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Improving Automation for Higher-Order
Proof Steps

Antoine Defourné

Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
antoine.defourne@inria.fr

Abstract. We have extended the TLA™ proof system TLAPS with
a new backend to improve the automation of proof steps that involve
higher-order reasoning. The current support for such steps is poor, re-
quiring the user to break down proofs into unnecessarily small steps.
We defined a translation from TLAT to THF, the TPTP dialect for
higher-order logic, and evaluated several higher-order solvers on proof
obligations generated from the standard library of TLA". Our results
demonstrate that the solvers are able to handle much coarser proof steps
than the other strategies provided by TLAPS, reducing the amount of
necessary user interactions by a significant margin.

Keywords: Automated Deduction - Higher-Order Theorem Proving - TLA™T -
TLAPS

1 Introduction

TLA™ is a specification language for modelling and expressing properties of dis-
tributed systems [10]. Its core logic is the Temporal Logic of Actions (TLA) with
the operators and axioms of ZF set theory. The language admits a syntax for
expressing theorems and proofs in the hierarchical style of Leslie Lamport [9].
These proofs are treated by the TLAT Proof System (TLAPS) tool, which dis-
patches the proof obligations it generates to an array of external solvers, among
which there are Isabelle, Zenon, and SMT solvers such as Z3 and CVC4 [6].

This article is about a particular problem that impacts the experience of
TLAPS users when writing proofs for TLAT. The language is often categorized
as a first-order logic, but in the context of TLAPS, there are situations in which
a proof obligation cannot be directly expressed without second-order features.
More precisely, a lemma can be parameterized by a first-order operator; when
such a lemma is invoked as part of a proof, a second-order unification is necessary.
To dispatch obligations to the available backends, TLAPS uses encodings which
were almost all designed with first-order logic as a target language. The exception
is Isabelle, which means only this solver is currently invoked on the higher-order
obligations of TLA ™.

Although such higher-order obligations are not the primary kind of obliga-
tions one encounters in TLAPS, they are mandatory in some contexts, notably



when any form of reasoning by induction is involved. The current support of
these obligations by TLAPS is poor: the generic tactics of Isabelle are often un-
able to handle mildly complex obligations, which forces the user to break down
its proofs into smaller steps until they are simple enough for Isabelle. This is a
time-consuming process that we want to avoid.

We saw this issue as an opportunity to experiment with a higher-order solver
on some TLA T proofs. Zipperposition was our initial choice for this experiment.
It is a superposition theorem prover for first-order logic with equality and the-
ories, recently extended with support for higher-order logic [3,16,17], and the
winner of the 10** CASC competition (2020) in the THF category [14]. Our main
contribution is the implementation of a translation from TLA ™ to THF, and the
integration of Zipperposition as a new backend for TLAPS. In this article, we
also consider other solvers that performed well in the THF division of CASC:
Satallax [5], Leo-III [13], Vampire [4] and CVC4 [2]. We evaluate these solvers
along with Zipperposition on the same THF problems that TLAPS generates.

The rest of this paper is outlined as follows: in section 2, we present a TLA™T
proof that illustrates the problem in more details; in section 3, we present the
relevant aspects of the encoding into THF that was implemented; in section 4,
we evaluate the solvers and measure how much proof steps we can remove from
the original proofs, compared to what is possible with only Isabelle.

2 The Difficulty of Second-order Proofs in TLA™

The difficulties we are interested in arise mostly when dealing with induction in
some way. Our example is about defining an operator by recursion in TLA". We
define the operator Sum to represent finite sums over series. The term Sum(n, S)
represents y ., S(i), where S is any TLA" first-order operator. The standard
library provides a module NaturalsInduction with facilities to deal with such defi-
nitions, and a guideline example. Following these guidelines, this is the definition
we obtain:

sumF(S( )) ==
LET sumRec[ m € Nat ] ==
IF m =0 THEN 0 ELSE S(m) + sumRec[m - 1]
IN
sumRec

Sum(n, S(_)) == sumF(S) [n]

Before this definition can be used, a few lemmas need to be proven. The first
lemma, expresses the fact that a recursive function that matches the definition
does exist:

THEOREM SumbDefConclusion ==
ASSUME NEW S( )
PROVE NatInductiveDefConclusion(sumF(S), 0, LAMBDA v,n : S(n) + v)



TLA™ theorems are typically expressed in this manner. The keyword “ ASSUME”
precedes a list of declarations and hypotheses, separated by commas. Declara-
tions are introduced by “NEW”, here the only declaration is of an operator S.
The keyword “PROVE” precedes the actual goal. The content of NatInductiveDef-
Conclusion and the proof of this lemma (omitted here) are not relevant to us.
The next lemma reads:

THEOREM SumDef ==
ASSUME NEW S( ), NEW n € Nat
PROVE Sum(n, S) = IF n = 0 THEN 0 ELSE S(n) + Sum(n - 1, S)
BY SumDefConclusion DEF NatlnductiveDefConclusion, Sum

This time we have included the proof, which consists of a single line. The keyword
“BY” is followed by a list of proven facts to be invoked as hypotheses. “DEF” is
followed by a list of defined identifiers to expand (by default, operators declared
at the top level are not expanded). Here it suffices to invoke the previous lemma,
SumDefConclusion, and expand two definitions. As SumDefConclusion is param-
eterized by an operator S, the resulting obligation for SumDef is higher-order.
Unfortunately, Isabelle is unable to solve it.

Inspecting the obligation, we notice that two higher-order instantiations are
in fact needed: one for the lemma, the other to instantiate an axiom schema
regarding functional application. The usual way to go around such issues is to
make an intermediate step to isolate each difficult instantiation:

THEOREM SumDef ==

ASSUME NEW S( ),

NEW n € Nat

PROVE Sum(n, S) = IF n = 0 THEN 0 ELSE S(nh) + Sum(n - 1, S)
<1>1 NatlInductiveDefConclusion (sumF(S), 0, LAMBDA v,m : S(m) + v)

BY SumDefConclusion
<1> QED

BY <1>1 DEF NatInductiveDefConclusion, Sum

We have replaced the single-line proof by a two-steps proof. The intermediary
step is labelled “<1>1”, the last step’s goal is necessarily “QED” to refer to the
main goal. Each step must be justified by its own proof. Note that step <1>1 is
invoked as a proved fact for the last step. This time, Isabelle manages to solve
<1>1, but the final step is still too difficult. A potential reason for this is that
the required instance, sum(S), is too complex a term. We rearrange the proof
so that this term is a constant instead, inserting yet another step plus a local
definition. This time, Isabelle finishes the proof:

THEOREM SumDef ==

ASSUME NEW S( ),

NEW n € Nat

PROVE Sum(n, S) = IF n =0 THEN 0 ELSE S(n) + Sum(n - 1, S)
<1> DEFINE f == sumF(S)
<1>1 SUFFICES f[n] = IF n = 0 THEN 0 ELSE S(n) + f[n - 1]

BY DEF Sum
<1>2 NatlnductiveDefConclusion(f, 0, LAMBDA v,m : S(m) + v)



BY SumDefConclusion
<1> HIDE DEF f
<1> QED
BY <1>2 DEF NatlnductiveDefConclusion

The line starting with “DEFINE” is not an intermediary step, but a local defi-
nition. Operators declared locally are expanded by default. This is why we also
insert the other special line starting with “HIDE DEF”: this command makes the
operator opaque for the rest of the proof. The new step <1>1 is an intermediary
step that starts with the keyword “SUFFICES”. Such steps are used for backward
reasoning: instead of proving a new fact, they prove that the current goal can
be reformulated.

Not only have we gone from a single-line proof to an over-detailed script,
we have also lost time figuring out what made the obligations too complex for
Isabelle, and trying different ways to formulate the proof.

Proofs such as this one are typical of the difficult higher-order obligations of
TLAPS. Working on these, the user is essentially wasting time trying to find a
formulation that accommodates the solvers. This very case is especially prob-
lematic, since it was written in accordance with the guidelines provided at the
bottom of the module Naturalsinduction—thus it is representative of TLAPS
proofs. It would be desirable that the first version, a single-line proof, be han-
dled by TLAPS, and after adding support for Zipperposition we found that the
new backend could solve it. Before we develop on the performances of Zipper-
position and other higher-order solvers, let us detail how the encoding to THF
was implemented.

3 The Encoding of TLAT into THF

3.1 Overview

Each TLA T obligation must be encoded into the input language of the relevant
backends. We encode the obligations into THF, the component of the TPTP
standard for representing problems of higher-order logic.

We ignore the temporal aspects of the logic and view TLA' as an untyped
second-order logic with a standard theory on top (of sets, arithmetic, etc.) [10].
The only logical aspect of TLA™ that sets it apart from traditional logic is
the absence of the term/formula distinction. This will be discussed in the next
subsection. Although the implementation is new, it is largely inspired by the
SMT encoding of TLAPS [15].

The encoding of TLA " consists in the following sequence of steps:

1. Disambiguate expressions. This is where the usual distinction between terms
and formulas is recovered.

2. Apply some elementary simplifications. Syntactic sugar is removed. Some
rewritings are applied to accommodate solvers.



3. Standardize expressions. This step only serves a technical purpose. It consists
in changing the internal representation of TLA™T primitives. These primitive
constructs are rewritten as first- or second-order applications. For instance,
the expression {x € S : P(z)} is rewritten as SetSt(S, Az. P(x)), where SetSt
is a new operator.

4. Complement the problem with the necessary axioms. This effectively makes
the operators added during the previous step behave like the original con-
structs. For instance, the axiom of set comprehension will be added to specify
SetSt. Only the axioms that specify the operators that occur in the obligation
are included.

5. Translate the problem into THF. At this point the obligation has been pro-
cessed enough so that the translation can be direct.

In the next subsections, we give relevant details about the encoding, covering
mostly the steps 1 and 2 of this overview.

3.2 Recovering Formulas

First-order logic, even monosorted, still makes a distinction between terms and
formulas—we can characterize them with the respective sorts ¢ and o. The logic of
TLA™" can be largely derived from traditional logic, but the distinction between
term and formula is absent. All TLAT expressions belong to the same sort ¢,
even those that look like formulas.

An important consequence is that any expression can occur in a context where
a formula would normally be expected. The expression “2 = —5” is legitimate
in TLAT. As a particular case, any expression can be treated as a statement; it
is allowed to ask if “1+1” is true or false, for example. The problem arises more
commonly with statements of this kind:

ASSUME NEW P( ),
NEW a
PROVE P(a) => P(a)

In the absence of any syntactic indication, P cannot be assumed to denote a
predicate, even though it can be treated like one in the goal.

In the very first phase of the encoding, expressions are transformed so that
the usual distinction between ¢ and o is recovered. To define this mapping we need
some understanding of the semantics of TLAT, which are described in [10, sec.
16.1.3]. TLAPS follows the so-called liberal interpretation of TLA", which can
be summarized as follows: if some e occurs in a boolean context (i.e. it must be
evaluated as a formula), then it is treated as e = T. For instance, the expression
“2 = 5" is interpreted like “(2 = T) = —(5 = T)”, which happens to be
provable by 2 # 5. The last example becomes:

ASSUME NEW P( ),

NEW a
PROVE ( P(a) = TRUE ) => ( P(a) = TRUE )



This principle is implemented by the mappings []* and [-], defined below.
The target language is first-order logic with the sorts ¢+ and o. Two operators
are introduced by this mapping: from bool and tt. The former is an injector
of o into ¢. The latter is the counterpart of T in the domain of +—it is needed
because T is treated as a o in the target language, so rewriting e as “e = T”
would result in an equality between a ¢ and a o.

The functions []f and []" map expressions of TLA" to formulas and terms
(respectively) of first-order logic. Variables are denoted by z, operators are de-
noted by k.

[ 21 ] £ a
le1 = ea)’ 2] = [ea) [K(er, .. en))] 2 k(] ... [en]’)
Vz. e’ £ vz, [e)f [e]” £ from _bool([e]”)
[e1 = 2] 2 [eq]" = [e2)]
e} &[] =1t

The rules that introduce from bool and tt are the ones that convert terms
and formulas into each other. These conversions rules are applied with lowest
priority. The actual implementation also accounts for second-order applications;
operator arguments are expected to take inputs from ¢ and return values from .
Some optimizations are applied: set membership is specified to be a predicate
in TLA™T, so € is given a predicate type and no conversion is applied on mem-
bership statements; some constructs expect a predicate argument, for example
in“{z € S: P(x)}”, the function []f is called on “P(x)”.

The mapping [-]* is sound in the sense that if [e]’ is valid in FOL, then e is
valid in TLA ™. The mapping is made complete by enforcing the interpretations
of the new operators in the target language. This is done by adding a single
axiom to the problem:

from _bool(T) = tt A from _bool(L) # tt (B)

To summarize: for all TLA™ expression e, e is valid iff [e]f is satisfied by all
models of (B) in FOL. The encoding applies [-]/ to all top expressions and adds
the axiom (B) to the problem.

3.3 Arithmetic

TLA™ admits a number of primitive operators and axioms, which constitute its
standard theory. The main components of this theory are: set theory, functions,
and arithmetic. Our encoding simply makes the necessary standard declarations
and axioms explicit in the final THF problem, but arithmetic is treated differ-
ently.

The SMT encoding uses special axioms that make use of the sort Int of SMT-
LIB. That way, specialized reasoning implemented by the solvers for arithmetic



can be leveraged. But the version of Zipperposition that supports higher-order
reasoning does not also support arithmetic, so it is not possible to replicate the
method of the SMT encoding.

However, the purpose of using a higher-order solver for TLA ™ is not to solve
arithmetical goals. The encoding must only be complete enough for goals that
involve higher-order reasoning. Therefore, the theory of arithmetic is discarded
for our needs; the encoding merely declares the operators it needs, giving them
a generic type according to their arities. That includes declaring constants for
each literal number that occurs in the obligation.

We don’t expect users to invoke the new backend for obligations that re-
quire arithmetical reasoning. However, we inspected goals that Zipperposition
would not solve and found that simple arithmetical checks were often manda-
tory. Checking that some value is a member of Int or Nat is a common case. We
chose a few axioms to include in the problem so that these checks can be made
and more goals can be proven. Here are the axioms we include in the THF file:

Typing axioms Each literal number (constant that identifies a number) is
specified to be a member of the set of integers:

0€lInt 1€lnt 2¢€lnt
There is a typing axiom for almost all arithmetical operators, for instance:
V21,22 € Int. (21 + 22) € Int

Comparisons to 0 In complement to the typing axioms, we add an axiom for
each literal number:

z <0 if z is negative

0 <z if z is positive

Only the operator for < is declared in the THF file. The other comparisons >,
< and > are rewritten so that only < occurs during the simplification phase.
This is sound with respects to TLA' semantics, as these operators are de-
fined from each other this way, even for non-integer values.

Distinct literals For every two distinct literals z; and z; that we declare, we
add the axiom:

2’1752’2

3.4 Set Extensionality

Past experiences with the SMT encoding of TLA™" showed that encoding set
extensionality by including the axiom hardly ever worked, as it is difficult to
determine how this axiom should be instantiated in practice. We followed the
example of SMT and omitted the axiom of set extensionality. However, while
experimenting with our encoding we found that some obligations required set
extensionality to be solved. In order to solve more goals, we decided to partially
support the axiom by applying simple rewritings.



The axiom states
Ve,y.(Vz.z€ax e z€e€y)=x=y

The converse implication is trivially true, so we may apply the axiom as the
following rewriting rule:

r=y—Vz.zeEx &S zey

We determine which equalities are rewritten using polarities. A polarity can be
attributed to every subexpression of an expression: the top expression is positive;
the polarity is reversed by negation, or by implication for the left member. It is
only necessary to rewrite the positive equalities in a goal. These are the equalities
that need to be justified, while the negative ones serve as hypotheses and lead
to substitutions. For instance, in the goal

Vo, y. {z,y} = {y, z}

the equality occurs neither under a negation nor on the left of an implication,
so the rewrite rule is applied. However, in the goal

Ve,yz=0=>yé¢x

the equality occurs on the left of an implication. No rewriting is applied: the
goal is proven by substituting @) for = on the right.

TLAT is untyped and considers any object to be a set. That means set
extensionality is always applicable, and the rewriting rule is sound in every
context. But we would not want to rewrite an equality like “0 = 17, for instance.
The rule is restricted to cases where one of the members of the equality is built
from a set-theoretical primitive (set enumeration, set comprehension, etc.)

This approach is obviously incomplete. Set extensionality may be needed
while there is not an equality to rewrite in the goal. For example, this goal
cannot be proven with our method:

ASSUME NEW F( ), NEW S
PROVE F(S \cup {}) = F(S)

Our treatments of set extensionality and arithmetic are the prime sources of
incompleteness in the encoding. We do not see this as a problem in the case of
arithmetic, as this backend is not intended to be called on arithmetical goals.
The lack of a complete support for set extensionality is more often a problem,
as it can be natural to write goals that require it when reasoning in terms of set.

4 Evaluation

4.1 Proof Simplification

Having defined and implemented an encoding of TLA" into THF, we now turn
to the evaluation of the higher-order solvers. The purpose of this evaluation is



to show that proofs can be written with less details using a higher-order solver,
compared to what is currently possible with only Isabelle. Our method consists in
evaluating the solvers on simpler versions of existing proofs. Here by “simpler” we
mean: proofs carried out in fewer steps. As the proofs get simpler, the resulting
obligations must get more complex for the backends.

The general method we applied to evaluate a given solver can be outlined as
follows:

1. Select specifications that feature higher-order obligations and identify said
obligations;

2. Test the higher-order solver on those obligations, and the surrounding obli-

gations as well;

. Simplify proofs by merging proof steps around the relevant obligations;

4. Evaluate the solver and Isabelle on the new obligations—we are mostly inter-
ested in the number of goals that are uniquely handled by the higher-order
solver.

w

The specifications were selected from the standard library of TLA". An obli-
gation was considered higher-order if it featured one fact that is parameterized
by an operator (proving it requires higher-order unification). Before we show the
results, let us briefly explain how step 3 was carried out.

Consider the following proof:

THEOREM TaillnductiveDef ==
ASSUME NEW S, NEW Def(_, ), NEW f, NEW f0,
TaillnductiveDefHypothesis(f, S, f0, Def)
PROVE TaillnductiveDefConclusion(f, S, f0, Def)
<1>. DEFINE Op(h,s) == IF s = <<>> THEN f0 ELSE Def(h[Tail(s)], s)
<1>1. StrictSuffixesDetermineDef(S, Op)
(x ... %)
<1>2. OpDefinesFen(f, Seq(S), Op)
BY DEF OpDefinesFcn, TaillnductiveDefHypothesis
<1>3. WFInductiveDefines(f, Seq(S), Op)
BY <1>1, <1>2, SuffixRecursiveSequenceFunctionDef
<1>. QED
BY <1>3 DEF WFInductiveDefines, TaillnductiveDefConclusion

The higher-order step here is <1>3. Indeed, the statement of SuffixRecursiveSe-
quenceFunctionDef is:

THEOREM SuffixRecursiveSequenceFunctionDef ==
ASSUME NEW S, NEW Def(_, ), NEW f,
StrictSuffixesDetermineDef (S, Def),
OpDefinesFen (f, Seq(S), Def)
PROVE WFInductiveDefines(f, Seq(S), Def)

The lemma is parameterized by an operator Def( , ), which makes the obli-
gation associated to <1>3 higher-order. Zipperposition was able to solve that
obligation. To find potential simplifications, we test the solver on the surround-
ing obligations.



Let us assume Zipperposition was able to solve step <1>2 and the QED step,
but not <1>1. We can merge <1>3 with <1>2 because the latter is referenced in
the proof of the former. We can also merge <1>3 with the QED step, for the
same reason. Merging proofs amounts to merging their lists of invoked facts and
definitions. After simplification, the result is:

THEOREM TaillnductiveDef ==
ASSUME NEW S, NEW Def(_, ), NEW f, NEW f0,
TaillnductiveDefHypothesis(f, S, f0, Def)
PROVE TaillnductiveDefConclusion(f, S, f0, Def)
<1>. DEFINE Op(h,s) == IF s = <<>> THEN f0 ELSE Def(h[Tail(s)], s)
<1>1. StrictSuffixesDetermineDef(S, Op)
(C I
<1>. QED
BY <1>1, SuffixRecursiveSequenceFunctionDef
DEF OpDefinesFcn, TaillnductiveDefHypothesis,
WFInductiveDefines, TaillnductiveDefConclusion

The new step still contains a reference to <1>1. As Zipperposition was not able
to solve this step, it would necessary fail if we merged QED with <1>1, so we
stop here. The new proof is 2 steps shorter than the original one, so we measure
that simplification by “2 steps”. We took Zipperposition as an example, but the
same process must be carried out for every solver, resulting in several simplified
versions of each specification.

Other simplifications may be applied in particular cases. Some proofs may
include inline facts to prove instead of a reference to a lemma or proof step. The
proof

<1> Cardinality (x \cup {}) = Cardinality (x)
BY x \cup {} = x, SomeLemma DEF SomeDef

is equivalent to

<1>1 x \cup {} = x
OBVIOUS

<1> Cardinality (x \cup {}) = Cardinality (x)
BY <1>1, SomelLemma DEF SomeDef

So the removal of “x \cup {} = X” counts as simplification by one step.
It is also common to find local definitions made opaque for a proof step in
order to facilitate unification:

<1> DEFINE P(n) == (% ... %)
(x ... %)
<1> HIDE DEF P
<1> ¥V n € Nat : P(n)
BY <1>1, <1>2, Natlnduction

We counted as simplification by one step the removal of the HIDE command.
Removing this line equates to removing the local definition itself, since such a
definition is expanded by default.



Table 1. Proof obligations solved by each solver in original specifications

# Solved higher-order obligations

Specification
Out of CVC4 Leo-IIl Satallax Vampire Zip.
SequenceOpTheorems 18 10 8 10 10 12
FiniteSetTheorems 9 7 0 8 8 8
FunctionTheorems 4 2 1 2 2 3
WellFoundedInduction 8 3 2 4 3 3
Total 39 22 11 24 23 26
4.2 Results

We used TLAPS to generate the necessary Isabelle and THF files from the
TLA™ specifications, and then evaluated the backends on these problem files.
Isabelle was always tested with the three tactics available in TLAPS: auto, blast
and force. The higher-order solvers were evaluated on the same TPTP files. All
solvers were run with a timeout of 30 seconds, the default configuration for the
Isabelle backend. The experiment was carried out with an Intel Core i7-8650U
with 4 cores at 1.90 GHz and 16 GB of RAM. All modules and problem files
used for the experiment are publicly available.!

The experiment was carried out in two phases, the results of which are sum-
marized in tables 1 and 2. In the first table, we report how many of the original
obligations were identified as higher-order and handled by each solver. These
obligations come from the standard library of TLAT, so Isabelle necessarily
solves all of them.

For each solver, based on the results of that first phase, we edited the specifi-
cations by removing a number of proof steps, following the process we described
in the previous section. Then, Isabelle and the considered solver were tested on
the new specification. In the second table, we report how many proof steps were
removed (first column), how many were handled by Isabelle (second column),
and how many of the remaining ones were handled by the solver (third column).
To compute the results for the last two columns, we searched how many proof
steps were removed to obtain each individual obligation. For instance, if one
obligation resulted from merging three steps together, it was counted as a re-
duction by 2 steps. If that obligation was handled by Isabelle or another solved,
that would add 2 to its score. An empty cell indicates that the evaluation was
not run, because the result could not be other than 0.

4.3 Discussion

On the original specifications (table 1), the performances of all higher-order
solvers compare, with only slight variations. Zipperposition solves a bit more
obligations, and Leo-III a bit less in general, except for the specification Finite-
SetTheorems, on which it did not solve any goal.

! https://github.com /adef-inr /Improving-TLAPS-Automation-Frocos-2021.git



Table 2. Proof steps that could be uniquely removed by each HO solver

# Proof steps removed

Solver Specification
Out of Removed by Isa. Uniq. removed by solver

SequenceOpTheorems 6 0 6
FiniteSetTheorems 9 2 3

cved FunctionTheorems 1 1 -
WellFoundedinduction 5 1 4

Total 21 4 13
SequenceOpTheorems 2 0 0
FiniteSetTheorems - - -

Leo-III FunctionTheorems 2 0 0
WellFoundedInduction 2 0 2

Total 6 0 2
SequenceOpTheorems 4 0 4

Satallax FiniteSetTheorems 10 3 3
atalia FunctionTheorems 1 1 -
WellFoundedInduction 4 1 2

Total 19 5 9
SequenceOpTheorems 6 0 4

Vi " FiniteSetTheorems 10 3 3
ampiee FunctionTheorems 1 1 -
WellFoundedInduction 4 1 3

Total 21 5 10
SequenceOpTheorems 19 0 17

7i iti FiniteSetTheorems 10 3 4
'PPETPOSIUON b 1 tionTheorems 4 1 0
WellFoundedinduction 4 1 3

Total 37 5 24

The differences between solvers are more pronounced when we look at the
number of proof steps they allowed us to remove (table 2). We could not make
much progress with Leo-III, with only 2 steps removed. CVC4, Vampire and
Satallax have similar results, with 9-13 proof steps removed. Zipperposition
let us remove 24 steps in total, which is significantly higher than any other
solver. Out of these 24 steps, 17 come from SequenceOpTheorems, the biggest
specification. These 17 steps are shared among only 4 different obligations: two
that resulted from the removal of 2 steps each, one from 6 steps, and the last
from 7. These are the only cases of obligations resulting from the removal of more
than 4 steps. It should also be pointed that we attempted to remove 37 steps
with Zipperposition in total. This is higher than for the other solvers, which
indicates that Zipperposition could also solve the steps around a higher-order
step more often.



Overall, higher-order solvers prove to be helpful for proofs with a few inter-
mediary easy steps. It is often possible to remove a few steps with Zipperposition,
CV(4, Satallax or Vampire, and in some cases reduce the whole proof to a single
line, as is the case for the following proof:

THEOREM SuffixRecursiveSequenceFunctionType ==
ASSUME NEW S, NEW T, NEW Def(_, ), NEW f,
T # {3,
StrictSuffixesDetermineDef (S, Def),
WFInductiveDefines(f, Seq(S), Def),
V g € [Seq(S) -> T1, s € Seq(S) : Def(g,s) € T
PROVE f € [Seq(S) -> TI
<1>1. IsWellFoundedOn (OpToRel (IsStrictSuffix, Seq(S)), Seq(S))
BY IsStrictSuffixWellFounded
<1>2. WFDefOn (OpToRel (IsStrictSuffix, Seq(S)), Seq(S), Def)
BY StrictSuffixesDetermineDef WFDefOn
<1>. QED
BY <1>1, <1>2, WFInductiveDefType

An important portion of the original obligations are the application of some
induction principle. They are variations of this pattern:

<1> DEFINE P(n) == (* ... %)

<1>1 P(0)

<1>2 V n € Nat : P(n) => P(n + 1)

<1> HIDE DEF P

<1>3 V n € Nat : P(n) BY <1>1, <1>2, Natlnduction (* The HO obligation *)

The induction can be on a different structure, but the pattern is the same.
All solvers tended to fail on these obligations. When they did succeed, we only
removed the HIDE line, but after doing so the solver would fail on the new obli-
gation. This is most likely due to the fact that NatInduction must be instantiated
with an arbitrary expression instead of the constant P, as P is expanded in the
goal when HIDE is removed. In some cases, however, Isabelle was able to han-
dle the new obligation—these cases constitute the majority of removed steps
that are reported in the second column of table 2. They are especially preva-
lent in FiniteSetTheorems, as they represent 8 out of the 9 original obligations.
This may be the main reason for Leo-IIT’s poor performances on that particular
specification.

5 Conclusion

Motivated by the most recent advances in higher-order theorem proving, and
the poor support for higher-order proof steps in TLAPS, we implemented an en-
coding of TLA™ into THF and evaluated several higher-order solvers on a range
of proof obligations. Our experiment demonstrated that higher-order solvers are
indeed able to handle obligations more complex than TLAPS currently does.
Zipperposition in particular outperformed the others by a significant margin,
and was integrated in TLAPS as a new backend.



This new backend was not intended to be general-purpose for TLA ", but
rather specialized in those obligations that involve a bit of higher-order rea-
soning. Thus the encoding of TLA T we implemented is very simple and unopti-
mized. It appears however that we are unable to solve many obligations precisely
because the encoding is lacking on some aspects. Our treatment of set extension-
ality is insufficient for solving goals such as Card(SU@) = Card(.S). Our support
of arithmetic is very limited, as we provide only a few theory axioms to the
solvers, and never consider the full theory. It should also be noted that the en-
coding was primarily designed with Zipperposition in mind, and that we did not
fully explore the options that other solvers offer. For instance, we are aware that
Vampire features a special rule for instantiating extensionality axioms, and a set
of support strategy for dealing with explicit theory axioms [7,12]. CVC4 features
a decision procedure for reasoning about finite sets and cardinalities [1]. These
are all potential leads for future improvements of TLAT encodings, including
the general-purpose ones.
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