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Abstract We present a set of novel prime numbers functions including a Generating 

Function and a Discriminating Function of Prime Numbers, neither requiring computer 

algorithms nor prime numbers tables and that are exact [1]. These two functions are 

instead defined in terms of ordinary elementary functions, therefore having the 

advantage of being readily computable, discrete differentiable and integrable, and hence 

applicable to any function that depend on integer numbers. Several relevant applications 

of these two new prime numbers functions are then presented, namely, (i) Obtaining a 

new and exact Prime Counting function, (ii) Applying Goldbach Conjecture to verify 

Bertrand Theorem on prime numbers, (iii) Readily evaluating the product of primes and 

composites numbers in any integer interval, (iv) Obtaining an accurate approximant to 

Euler´s Product formula, (v) obtaining an accurate approximant to the Chebyshev 

function of second kind, and finally introducing a new Primorial function defined for 

any integer. 

 

Keywords: primes discriminating function, primes Generating Function, primes 

counting function, Goldbach conjecture, Bertrand theorem, prime numbers theorem, 

Euler´s product function, product of primes, Chebyshev function of second kind, 

primorial product, Primorial function  

 

1 Introduction 

  

Important efforts to obtain approximate mathematical formulae for functions of 

prime numbers persist to present days [1-7].  Thenceforth we here present a set of novel 

prime numbers functions [1] that are exact and computable as rightly demanded by 

Ribenboln [2], thus opening a door for new applications in the field of prime numbers 

based functions. Today some modern encryption systems  not the subject of the 

present work  exploit the Fundamental Theorem of Arithmetic” namely “a composite 

number can be expressed in one and only one way as a product of prime factors” [6], to 

codify information in terms of prime factors of large composite numbers. Prime 

numbers and their functions indeed belong to an advanced realm of intellectual 

conceptions, certainly to Analytical Number Theory [7-12], to Cryptography, and 

additionally they are related to some subfields of natural and formal sciences, where 

these numbers and their functions could play some role e.g. in discrete classical 



2 
 

mechanics. A well-known statement of a prime numbers distribution is the Bertrand 

Conjecture: There is at least one prime number between n and 2n, for all integer n; a 

conjecture that became a theorem [5, 6] when later proved as such by Chebyschev. We 

have arranged the material of the present work as follows: In Section 2 we introduce  

our new prime function , whose purpose is to generate the exact prime numbers 

distributions in any integer interval. This primes generating function, being defined in 

terms of elementary functions, has the advantage of being exact and computable, as 

rightly demanded by Ribenboln [2] thus enabling us to apply both algebraic procedures, 

and all tools of discrete Differential and Integral Calculus in an altogether original way. 

Of course, this  novel function enable us to operate within Discrete Classical Mechanics 

(see the section on Discussion and New Directions). Yet, the purpose of our prime 

generator   is not to compete with algorithms on prime numbers, nor with tables of 

primes, objects that  cannot be replaced into the analytic expression of any mathematical 

function, while our prime generator certainly can. 

 

Our prime generating function  is exact, and as such is validated here in finite 

integer intervals, and thoroughly tested in several ways, even by generating random 

prime numbers sets whose integer position in the infinite distribution of primes is 

randomly chosen using a sophisticated discrete differential algorithm, as presented in 

Section 2. In that section we also compare the performance of our function  with of a 

commercial software algorithm. That comparison shows that our prime’s generator is 

indeed exact. Our prime numbers generator  is actually used in the construction of 

other emblematic functions of Number Theory, including an exact prime numbers 

Counting Gunction, also presented in Section 2. Section 3 is devoted to a verification of 

Bertrand Theorem, this time using our prime generator . To the effect we introduce 

there the so-called Goldbach Function   defined in terms of our function   a new 

function of primes that then allows us to verify Bertrand´s Theorem, and to find the 

probabilities of getting prime numbers in whatever integer intervals (u,2u), as the initial 

integer u varies. In Section 4 we also present an accurate approximant to Euler’s 

Product formula. This approximant is an auto-consistent relation that, being based on 

our prime functions, does not require the use of prime numbers tables or algorithms. 

Section 5 is devoted to obtain formulas for the products of prime and composite integers 

in any interval, using once again our prime generator function . In Section 6 we apply 

our prime discriminator  to obtain an accurate approximant to the Chebyshev function 

of second kind. Section 7 we devote to introduce a new primes Primorial function of 

integers that may advantageously replace the known primorial product of primes, the 

latter not being a function. In the final section we discuss the results obtained when 

applying our three prime functions to get approximants to relevant functions of prime 

numbers, and our applications of Bertrand Theorem to primes. We also announce two 

new lines of research that are now in progress in which our three new prime functions 

are applied to cases of discrete mechanics, particularly to the study of an object called 

the Goldbach particle. 
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2.  Thrhe Novel and Exact Primes Functions  

It is well-known that prime numbers have been studied since Euclid of Cyrene 

(350 BC), who showed us that there are infinite prime numbers, a case indeed of utmost 

relevance in Number Theory. Many of the known formulas derived thus far to obtain 

prime numbers are just versions of the famous Sieve of Erathostenes of Alexandría (ca. 

280 BC) [6,-9].  In this section we introduce our new primes exact Discriminating 

Function , our novel and exact primes Generating Function , and finally our primes 

Counting Function C. The primes generating  might be considered to be just another 

version of the classical sieve, but one that shall be found instead to be analytic, not 

depending upon prime numbers tables or algorithms, thenceforth applicable in all 

mathematical instances of integer functions. For instance, our primes generating 

function allows you to explicitly calculate discreet derivatives and integrals (an example 

is shown in Fig. 3, Sub-section 2.3). To those effects we begin introducing below a set 

of required auxiliary functions: particularly, our prime numbers discriminating function. 

 

2.1 A new Primes Discriminating function 

 

We introduce a function that discern whether a given integer is or not prime with 

total exactitude. The definition of this prime discriminating function, denoted  below, 

is of course straightforward: 

 

 “(u) =1 if u is prime, while (u)=0 if u is equal to 0, 1, or to any composite integer”.  

 

To obtain the mathematical expression of this new prime discriminating function 

we begin defining the following three simple functions of a positive real number u in 

terms of the well-known floor, or integer part, function     : 

 

                                                              ,                                                          (1) 

                                                

                                                            
 

 
 .                                                          (2) 

 

                                                          
        

       
                                              (3) 

 

With these three  functions we now construct the following three auxiliary 

functions i of u, and of the integer’s m and n, in terms of the well-known function 

(u,u0) = sign(u u0): 

                                                                                              (4) 

                                                       ,                                                        (5) 

                                                               ,                                 (6) 
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where        .  With these three auxiliary functions we may now define our 

prime numbers discriminating function  as the double-product: 

                                                               
   

     
    .                            (7) 

This discriminating function  is exact and appears plotted below in Fig. 1, in 

the integer interval [0, 101]: 

             

Fig 1 Plot of the prime discriminating function  in the integer interval [1,101]. The 26 

primes in that domain appear plotted (dots) along the straight line (u)=1, the 

remaining integers in that domain appear on the abscissa axis.  

 Recently R. Shumacher [3] presented his so-called Prime Number Double 

Product Formula, actually a function denoted   whose domain is the set of  integers x. 

It is a true function defined as a double product [3] and whose expression includes the 

numbers e and . Our discriminating function in Eq. (7), defined also as a double 

product, is in this particular sense, analogous to Schumacher function, in what respect to 

its purpose (according to Schumacher it is a characteristic function of primes). Thus, 

both functions must give a 0 if x is a composite and the number 1 if x is a prime, as 

correctly done by our discriminating function , and shown in its plot in Fig.1. 

However, Schumacher double product function , when computer calculated,  returns a 

zero when the argument x is a composite, but when the argument is a prime Schumacher 

function does not return the number 1 but instead a complex numbers of real part very 

close to one and of very small imaginary part e.g.    

   

                        (13) = 0.9999999999974 - 0.00000000000092i; 

                       (101)=1.00000000000081- 0.00000000035047i; 

 

while our discriminating  function correctly gives: (13)=1; (101)=1. Even 

calculated with 20 decimals (1009) renders a complex number of real part 1 and with a 

imaginary part of order 10
-21

i ; while our discriminating function  gives exactly 

(1009)=1. (All these calculations were done using a well-known commercial software, 

on a 16-bytes word computer)   
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2.3 The new Primes Generating function 

The distribution of prime numbers on the set of integer numbers is frequently 

assumed to be random and has attracted mathematician’s attention for centuries [4, 8, 

12]. Several polynomial relations to generate primes are known, and the first that ougth 

to be mentioned is the well-known Leonard Euler polynomial formula (1772):     

     giving a list of prime numbers for     .  Different prime numbers generating 

functions have been proposed since those Euler’s days, some of them being recurrence 

formulae e.g. the 2008 Rowland´s formula [11] and the Shumacher one mentioned 

above [3]. 

 

We now proceed to formally define our new Prime Number Generating function 

in terms of our prime numbers discriminating function  in Eq. (7). As said above, our 

prime’s generator is written in terms of elementary functions plus the sign function (yet, 

if required the sign function itself may be here replaced by one approximant, defined in 

terms of elementary functions too, as presented and shown in our previous work [14]) . 

This prime generator  can be used either to generate all prime numbers in a given 

range of integers, or actually to tell us whether any integer u, is or not prime. Our 

prime`s generator function   we define, in terms of our primes discriminating function 

, as:  

                                                                                                                                 (8) 

whose first and second order discrete derivatives are, respectively:  

                                          
                                                                 (9) 

                                       
                                                         (10)   

Three particular examples, illustrating, the application of our prime function, 

for three large integers are (actually using a prime number between two composites) 

are:      

                                   ;                       ; 

                                                                

Figure 3 shows a plot of this prime`s  number generating function   for integers 

u in the interval [1,100]: the dots along the inclined line in the plot corresponding of 

course to the prime numbers in that interval, while the zeroes along the abscissa axis 

correspond of course to composite integers in that interval.  
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Fig. 2(a) Plot of the prime numbers in the integer interval (0, 100) given by our prime 

number generating function : as expected there are 25 dots lying on the inclined line.  

As a second example we show in Fig. 2 (b) the plot of the prime numbers in the 

finite integer interval (1000000, 1000100), such primes correctly determined using our 

prime generating function : this plot shows that there are only six prime numbers in 

that interval, as well as 94 dots along the abscissa axis, the.zeroes that correspond to the 

composites integers in the interval.   

 

 

Fig. 2 (b) Plot of the six prime numbers that belong in the integer interval (1000000, 

1000100) as given by the prime generating function. The dots along the abscissa axis 

correspond to the composite integers in that interval.                                                                      

Related to the previous plot of prime numbers in Fig. 2(b), we now compare the 

fidelity of our computable prime generator with that of a prime algorithm of a 

commercial software package. For the comparison we choose again the same integer 

interval of in Fig. 2(b). Thus the first column in Table 1 (below) lists the ordinal integer 

ith of the six primes in that interval, starting at i=78499. The 2
nd

 Column of this table 

lists the corresponding six primes Pi given by a commercial software algorithm. For 

comparison the third column list the six primes already found with our prime numbers 

generator  and shown in Fig. 2(b). It may be seen that our function does produce the 

same results given by the commercial software algorithm. 
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                                         TABLE 1    

ith Pi (Pi) 

78499 10000003 10000003 

78500 10000033 10000033 

78501 10000037 10000037 

78502 10000039 10000039 

78503 10000081 10000081 

78503 10000089 10000089 

     

Table 2 below is a more interesting test of the quality of our function  as a 

prime number generator. In this second table we consider the same integer domain of 

Figure 2 (b) where our function  found six primes. The test consists in checking 

whether our function would find: Firstly any prime numbers either two integers below 

or two above each of the six primes, and secondly one order below or above, 

respectively. The second column of the table shows that a single finding occurs when 

the ordinal is diminished by two: 1 000 037 is in effect the one prime within two 

ordinals below 1 000 039 (see Table 1). The third column shows again a single prime 

above 1000037.  Thus we got a case of twin primes separated by an even integer 

(1000038).  The 4
rd

. and  5
th

. column, each of six zeroes, shows that our function , as 

expected, do not generate consecutive primes for each of the six primes in the reference 

interval.   

Table 2                           

                   

 

                                        

 

 

 

To further demonstrate, in a strking way, the quality and reliability of our prime 

number generating function  we present Table 3 below. It is a table that shows the 

results of applying our prime generator function to 64 randomly generated integers un, 

n[1,64], that randomly happened to fall in the integer interval [13, 2591491]. These 

64 random  integers un were generated using a sophisticated computer-programmed 

discrete differential random formalism (printed below Table 3).This program uses as 

input a pair of integers parameter (Ki , ui) to generate four sets of 16 random integers. 

Table 3 is thus divided in four sets of 16 integers, each showing the expected correct 

result (un)=un  given by our generator function  whenever un is prime, along the 

3rd. column of each set, otherwise giving the expected zeroes in that column. For 

i [Pi-2] [Pi+2 ] [ Pi -1] [Pi+1] 

78499 0 0 0 0 

78500 0 0 0 0 

78501 0 1000039 0 0 

78502 1000037 0 0 0 

78503          0            0            0            0 

78504          0            0            0            0 
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instance: for the 16
th

 run of the program our random formalism gave us the integer 

un=1270197 which is not prime (in effect, it factorizes as 1319 107  9) and you find the 

expected (1270197)=0 in the 3
rd

. column of the first set, of the left column of Table 3. 

This gives strong evidence of a finite but completely random distribution of primes, in a 

finite integer interval, which is successfully predicted by our prime numbers generator 

function . 

TABLE  3  

              

2.3.1 Integer Numbers Generator Program based on a Random Differential 

Discrete formalism (used to construct Table 3).  

Table 3 was generated by applying the program listed below this paragraph in 

the integer intervals [1, 16], [17,32], [33,48] and [49,64 ]. For each of these four 

intervals the program first generates a pair of random integers K and u (shown in the 

table as u1, u17, u33 and u49).  
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Another relevant and key advantage of our prime number functions presented 

above – both the Discriminator  and the Generator  – is the possibility of applying 

them to study discrete dynamical systems whose motion law is determined by a 

distribution of prime numbers. In Fig. 3 we show a plot of the first discrete derivative of 

our analytic prime number generating function  in the integer interval [1,100] 

 

Fig. 3 Plot of the first discrete derivative of our prime numbers generating 

function  in the integer domain [1,100]. 

This discrete plot confirms that our generating function  will allow obtaining 

the exact discrete derivatives associated to any distribution of prime numbers. It thus 

becomes possible to study any discrete dynamic mechanics model, even after defining 

either the Lagrangian or the Action of such discrete models, and evaluating these two 

classical functions by simply inserting in their expressions our prime generator when 

required. It should also become particularly useful if you need to locally analyze sets of 

primes in finite intervals, as in the case of the Bertrand Theorem [15,16], already 

mentioned in Section 3, and its applications [17] (see Section 3) 

We must emphasize again to our would-be readers that the main aim of our 

computable prime numbers generating function is neither to compete with algorithms 

that calculate prime numbers nor with tables of primes. Such algorithms and tables are 

not even analytic and cannot be placed, for instance, into the analytic expression of a 

physics formula e.g  into Wien displacement.  Moreover, we must also emphasize that 

our prime number generating function  can be used to generate all the prime numbers 

in a given integer interval in strictly ordered succession,  giving a zero each time the 

integer u in the domain is not a prime. This is a true novelty that we have verified up to 

umax = 10
7
 using a modest computer. Readers at large may easily test our function   on 

larger integer domains using large frame computers.  
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2.4 A new Prime Numbers Counting Function and the Prime Number Theorem  

For the last three centuries one of the desideratum of Number Theory [5, 6, 8 ] 

has been to obtain a relation that would give us the number of primes equal or less than 

any integer x, i.e. the ideal counting function (x) that will return the exact number of 

prime numbers not exceeding a given x. In 1763 K. F. Gauss, after analyzing cases of 

distribution of the primes up to large integers x, conjectured his simple Primes Count 

estimate x/ln x in such distributions, so that we may write:  

                                               
 

   
                                                            (11) 

Years later Gauss once again conjectured [4, 5,10] that: for large integers x the 

number of primes (x) is also approximately given by the following function defined as 

a logarithm-integral, and known as the Li(x) function: 

                                                                    
  

   

 

 
                                              (12) 

From Eq. (12), one may therefore write:  

                                                  
    

 
 

   
 
                                                    (13)                                                                            

a relation known as the Prime Number Theorem later proved independently by C-J de la 

Vallée Poussain and J. Hadamard (ca.1900) [5,6,10]. The first-order asymptotic Lia 

approximation to the Li function thenceforth being the first Gauss conjecture mentioned 

above i.e.: 

                                                                   
 

   
                                                     (14) 

2.4.1. The new Prime Numbers Counting function 

Our discriminating function , presented in Sub-section 2.1, allows us to define 

a  new prime counting function C(u,uin) which should give us the exact number of 

primes in any integer interval [uin, u] starting at any initial uin:                        

                                               
     

  .                                                       (15) 

With this new function C(u,uin) we may readily find the number of primes in any 

interval, e.g. for the interval (1000, 2) we get the correct result C(1000,2)=168. In Fig. 4 

we have plotted this exact prime counting function C (the stair-case line) in the integer 

interval u[1,102]. For comparison, the figure also shows the number of primes given 

by the first order asymptotic Gauss prime numbers counting function Lia(x)= x/ln(x) 

(the dotted line). As a simple comparison, the relative errors of Gauss approximate 

counting function and of our primes counting function for x =10000 are, respectively:   

 

     

       
    

   
        ,        and     

              

   
                                       (16) 
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Note that in Fig. 4 we have also plotted Gauss function LiG. This figure 

illustrates that both Gauss LiG function (dotted curve) and its first-order asymptotic 

expansion Lia are just approximations to the exact number of primes not exceeding a 

known prime value, as given by our exact prime number counting function (the 

staircase line): ours being therefore an optimum prime counting function. 

                              

Fig. 4 Plot of the prime counting function C(x,2) in the interval [1,100] (stepped line). It 

may be seen that for u=100 our counting function gives the exact result C(100,2)=25. 

For comparison, also plotted appears the Gauss function Li (dash curve) and the first 

order asymptotic approximation x/ln(x) (dash--dot curve). One finds that Li(100)=21.27 

while its asymptotic approximation gives Lia(100)   x/ln (x)=29.08. 

Using a modest personal computer (64 bits) and our prime counting function one 

may easily find that the number of primes in say the interval (2, 10
5
) is C(10

5
,2)=9592, 

which is the correct result. Another comparison between the three functions is observed 

in Fig. 4: Gauss integral approximant gives Li(10
5
)= 9629.62 (with relative error10

-3
) 

for that interval, showing it to be of acceptable accuracy. The first-order asymptotic 

approximation Eq.(15), gives instead Lia (10
5
)= 8685.89, being thus a poorer 

approximant to our prime counting function C(x,2), and of course to the ideal counter 

(x,2). 

3. Primes Generating Function  applied to verify Bertrand Theorem  

As already said in the Introduction the Bertrand theorem was first proved by 

Chebyshev (1855) [5]. It refers to the Bertrand Conjecture on the existence of primes 

[15-17] in some particular integer intervals namely:  There is at least one prime number 

between u and 2u for all u N. Using our primes discriminating function  it is 

straightforward to find the finite number of primes Cp)in any of such Bertrand integer 
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intervals (u,2u). In effect, our function simply allows us to write the novel prime 

function: 

                                                    
 .                                                     (17) 

Two examples, for u=9 and for the much larger integer u=10000 being: 

(i) u= 9:            , the counted prime numbers being  {11, 13, 17},  

(ii)  and the two-orders larger count               . 

Analogously the number of composite integers in the same interval is given by:  

                                                   
 ,                                                 (18) 

a relation which gives us: 

(i)        7, the composites being {9,10,12,14,15,16,18}, 

(ii)                

That is there are 1033 primes and 8968 composites between 10000 and 20000. 

 It becomes interesting to plot in Fig. 5 these two Bertrand counting functions Cp 

and Cc of integers (and in addition the sum Cp+ Cc). Note in the plot that both counts 

increase with the final integer u, yet not monotonically.  

                         

Fig. 5 Plot of the Bertrand count functions Cp (brown line) and Cc (red line) and their 

sum Cp +Cc (blue line) in the integer interval (2,300).  

3.1  Bertrand Probabilities for Primes and Composites 

It would be interesting to calculate what we call the Bertrand probabilities Pp, Pc 

of finding primes and composites in any Bertrand integer interval (u,2u), respectively. 

By definition we have that the probability Pp for finding prime numbers in that interval 

(u,2u)  is: 
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 ,                                                     (19) 

while the probability for composites is analogously defined: 

                                                    
     

           
.                                                        (20) 

Thus for instance the probability of finding a prime between 100 and 200 is: 

                                       Pp(100)= 0.207920792079208, 

while the probability for composites is: 

          Pc(100)= 0.792079207920792,  

and of course we get: Pp(100) + Pc(100)= 1.000000000. 

In the following Figure 6 we plot the two probabilities Pp and Pc , of finding 

either prime or composites in the interval (u,2u)  for u in the interval (2,300). 

 

Fig. 6 Plot of the Bertrand probabilities Pp, Pc for u in the interval (2,300). It shows that 

the probability Pp for finding primes in the interval (u,2u) decreases below 1/5 as u 

grows large.  

We may finally plot the quotient of the two probabilities Pp, Pc. As shown in the 

following figure this quotient appears to decrease below ¼ as u  : 
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Fig. 7 Plot of the quotient Cp,/ Cc of the two Bertrand probabilities in the interval (2,300) 

showing its decreasing value as u gets large. 

3.2. Goldbach Conjecture and the Bertrand Theorem 

We now define the following discrete function G(;b) where b is a free integer 

parameter,  an integer variable in the interval (0, b-2), and  our prime generator:  

                                                          ,                                 (21) 

a novel prime function that we ave baptized the Goldbach function because: If 

G(;b)=0 the even number 2b is equal to the sum of the two prime numbers       

and      , a relation that simply expresses the well-known Goldbach Conjecture [5, 

6,12]. This is a novel form of writing this conjecture, one that shall be shown below to 

be useful.  Let us first show the discrete function G(;b) for the parameter value b=100 

and   (0,98). Thus, our function G appears as a discrete plot in Fig. 8 for b=100: For 

instance the third point (blue dot) corresponds to =39. It therefore represents the even 

number 200 written as the sum of the prime numbers 139 and 61. 
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Fig. 8 Plot of the discrete Goldbach function G(;b) for the parameter value b= 100. 

The function gives eight points (blue dots) that represent eight ways of obtaining the 

even number 200 as a sum of two odd integers (see the text)   

Bertrand Theorem can now be verified as a direct consequence of the Goldbach 

Conjecture. In effect in the following Figure 9 (a) we have plotted the prime numbers 

      and      , for the integer b=100, and  in the interval =0, 1,…98. The 

blue dots represent the 22 prime numbers in the Bertrand interval [100, 200]. The red 

dots in the plot of Figure 9(a) represent the 25 primes in the interval [2,100].The sum of 

the ordinates of those blue and red points of equal abscissae   (e.g. for =39), is equal 

to 2b=200, as expected from the Goldbach conjecture [18].  

    

Fig. 9(a) Functions        and       vs. the integer variable  for b=100. For 

the abscissa = 67: the coordinates of the corresponding blue and red dots are: (67,37) 

and (67,163) respectively, as expected form Goldbach Conjecture. The blue dots 

represent 22 prime numbers in the Bertrand interval (100, 200). 

 

Fig. 9(b)   Functions        and       vs. the integer variable   for b=9. The 

plot shows the two primes 11 and 13 in the interval (9, 18). Red dots represent the four 

primes in the interval (2,9).The prime 17 does not appear plotted since the sum 17+3  

2(9) i.e. these two primes do not satisfy Golbach´s Conjecture (their sum is not 2b) .  
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4. Euler`s Prime Numbers formula: an approximation 

 Let us begin this section recalling Euler’s remarkable real function (ca.1734)  

(), defined [5,6,10] for arguments N,: 

                                             
 

 
  

   ,                                                    (22) 

which for the integers  =2, 4 and 6  converges to the three notable values [19]: 

     
 

  
 

 

  
 

 

  
   

  

 
;        

 

  
 

 

  
 

 

  
   

  

  
;   

     
 

  
 

 

  
 

 

  
   

  

   
 

By invoking the Fundamental Theorem of Arithmetic [6] Euler later derived 

another formula for its real function ,  but now remarkably derived in terms of prime 

numbers p, and as an infinite product [5,10], instead of the infinite sum in Eq. (22): 

                                 
 

   
         

                                                  (23) 

Thus after incorporating this Euler’s product formula into Eq. (18) we may write:  

                                    
 

 
  

      
 

   
                                               (24a) 

which we may evaluate only up to a finite upper prime number limit  qmax(H) = P(H), 

the latter being the H-th prime number, to get  approximated values eul using the 

following Eq. 24 (b) 

                         
   

     
 

 
 

       
      

    

      
        

                             (24b) 

Below we introduce our novel and original approximant to Euler´s product 

function Eq (23), in terms of our analytic Prime Number Generating function   and 

using a finite upper limit in the product, instead of the infinite limit in Eq (23). We 

name this new approximant as the  self-consistent approximated Euler product formula 

      , and define it as the product from 2 to the qmax(H)’th  prime number: 

                                   
      

    

 
   

      
  

       
   .                               (25) 
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                                                                    (a) 

                            

                                                                    (b) 

Fig. 10 (a) Coincident plots of Euler’s product exact function ex and our approximant 

euapp  as  functions of the real number ; (b) Plot of the relative error of our 

approximant to Euler’s  product  formula (two plots for the upper bound H=100 of the 

approximant) 

In Eq. (25) the integer index q in the product runs from 2 up to P(H). Our Eq. 

(25) is thus  a self-consistent expression that does not depend upon tables or any 

external algorithm, and as shown below it is a very accurate approximant. For instance 

the H =100
th

 prime is qmax(100)=541 and for this value our approximant Eq.(21) gives: 

                                

which is exactly  the  value obtained above using Eqs.(22). Other approximate values 

given by our Eq.(21) approximant  are: 

                                    ,                                  ,   (26) 

which compare very well with the values given by the exact Euler’s product formula: 

                
  

  
                   ,                              ,      (27) 
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respectively. A typical relative error of our approximant to Euler’s product is rather 

small: 

                                       
  

 

                  

  
  

           .       

5.     Product of integer numbers 

5.1 A prime product 

Prime product formulae, or their approximants, are important in number theory 

[6, 10, 20]. Such products allow us to obtain a novel application of our prime generating 

 and our discriminating   functions. That is to obtain the product of a succession of 

prime numbers P(x,xi) starting at any integer xi and on the integer interval  (xi ,x). This 

novel product function Rp is given by the relation: 

                                                               
    

 .                                         (28) 

Two examples being:    (i) Rp(20,2) = 9 699 690 =2.3.5.7.11.13.17.19 

                                    (ii) Rp (31,11)= 955 049 953=11.13.17.19.23.29.31  

The  product Rp for the interval that starts at xi =2, and up to x=20, appears plotted in 

Fig. 11 below  

 

Fig. 11 Product of the prime numbers in the integer interval (2, x) up to x=20 

5.2 Product of Composites 

Analogously we may apply our prime numbers generating  function and prime 

discriminating  function  to get the product of a succession of composite numbers 

Rc(x,xi) starting at any integer xi and for the integer interval (xi,x). This product is 

defined as: 

                                                          
    

.                             (29) 

Two examples being: 

               Rc(20,2)= 250822656000=4.6.8.9.12.14.16.18.20  
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                            Rc(31,11)= 2372644373299200000 

This  composites product Rc appears plotted for the interval (2, 20) in Fig. 12 below: 

 

 

Fig. 12 Plot of the product Rc of the composite numbers in the integer domain (2, 20) 

6. Approximant to the Chebyschev Function of Second Kind 

Equation (30) below is an exact formula for evaluating the well-known 

Chebyshev Function of second kind [21-23] in terms of the prime function P(j), and the 

integer part or floor function. The P(j) function of course simply gives the j-th prime, 

e.g. P(1)= 2 and P(100)= 541.  In this exact Chebyshev Function the upper limit (x,2) 

of the sum is non other than  the prime function ,  i.e. this limit is the exact number of 

primes not exceeding a given integer threshold x, a number that has to be read from a 

table of prime numbers. This simply means that the exact Chebyshev Function of 

second kind is not self-consistent. 

                                               
      

        
          

      
   ,                            (30) 

Below, in Eq. (31) we present our approximant to Chebyshev Function of 

second kind. In it we have replaced the function P(j) with a simple  algebraic expression 

written in terms of our  exact Prime Numbers Generating function   and our Prime 

Discriminating Function , both defined in Section 2, i.e. in Eq (31) we inserted 

               . instead of P(j). This gives us an accurate analytical 

approximant function        to Chebyshev’s Function, namely: 

                    
      

                 
                       

   ,     (31)                 

where e is the base of the natural logarithms. Also note, in our approximant cheap to 

that Chebyshev’s function, that the finite upper limit of the sum is the variable x, instead 

of the function value (x). Thus, our approximant         is a self-consistent 

expression that does not require the use of tables of prime numbers. It instead uses our 

primes discriminating function   and our prime generator . This does represents a 
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notable computational advantage when compared with the exact expression of 

Chebyshev Function of second kind given in Eq (30). 

The good accuracy of our approximant to Chebyschev 2
nd

. kind function can be 

demonstrated considering the values, given by the two functions (30) and (31) for say 

the j=100
th

 prime. Up to an accuracy of 10 
-14 

we get the same results: 

                                          and                                . 

 Another important result of our approximant to Chebyschev 2nd. kind function 

is the following limit that it indeed satisfies: 

                                                       
         

 
   ,                                              (32) 

which amounts, according to Hardy and Wright [10 ] to the verification of the prime 

number theorem. This truly relevant attribute of our approximant           is clearly 

shown in Fig. 13 below. 

                    

Fig. 13 The function               plotted in the integer interval (2,150) showing its asymptotic 

behaviour towards its limit 1 (equivalent to verifying the prime number therorem)  

 In Figs. 14 (a) and 14(b), and for the sake of comparison, we have plotted the 

exact Chebyshev function of 2
nd

. kind and our approximant to it, respectively; both 

plotted in the integer interval [0,200]. It may be seen that our approximant does 

reproduce the plot of the exact function. This assertion is validated by Fig. 14 below. 
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(a) 

                                

(b) 

Fig. 14 Comparison plots of the exact Chebyschev 2
nd

 kind function (a) and of our 

approximant to that function (b), Eq. (45), in the real domain [0,200]. 

In figure 15 we have plotted the relative error of our approximant         when 

compared with the exact Chebyshev function in the interval [0,200]. It may be seen that 

the accuracy of our approximant (Eq. (45)) which uses our Prime Number function  is 

very high, the relative error being less than 1 10
-13

 for the whole interval.                        

             

Fig. 15 Relative error (order of 10
-13

) of our approximant to the Chebychev function, w.r.t. the 

exact function, in the interval [0,200] showing the high accuracy, of our approximant, Eq. (31) 

that does not use tables of primes..    
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In Figure A-1 of the Appendix 1 we again compare both functions, Eqs (30) and 

(31), but for an interval of higher values of the independent variable, namely x[5000, 

5050], those plots show the same order of accuracy of our approximant in Eq (31).   

 

Finally note that Hardy and Wright [10] have stated that the Chebyschev 

function of 2
nd

. kind is in some ways better to apply than the prime counting  function 

since te first deals with a product of primes instead of counting them. 

 

7 The primorial product pn#. 

The well-known primorial product [24], denoted  pn#, is defined as the product 

of the first n consecutive prime numbers pn, thus returning the product of the n primes: 

                                            
 
   .                                                            (33) 

Such product, of course, is not a function, and demands to use a table of the 

primes pk in order to evaluate the value pn  of the primordial: that is it is not a self-

consistent operation. The results of this primordial coincides with that of our previous 

function Rp, given in Eq. (28), for obtaining the product of primes, provided one sets 

xi=1 in that equation. However, note that our function Rp is directly computable, and 

self-consistent, because it is defined in terms of our discriminating function  and our 

prime generating function :  thus our prime product function Rp does not require the 

use of any table of primes.   

Having said that we may now redefine a new Primorial, yet this time as a true 

function, whose domain is actually the set of integer numbers N. We define this new 

prime function as follows: 

                                                            
   .                        (34) 

In Fig. 16 we have plotted, in logarithmic scale, this integer Primordial(x) 

function. It may be seen that it is an interesting stepped function: the plotted plateau 

heights being 2, 6. 30, 180, 1260, 2310, 30030. These constants plateau values of our 

primes Primorial function are explained by the fact that there are only composite 

integers in between consecutive primes, e.g. the plateau of height 180 corresponds to 

the prime product 2 3 5 6.  
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Fig. 16 Plot of the Primorial(x) function in the interval of integers (2-20), the plateau heights 

are explained in the text. 

We now introduce a novel prime numbers function b(x), defined in terms of our 

Primorial(x) function on the integers N: 

                                                       
 

 

       .                                      (35) 

This function is analogous to one already presented (just as a plot) of the simpler 

primorial product pn  , in [23, 24]. This new function b(x), defined now in terms of our 

prime discriminating and generating functions  , , is therefore a true function that 

has interesting properties. In effect this function b(x), after some initial oscillations in 

the open interval (0,2), has the following appealing asymptotic behaviour: 

                                                                ,                                                     (36) 

as illustrated in Fig.17, where the blue dots are the values of the function b(x)  while the 

dashed line represents of course the constant e=2.71828184, base of the natural 

logarithms.  

        

Fig. 17 Plot of the function b(x) (blue dots) showing its asymptotic limit at the constant 

e (red dashes) 
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8. Discussion and New Directions 

In Section 2 of this work we have presented a novel prime numbers generating 

function, denoted , that is computable and gives the exact list of primes in any given 

integer interval, thus being better than most published prime generators. This generating 

function of primes is defined using another novel prime number discriminating function 

, the latter written in terms of elementary functions, also presented in Section 2. Not 

dependent upon prime numbers tables or algorithms, these two functions are easier-to-

use tools to calculate, or even to define, new prime numbers mathematical functions and 

relations, as well as for applications in basic sciences e.g. in physics, as in the case of 

discrete mechanics. We presented solid evidence (see Table 1) of the exactitude of our 

prime discriminating function by generating 64 random integers lying in the arbitrarily 

chosen integer domain [13,2591491], and then successfully applying that  

discriminating function to determine whether these random integers belong or not to the 

primes distribution in that interval (Section 2, Table 1). We also introduced a new Prime 

Numbers Counting Function C(u,2), that renders the exact number of primes from 2 and 

up any integer u, or in any integer interval (ui ,uf ) for any initial integer ui, and that can 

be easily implemented using a personal computer. It does generate the well-known 

staircase-like plot of primes when plotted for any integer interval. In Section 3 we have 

applied this prime counting function  C(2,u) to obtain the number of primes in Bertrand 

Theorem type of integer intervals (ui,2ui) for any initial integer ui. We also applied it to 

count the composite integers in such intervals. Also, in Section 3 we introduced a new 

prime number function, that we called the Goldbach function, since its definition is 

based on the well-known Goldbach Conjecture on prime numbers. We then used this 

Goldbach function to verify Bertrand Theorem on prime numbers. 

Both, our new prime numbers counting and generating functions have been used 

in Section 4 to derive finite approximants to Euler’s Product formula [Eqs. (24b), 

(25)].These approximants are shown to be of good accuracy, achieving relative errors of 

order 10
-7

, even when calculated with relatively small upper bound values of the finite 

product and sum in their definitions, and using modest personal computers. Much better 

results should be obtained using mainframe computers nowadays available at large, to 

run the computer programs implementing our three prime numbers functions and the 

derived Euler´s product approximant with higher upper bounds. 

 In Section 5 we applied our Primes Discriminating and Generating Function to 

construct a new function that calculates the product of any number of primes, or even 

composites, in integer intervals. Once again, this new prime’s function can be used 

without resorting to tables or algorithms for prime numbers.  

In Section 6, we defined a finite self-consistent approximant, to the important 

Chebyschev function of 2
nd

. kind, that does not require prime number tables or 

numerical algorithms, but that instead is written in terms of our prime number counting 

function C(2,x).  The latter successfully having replaced the well-known primes (x) in 

the exact expression of the Chebyshev function of 2
nd

. kind, thus obtaining an 
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approximant that eliminates the need to use tables of primes. Moreover, this 

approximant function is very accurate giving zero relative error when compared with 

the exact function. Finally, in Section 7, after recalling the primorial product pn  of 

primes, we introduced a Primorial function of integers x, to evaluate such products, 

based on our primes generator  and discriminating function , Primorial(x)  being 

therefore a function that does not require the use of table of prime numbers. We then 

defined a new prime numbers function b(x) in terms of this Primorial function P(x), and 

showed that it does tend to the limit e when the variable x tends to infinity (plot 

analogous to the one in [24] for the product pn  ). 

In work now in progress we are applying our prime numbers functions to the 

study of a discrete two-dimensional mechanical model of an object defined to have two 

prime numbers coordinates, an object that we have named the Goldbach Particle. We 

are also extending our previous work [1], to apply the classical mechanics Hamilton 

Principle to that Goldbach particle. 

Appendix 1 

  Below, and for comparison, we plot the Chesbyshev exact function, Eq (30) and 

our approximant Eq (31) to that function in the real domain [5000, 5050] 

  

(a)                                                             (b) 

Fig. A1 Comparison plots of the exact Chebyschev function (a) in Eq. (30), and of our 

approximant Chebyschev Aprox (b), in Eq. (31), in the interval [5000, 5050] with 

relative accuracy of order of 10
-13

. 
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