference on High Performance Switching and Routing (HPSR), IEEE,
2020, pp. 1–6.

[29] A. Ben Hamed, A. Leivadeas, M. Falkner, N. Pitaev, VNF chaining per-
formance characterization under multi-feature and oversubscription using
SR-IOV, in: Informatics, Vol. 7, Multidisciplinary Digital Publishing
Institute, 2020, p. 33.

[30] Y. Taguchi, R. Kawashima, H. Nakayama, T. Hayashi, H. Matsuo, Pa-flow:
Gradual packet aggregation at virtual network i/o for efficient service
chaining, in: 2017 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), IEEE, 2017, pp. 335–340.

[31] R. Shea, F. Wang, H. Wang, J. Liu, A deep investigation into network
performance in virtual machine based cloud environments, in: IEEE IN-
FOCOM 2014-IEEE Conference on Computer Communications, IEEE,
2014, pp. 1285–1293.

[32] Z. Huang, R. Ma, J. Li, Z. Chang, H. Guan, Adaptive and scalable op-
timizations for high performance SR-IOV, in: 2012 IEEE International
Conference on Cluster Computing, IEEE, 2012, pp. 459–467.

[33] J. Liu, Evaluating standard-based self-virtualizing devices: A performance
study on 10 GbE NICs with SR-IOV support, in: 2010 IEEE International
Symposium on Parallel & Distributed Processing (IPDPS), IEEE, 2010,

9



pp. 1–12.
[34] H. Guan, Y. Dong, K. Tian, J. Li, SR-IOV based network interrupt-free

virtualization with event based polling, IEEE Journal on Selected Areas in
Communications 31 (12) (2013) 2596–2609.

[35] J. Li, S. Xue, W. Zhang, Z. Qi, et al., When I/O interrupt becomes system
bottleneck: Efficiency and scalability enhancement for SR-IOV network
virtualization, IEEE Transactions on Cloud Computing (2017).

Brice Ekane received his M.S. in Uni-
versity of Yaounde Cameroon in 2011.
Since September 2018 he is carrying out
a PhD at IRIT lab, Toulouse France. He is
a member of SEPIA research group. His
main research interests are in Virtualization,
Cloud Computing, and Operating System.

Tu Dinh Ngoc received his M.S. in
UST Hanoi, Vietnam in 2017. Since
September 2020 he is carrying out a PhD
at IRIT lab, Toulouse France. He is a mem-
ber of SEPIA research group. His main re-
search interests are in Virtualization, Cloud
Computing, and Operating System.

Boris Teabe received his PhD in com-
puter science in 2017, at the IRIT lab,
Toulouse, France. Since September 2019
he is Lecturer and Research Assistant at
Polytechnic National Insitute of Toulouse,
France. He is a member of SEPIA research

group. His main research interests are in Scheduling in virtual-
ization, Cloud Computing and Operating System.

Daniel Hagimont is a Professor at Poly-
technic National Institute of Toulouse, France
and a member of the IRIT laboratory, where
he leads a group working on operating sys-
tems, distributed systems and middleware.
He received a PhD from Polytechnic Na-
tional Institute of Grenoble, France in 1993.

After a postdoctorate at the University of British Columbia, Van-
couver, Canada in 1994, he joined INRIA Grenoble in 1995. He
took his position of Professor in Toulouse in 2005.

Noel De Palma received his PhD in
computer science from the Grenoble Insti-
tute of Technology in 2001. From 2002, he
was Associate Professor in computer science
at University of Grenoble. Since 2010 he is
professor at University of Grenoble Alpes.

10


