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Abstract

There has been fierce controversy in the literature over the long-run efficiency of the energy-

only market (EOM) design ever since its inception. In this paper, we provide novel insights

to illuminate this historical controversy, and we revisit it with a focus on contemporary issues

and profound changes brought about by the energy transition. Specifically, we develop an ana-

lytical and modeling framework to quantitatively investigate how EOM outcomes hinge on the

underlying behavioral, informational and structural assumptions. We apply our framework to

a case study calibrated on Californian fundamentals that captures the key features of energy

systems under deep decarbonization. We characterize how EOM outcomes can substantially

deviate from the long-run optimum as soon as one assumption is relaxed compared to theo-

retical requirements. This leads to pathways with higher electricity prices, lower security of

supply and higher emission levels that imperil decarbonization. In particular, we highlight how

market price signals alone are prone to a dynamic entry-exit coordination problem between

investment in low-carbon assets and the phaseout of fossil-fired assets. This calls for a market

design reform to complement price signals that accounts for realistic assumptions.
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1 Introduction

The energy transition poses mounting challenges to energy systems across the world with vari-

ous interrelated facets including decarbonization, renewables integration, energy efficiency improve-

ment and electrification. In practice, these ambitious aspirations translate into different targets at

different horizons. For instance, Senate Bill 100 in California mandates targets of 60% and 100%

zero-carbon electricity retail sales to end-use customers by 2030 and 2045, respectively (California

State Senate, 2018). The European Union Green Deal and fit-for-55 policy package are another

case in point, with the 2030 target of cutting greenhouse gas emissions by 55% below 1990 levels

and the objective of a net-zero economy by mid-century (European Commission, 2019, 2022).

In the electricity sector, generation expansion planning (GEP) models are often used to explore

cost-efficient pathways to achieve decarbonization objectives. There is a rich literature discussing

the underlying optimization techniques and technological assumptions (e.g., integration of renew-

able energy sources, representation of short-term operations and seasonal storage) in such analyses

(e.g., Alimou et al., 2020; Abdin et al., 2022). There are also numerous applications that provide

key insights on decarbonization pathways in given jurisdictions – e.g., CPUC (2019) for California

or RTE (2021) for France – or on the role of specific technologies – e.g., hydrogen in Schulthoff

et al. (2021). This class of models offers a normative framework that is widely used by academics,

regulators, agencies, consultancies, investors and market participants alike.

A crucial assumption of these models is that they take the perspective of a benevolent social

planner. While this has the advantage of yielding normative results that hold independently of the

institutional or market framework, this turns into a blind spot when the latter is to be studied and

scrutinized. In particular, there is increasing concern that the energy-only market (EOM) design,1

which has been held up as the target design model in many jurisdictions since the beginning of the

deregulation era, may fall short of supporting necessary investments to deliver decarbonization,

reliability and affordability objectives in a cost-efficient and timely manner (e.g., Roques and Finon,

2017; Newbery, 2018; Blaquez et al., 2020; Joskow, 2022; Keppler et al., 2022).

The EOM paradigm rests on the principle that socially optimal long-term entry and exit deci-

sions can be decentralized in competitive markets. Theoretical foundations can be traced back to

Arrow and Debreu (1954) in a general framework and to Caramanis (1982) for a seminal applica-

tion to the electricity industry.2 They are based on the equivalence between optimality conditions

1The traditional ‘energy-only’ terminology used in the literature can sometimes be misleading as it may include
a complete sequence of short-term markets (e.g., for adjustment and ancillary services) as well as derivatives (e.g.,
futures contracts) markets. In this paper, we use this terminology to refer to fully deregulated market designs based
on short-term wholesale markets and associated derivatives markets.

2It is worth recalling that Boiteux (1949, 1960) established seminal results on marginal electricity pricing for a
regulated utility under the assumption of an optimal investment policy: “Provided there is an optimal investment
policy, short-term pricing is also long-term pricing, and there is no longer any contradiction between the two.”
Similarly, Schweppe et al. (1988) also considered an energy marketplace in a regulated environment. Acknowledging
the investment decentralization result of their co-author (Caramanis), Schweppe et al. wrote “The spot price based
energy marketplace is designed to operate in a regulated environment [...]. This chapter only presents a set of basic
ideas [...]. Since the advantages and disadvantages have not been quantified, we are not advocating deregulation
(i.e., we do not know whether there is ‘a lady or a tiger’ behind the door).”
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of private agents in a perfectly competitive market and those of a benevolent social planner (also

assuming private and social discount rates are equal). From an investor perspective, this notably

translates into the equality between inframarginal rents and fixed costs at the optimum. Although

commonly presented for a representative year with annualized costs under certainty (e.g., Joskow

and Léautier, 2021), this result can be extended to a multi-year, stochastic framework by equat-

ing the expected discounted sum of inframarginal rents with total fixed costs (e.g., Poncelet et al.,

2019). Yet this equivalence holds under “several strong simplifying hypotheses” (Rodilla and Batlle,

2012) or “demanding conditions” (Newbery, 2018), including perfect information, full rationality

of agents, and complete markets for risk trading (see Section 4.1.1 for detail).

Whether or not the tenability of these assumptions would compromise the practicability of the

EOM paradigm has spurred heated debates in the community since its very inception.3 At the dawn

of the deregulation era, Littlechild (1988) observed the disagreement, noting that “mathematical

models designed to prove that spot pricing is socially optimal are unpersuasive” – referring to the

aforementioned “MIT models” of Caramanis (1982) and Schweppe et al. (1988). More skeptical

of the purported long-run efficiency of spot markets, others like Westfield (1988) quite remarkably

foreshadowed detrimental impacts on the cost of capital that are front and center in current debates

(e.g., Peluchon, 2021; Gohdes et al., 2022; Neuhoff et al., 2022; Newbery, 2023).4 Even though the

theoretical controversy never settled, political impetus was a critical driver for the liberalization of

the industry (e.g., Joskow and Schmalensee, 1988; Léautier, 2019). The implications of deregulation

for long-run efficiency also took a long time to materialize in practice, notably because wholesale

markets were implemented in relatively mature power systems with a stable or contracting demand

and little need for new investments. The main focus was on short-run efficiency, i.e. on harnessing

market forces to ensure an efficient use of the existing fleet (e.g., Pollitt, 2021; Cicala, 2022).5

Over the last decade or so, this controversy has been reinvigorated in three phases with new

variations. First, as documented in Bublitz et al. (2019), security of supply and ‘missing money’ in

liberalized markets gradually became a focus of attention, with debates on the need for and design

of capacity remuneration mechanisms. Second, as documented in Keppler et al. (2022), the energy

transition shed a new light on the debates due to the required profound changes in energy system

structures and generation mixes. In particular, the sheer scale and speed of necessary low-carbon

investments, their specificities and capital-intensiveness, and various externalities (e.g., learning

spillovers, social and industrial preferences) generate a market design and regulatory conundrum.

While these problems are now rather well delineated at a conceptual level, there is scant literature

3This prolonged a similar controversy in the public utility pricing literature on the conditions for the equivalence
between short– and long-run marginal cost pricing, see e.g. Andersson and Bohman (1985) and Section 4.1.

4More generally on long-run efficiency, Westfield (1988) warned that “spot markets for electric power will not
perform the miracles that perfect markets perform in the economic theory textbook. Many of the gains achievable
through centralized coordination will be lost.”

5Back then the context and policy objectives were markedly different from those that prevail today for the energy
transition. The focus was on improving the efficiency of mature systems and on replacing old coal-fired plants with
modern gas-fired plants as peaking units (financing needs were modest because of CCGT’s low fixed costs relative
to variable costs). See also Section 5 in Keppler et al. (2022) for a short historical perspective and discussion.

3

Electronic copy available at: https://ssrn.com/abstract=4537161



offering quantitative insights.6 Last but not least, the ongoing energy crisis further exposed pre-

existing design shortcomings and initiated a new wave of market reforms, also putting the question

of affordability at the core of the debates (e.g., Fabra, 2023; Schittekatte and Batlle, 2023).

The objective of this paper is to provide novel quantitative elements to illuminate this historical

controversy on electricity market design and to revisit it with a focus on contemporary issues and

profound changes brought about by the energy transition. Specifically, we develop an analytical and

modeling framework to quantitatively investigate how EOM outcomes are sensitive to theoretical

assumptions and characterize how they deviate from the long-run optimum when these assumptions

are relaxed. We apply our framework to a case study capturing the key features of energy systems

under deep decarbonization, which differ from those when short-term markets were introduced and

call for specific investigation. More precisely, we make three contributions to the literature.

As a first contribution, we provide an analytical framework to unpack the underlying assump-

tions that govern the efficiency of an EOM design in the long run. Specifically, we clearly delineate

the behavioral, informational and structural assumptions that are conducive to an optimal energy

mix in a pure EOM. In particular, we emphasize the dynamic nature of entry-exit decisions and

the crucial roles of risks, hedging and anticipations. Compared to the existing literature that has

looked into these assumptions at a conceptual level (e.g., Joskow, 2008; Rodilla and Batlle, 2012;

Newbery, 2018) or with a focus on specific assumptions (e.g., Kraan et al., 2019; Fraunholz et al.,

2023; Tao et al., 2023), our framework is synthetic and unified. This allows us to relax assumptions

separately in order to isolate and compare the effects of doing so.

As a second contribution, we develop a modeling framework combining optimization and simu-

lation models in a novel way in order to operationalize the above analytical framework. Specifically,

our core simulation model uses System Dynamics (SD) as a modeling approach to consider a repre-

sentative agent and capture the aggregate market impact of relaxing each assumption. Compared

to the literature that has used this or similar modeling approaches to analyze agent behavior and

market design issues (see Section 2.1 for a detailed review), our SD market simulation model has

key distinguishing features. First, it has a linkage with a GEP model that can be used to define

the anticipations of the representative agent. The outcomes of the GEP model are also used as a

normative benchmark against which the performances of simulated EOM outcomes are evaluated.

Second, it also has a linkage with an optimization-based merit-order dispatch model to represent

short-term operations and determine future wholesale electricity prices that are the only source of

remuneration for assets in an EOM. Third, it solves for both investment and retirement decisions

simultaneously in conventional, renewable and storage technologies.

As a third contribution, we combine these two frameworks and provide quantitative illustrations

in the context of the energy transition. Specifically, we build a case study on the basis of a stylized

6To our knowledge, there are two exceptions: Kraan et al. (2019), who find that an EOM does not give sufficient
and stable investment signals to sustain a renewable, reliable and affordable power system; Zimmermann and Keles
(2023), who find that carbon neutrality cannot be achieved only through market-based investments in France.
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representation of Californian fundamentals over 2025–45. We select the Californian system because

of public data availability and reliability, and because it presents the key characteristics of power

systems under decarbonization in a relatively simple setting.7 This facilitates the modeling and the

interpretation of the results, whose identified trends are relevant for all power systems in transition.

These characteristics are a commitment to eliminate emissions that requires massive investments

in non-dispatchable renewable energy sources along with storage solutions, an existing fleet with a

sizable share of fossil-fired plants that will partly be phased out before the end of their lifespans,

and an increasing demand at wholesale level driven by electrification.

Overall, our quantitative results illustrate how the theoretical assumptions needed for an EOM

to deliver the long-run optimum can hardly be met in practice. In particular, we highlight the high

level of informational and computational complexity associated with rational decision-making and

optimal anticipations of all relevant market fundamentals and future entries and exits. Our results

also reveal that EOM outcomes can substantially deviate from the optimum when we introduce

limited anticipation sophistication or risk aversion that affect expected revenue streams and asset

profitability.8 This leads to higher electricity prices, lower security of supply and higher emissions.

A crucial new insight from our results is a coordination problem between investment in low-carbon

assets and the phaseout of fossil assets that hinders the energy transition. For instance, under risk

aversion, our results go beyond the standard under-investment result established in the literature.

Specifically, risk aversion results in delays in both new investment and fossil phaseout that mutually

reinforce one another, and leads to emissions in excess of decarbonization targets.

The remainder proceeds as follows. Section 2 presents the modeling approach in relation with

the literature and describes the modeling framework, notably the SD model that simulates EOM

outcomes. Section 3 presents our case study, describes the model calibration and characterizes the

long-run optimum obtained with the GEP model. Section 4.1 presents our analytical framework,

examines the assumptions under which the SD-EOM model replicates the GEP optimal outcomes,

and discusses the impacts of unit indivisibility. Section 4.2 explores how simulated EOM outcomes

deviate from the optimum when we relax these assumptions. Section 4.3 summarizes our results and

offers implications for policy and market design. Section 5 concludes and outlines how our modeling

framework can be extended to assess and compare alternative designs of long-term contracting

mechanisms currently contemplated as part of undergoing market reforms.

7For instance, imports and exports are relatively small, which makes the isolated single-zone assumption accept-
able, and only two technologies – solar PV and battery storage – are envisaged as key transition drivers, attracting
the bulk of new capacity investments by mid century (around 95% in 2045 according to CPUC, 2019), which reduces
the set of technologies one needs to represent. See also Section 3.1 for detail on open data sources.

8As Section 4.1.1 will make clear, risk aversion is not a problem per se. It only distorts entry-exit decisions when
markets are incomplete and all relevant risks cannot be traded, which we implicitly assume is the case here.
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2 Modeling framework

In this section, we first provide an overview of our modeling framework and place it within the

related literature. We next describe its two constituent models. Models were developed and coded

in Python, and the open-source codes are provided here: GitHub/ANTIGONE.

2.1 Overview

Classes of models in the literature. For decades, electricity economists and engineers have

used a rich toolbox of complementary approaches to model and get to grips with long-term power

system issues. The various modeling options are generally classified into three categories, namely

optimization, equilibrium, and simulation models (e.g., Ventosa et al., 2005; Creti and Fontini,

2019) with distinct and complementary areas of relevance:

• Optimization models are the original and traditional approach to modeling the evolution of

energy systems. The so-called generation expansion planning (GEP) models typically take

the perspective of a central planner that seeks to determine the socially optimal capacity

development plan (i.e., that which minimizes system-wide investment and operating costs)

given a variety of constraints (e.g., a cap on carbon emissions), see Kagiannas et al. (2004) for

a historical perspective. Over time, GEP models have notably been extended to stochastic

frameworks and are still widely used today to analyze decarbonization pathways for energy

systems, see Weber et al. (2021) for a recent review.

• Equilibrium models simultaneously solve individual profit maximization problems for differ-

ent types of agents (e.g., producers with different technologies, intermediaries, consumers),

finding equilibrium solutions where no agent is better off deviating unilaterally (e.g., Fan

et al., 2012). These models typically feature uncertainty and risk aversion (e.g., Ehrenmann

and Smeers, 2011; Abada et al., 2017; Mays et al., 2019; Mays and Jenkins, 2022).

• Simulation models can represent different decision-making rules (i.e., beyond profit maxi-

mization) and degrees of agent’s sophistication and rationality. There are two broad types of

simulation models: The first is agent-based modeling (ABM) that can feature heterogeneous

agents. The second uses system dynamics (SD) and typically considers representative agents.

dos Santos and Saraiva (2021) and Tao et al. (2021) (resp. Teufel et al. (2013) and Ahmad

et al. (2016)) provide useful reviews of ABM (resp. SD models) applied to energy systems.

Optimization models abstract the market realities away, and as such, they provide insightful

and normative results. In fact, linear/convex GEP model results can be interpreted as the outcomes

from perfectly competitive markets with fully rational and informed agents. While this constitutes

a useful benchmark, it does not capture the market environment in which agents trade and invest,
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the individual decision-making process of market participants (possibly with bounded rationality,

information or foresight) or the sequentiality of discrete investment/divestment decisions over time

(since all time steps are solved simultaneously) – see also Section 4.1.1.

Equilibrium models allow modelers to represent and assess the impacts of the market structure

and heteregeneous agents and behaviors. This notably endogenizes key decisions and model vari-

ables (e.g., risk trading and the associated cost of capital). Yet these models rely on solvers whose

results do not lend themselves to a straightforward interpretation of the mechanisms leading to the

equilibrium, and they are typically solved in steady state, which does not unveil the dynamic na-

ture of investment/divestment decisions. Additionally, by design these models cannot account for

out-of-equilibrium situations, which are acknowledged to be common and deserve more attention

(e.g., de Vries and Heijnen, 2008; Léautier, 2019).

Compared to equilibrium models, simulation models give more latitude in making explicit

assumptions about agents’ rationality, information and foresight levels, and in representing out-

of-equilibrium situations. Arguably, this strength can also be a weakness, in that assumptions

must be clearly spelt out and articulated with one another in order to arrive at sensible modeling

results. Although SD models were first developed and applied to the electricity sector (e.g., Ford,

1983; Bunn and Dyner, 1996), both ABM and SD models are widely used today in the context

of the energy transition – see inter alia Keles et al. (2016), Kraan et al. (2019), Fraunholz et al.

(2021, 2023), Tao et al. (2021, 2023), Anwar et al. (2022) for ABM, and Petitet et al. (2016, 2017),

Ousman Abani et al. (2018), Rios-Festner et al. (2019, 2020), Tang et al. (2021) and Pourramezan

and Samadi (2023) for SD models.

Modeling approach in this paper. We develop a modeling framework consisting at its core

of an SD model that we complement by a GEP model. Given that we aim to assess the impacts of

relaxing the assumptions underpinning the optimality of long-term decision-making in a canonical

energy-only market (see Section 4.1.1), the choice of an SD model proceeds in two steps:

(1) We first opt for a simulation model because we wish to explicitly represent and vary the

assumptions about investor behavior (i.e., rationality, foresight, information, risk aversion) as well

as quantify and describe the temporal dynamics of the energy transition.

(2) We next select an SD model to focus on a representative investor and isolate the impacts of

relaxing said assumptions at an aggregate level – i.e., possibly capturing the resultant of different

agents’ decisions, but without formally accounting for heterogeneous agents and behaviors.9

As discussed above, great care will be taken to motivate and delineate our assumptions about

investor behavior and describe how we implement them in the following. To name but one key issue

at this stage, Tao et al. (2021) and Fraunholz et al. (2021) note how simulation model results can

be sensitive to (long-term) price projection methods, and in particular to the way future capacity

9Given that we assume perfect competition throughout, the resulting investment and decommissioning decisions
are formally equivalent to those that would emerge with a sufficiently large number of identical agents.
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Generation Expansion
Planning

(Optimization)

Common dataset

Existing fleet
Electricity demand (current and projected)
Fixed and variable costs (current and projected)
CO2 emissions targets

Energy-Only Market
Simulation

(System Dynamics)

Future optimal decisions
CO2 price

optimal trajectory simulated trajectory

Figure 1: Modeling framework overview

Note: The linkage between the GEP and SD models represented by the orange arrow is optional.

developments are anticipated and impact future price formation – and in turn govern investment

decisions – thus exemplifying an issue of endogeneity we will come back to in Section 2.2.

This is the main reason why we complement our modeling framework with a GEP model. That

is, we feed the SD model with two relevant outcomes from the GEP model (see Figure 1). First,

some information about future capacity developments from the GEP model can be used in the SD

model when the representative investor forms future price and revenue anticipations (see Section

2.2). Second, because we do not explicitly model the market for carbon emissions, the shadow price

associated with the annual constraint on emissions from the GEP model is used as an exogenous

carbon price signal in the SD model (see Section 3). Finally and intuitively, the GEP model also

constitutes a valuable normative benchmark for optimal capacity developments against which we

will assess the (deviations in) outcomes resulting from the SD model.10

The GEP model is a standard constrained pluriannual cost-minimization problem.11 In short,

its objective function is the expected net present value of total systems costs (operating costs +

investment costs + cost of rationing non price-responsive consumers at the value of lost load). De-

cision variables include short-term operations and long-term entries and exits. Several constraints

govern the market clearing, various generation and storage asset operations, asset fleet dynamics,

and carbon emissions. The different technologies we represent are described in Section 3. We now

turn to the description of the SD model.

2.2 System Dynamics market model

The SD market model simulates the evolution of the generation mix as the result of successive

market outcomes and stepwise investment and decommissioning decisions over time. Compared to

10This alleviates the somewhat arbitrary nature of the reference point often used in simulations, and it establishes
a bridge between the long-term market design simulation literature and the prospective analysis literature.

11Because the formulation of this problem is standard, its detailed presentation is relegated to Appendix B.
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Risk aversion

Discount rate
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market oucomes

Fuels costs CO2 price
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Figure 2: Causal-loop diagram of the SD market model

Note: Elements in blue are endogenously determined and updated at each iteration of the loop delineated by blue
arrows. Inputs in orange can be taken from the GEP model, whereas those in black are exogenously calibrated.

intertemporal optimization or equilibrium problems that are generally processed by a numerical

solver computing optimal values for all current and future decision variables simultaneously, this

approach explicitly unpacks both the agents’ decision-making process and the dynamics of capacity

development. While this has the potential to capture important behavioral and transitory effects

(e.g., path dependency), it also entails that we have to explicitly address the issue of endogeneity

(i.e., circularity or co-determination) between current and future decisions, that is the formation

and adjustment of (long-term) anticipations.

Specifically, individual investment and decommissioning decisions are determined endogenously

and sequentially each year of the simulation period on the basis of an economic profitability as-

sessment for a given set of investor behavior assumptions and range of future market outcomes.

The SD model is composed of three interconnected modules to enable this assessment: First, an

anticipation module that produces reference scenarios for market fundamentals over time. Second,

a dispatch module that generates market prices as well as generation and storage patterns in fu-

ture years for given reference scenarios. Third, a decision module that makes annual investment

and retirement decisions using information about costs and revenues from the first two modules.

The outcome of the decision module is then fed into the anticipation module, adjusting reference

scenarios and initiating an iterative loop. The three modules and their linkages are graphically

shown in the causal-loop diagram in Figure 2. We describe them in turn below.
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2.2.1 Anticipation module

The anticipation module produces reference scenarios on the basis of two types of long-term

market fundamentals that govern current investment and decommissioning decisions. First, some

parameters such as future demand, fuel prices, and carbon prices are set and calibrated exogenously

(see Section 3.1). Second, anticipations must also be formed on future endogenous variables (i.e.,

future investment and decommissioning decisions that define the generation mix in the long term)

which affect investment and decommissioning decisions today, and vice versa. This section focuses

on the formation of the second type of anticipations over a ‘prospective horizon’; namely, the time

period over which investment projects assessed in the current year of the simulation operate and

are remunerated (and equivalently for retirement projects).12

As a (rational) way of dealing with deep uncertainty and cognitive limitations associated with

their long-term decision-making, investors may use heuristics or rules of thumb to alleviate asso-

ciated computational complexity and informational requirements (e.g., Simon, 1955; Baumol and

Quandt, 1964). For instance, heuristics can be utilized to forecast future relevant factors (Brock

and Hommes, 1997), such as backward-looking adaptative expectations (Cepeda and Finon, 2011).

Alternatively, simplified models considering only variables of first-order importance can be built

(Gabaix, 2014), information that is costly to obtain and process can be ignored (Reis, 2006), and

planning horizons can be truncated and sliding (Quemin and Trotignon, 2021). Moreover, limited

sophistication in forecasting future entries and exits over the whole prospective horizon can be jus-

tified by the fact that anticipating other agents’ decisions is complex, especially without complete

long-term markets that may allow for the coordination of agents towards the first-best outcome

(e.g., Williamson, 1975; Van Huyck et al., 1990; Felder, 2002).

For expositional clarity, we consider two polar cases of anticipation sophistication labeled ‘static’

and ‘dynamic’ anticipations. This notably allows us to avoid using in-between ad-hoc anticipation

heuristics or rules that would make our results dependent on arbitrary modeling choices. The two

cases are graphically illustrated in Figure 3 for a stylized example of a fossil technology phaseout.

Static anticipation. The first and simplest case consists in not considering any future decisions

throughout the prospective horizon. That is, at a given point in time, the existing fleet is main-

tained online with no new entries until existing assets reach the end of their lifespans and retire

without early economic exits. This simplifying assumption of myopia, albeit somewhat extreme, is

often (implicitly) made in the related literature (e.g., de Vries et al., 2013; Chen et al., 2018). In

Figure 3, in any given year of the simulation (here 2025), before any investment or decommissioning

decision is made on that year, installed capacity 0 inherited from the previous year is prolonged

into the future to form the anticipated trajectory A . Note that this trajectory is constant as long

12The model features developments to represent build times that are not used in this article and left for further
work. Here, build times are neglected and assets start producing instantaneously when the decision is made.
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Figure 3: Illustration of static vs. dynamic anticipation of future decommissioning decisions

as no unit reaches the end of its lifespan (as is the case here until 2028).

Dynamic anticipation. The second case introduces sophistication in anticipating the evolution

of the generation mix over time. In line with standard prospective analysis methodology utilized

in practice to inform investment and retirement decisions, the GEP model is leveraged to provide

an optimal capacity development plan.13 Specifically, in a given year, the GEP model is run from

the current state of the fleet, yielding optimal capacity trajectories by technology until the end of

the prospective horizon. Then, the anticipated evolution of the generation mix is defined as per

the optimal yearly capacity changes beyond the current year, while entry and exit decisions for the

current year are left for the decision module to determine. This guarantees that in the benchmark

case (i.e., assuming perfect information, rationality and risk neutrality) the decision module arrives

at the optimal decisions for the current year that are congruent with the entire optimal capacity

development plan derived from the GEP.14 This also constitutes a conservative assumption when

assessing the deviations induced by moving away from the benchmark case (Section 4). In Figure

3, the GEP model run from the initial conditions 0 yields the full optimal trajectory 1 , and the

dynamic anticipation of future entries and exits B is obtained by only keeping optimal decisions

beyond the current year.

Moreover, the anticipation module is designed to accommodate two types of deviations from

the above perfect dynamic anticipation case. First, we can relax the perfect information assump-

tion and introduce various biases in the anticipation of future fundamentals, regarding either the

13In practice, firms and investors can carry out such prospective analysis in-house or have it provided by external
consultancies. In most cases if not all, this relies on GEP-style optimization tools (e.g., PROMOD by Hitachi Energy
or PLEXOS by Energy Exemplar).

14This convergence result is verified in the simulations (see Section 4.1) and arises by construction: in the spirit
of a rational expectations equilibrium framework, we seek the fixed point between equilibrium and optimal beliefs
about future capacity expansion. Importantly, note that this result also requires the anticipation of the associated
future prices and revenues over the entire lifespan of all assets (see Section 2.2.3 and footnote 18).
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parameters used as inputs in the GEP model (e.g., demand level, technology costs) or its outputs

(e.g., carbon price, capacity trajectories). The introduction and choice of these biases is arbitrary,

but this should be seen as a complement to our analysis that resorts to two polar anticipation cases.

Second, we can choose the frequency at which the GEP model is called to update the anticipation

of future entries and exits. While annual updates would be ideal, in practice the associated cost

and complexity of this exercise may justify an update every couple of years or more.15

2.2.2 Dispatch module

The SD model embeds an economic dispatch module to represent short-term operations and

market prices. This type of linkage, first introduced in Dyner et al. (2011), is preferred over the

‘revenue curve’ (e.g., Ousman Abani et al., 2018) and ‘scarcity rents curve’ (e.g., Kraan et al., 2019)

approaches that exogenously define a direct relation between the level of capacity and assets’ rev-

enues. Although computationally heavier, our approach allows for a more accurate representation

of key features of decarbonized power systems (notably the time variations of weather-dependent

generation and the dynamics of storage), and consequently of the price and revenue distributions.

Below we first describe the module’s structure and main assumptions, and then specify when and

how it is utilized within the SD model workflow.

The dispatch model is formulated as a standard short-term cost-minimization problem whose

objective function is the total operating cost; i.e., the sum of variable costs and cost of rationing

price-inelastic consumers (set at the VoLL). We consider an hourly resolution and to alleviate the

computational burden, we divide the annual problem into sub-problems with a rolling horizon and a

‘look-ahead interval’ (i.e., a final or continuation period that is included in each sub-problem whose

solutions are discarded in the current sub-problem but utilized in the subsequent sub-problem).

We set these parameters to 1 month and 24 hours, respectively, and storage assets are dispatched

over these optimization steps assuming perfect foresight.

Implicitly, this representation of short-term operations assumes that the sequence of short-term

markets is frictionless and yields an optimal outcome.16 This important assumption is deliberate,

as we wish to zero in on the long-term aspects of a canonical energy-only market that would still

prevail if current short-term markets were improved through more integration and finer granularity.

For the same reason as well as for consistency with the case study presented in Section 3, we keep

the dispatch model as parsimonious as possible. Although this version of the dispatch model does

not represent short-term uncertainties, seasonal storage, ancillary services and grid congestion, its

generic and modular implementation is amenable to such developments and refinements.

Finally note that the dispatch module is called and run in two different places in the SD model:

15Given the relative monotonicity of our case study (see Section 3) and the low degree of stochasticity, the optimal
capacity trajectories defining the dynamic anticipation are only computed once at the beginning of the simulation
period in this version of the model. This has negligible impacts on our results while reducing computational burden.

16This notably implies the absence of market power and short-term non-convexities.
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First, it is primarily utilized to convert long-term fundamentals from the anticipation module into

future market prices and revenues as well as generation, storage charging and renewable curtailment

patterns. This dispatch is dubbed “virtual dispatch” (Tao et al., 2021) as it is run for future dates

on the basis of different anticipations of the future state of the system. Second, once investment

and decommissioning decisions are made in a given year, the dispatch module is run to simulate the

(actual, not virtual) short-term market outcomes for that year, before moving on to the following

year. This final run is notably used as a basis to compute different metrics in Section 4.

2.2.3 Decision module

The decision module consists of a loop that considers all possible investment and retirement

decisions and iteratively selects the most profitable one at each step in the simulation until none is

left. Specifically, economic profitability is assessed on an annual basis from a representative investor

perspective using a Net Present Value (NPV) criterion – possibly adjusted for risk aversion. The

NPV approach is a well-established tool in the literature to appraise and compare assets available

for investment and retirement.17 The representative investor perspective is at the core of the SD

approach and has been motivated above (Section 2.1).

Decision criteria and loop. The NPV associated with each decision is computed using relevant

costs (i.e., avoidable costs) and market revenues over a certain time horizon that all depend on the

nature of the decision or the underlying asset (e.g., investment or closure, existing or new asset).

• Costs: We consider two types of fixed costs, the investment cost (CAPEX) and fixed Opera-

tions and Maintenance (O&M) costs. CAPEX is a sunk cost that cannot be recovered when

an existing unit is retired. By contrast, fixed O&M cost is due when the unit is in operation

but can be saved by decommissioning it. Some technologies also have a variable operating

cost, that is fuel and carbon costs for thermal assets or charging cost for storage assets.

• Revenues: Annual revenues accruing to all assets over their entire lifespans are computed

using the hourly virtual short-term dispatch module (Section 2.2.2) with the long-term fun-

damentals from the anticipation module (Section 2.2.1) as inputs.18 What matters is the

stream of net revenues, that is short-term market revenues minus variable costs.

• Horizon: The profitability of a potential investment in a given year must be assessed over its

whole lifetime. By contrast, the timing of a potential retirement decision is more complex, as

17Although there is an option value in deferring decisions to invest in new assets under uncertainty and investment
irreversibility (e.g., Dixit and Pindyck, 1994; Rios-Festner et al., 2019), our approach makes no arbitrage between
investing now or a few years later (i.e., no real-options valuation). Yet we implement a procedure that reflects some
optionality for decommissioning decisions. Our approach does also not consider portfolio synergies across assets.

18It is by now clear that there are two layers of foresight in the model – one for future entries and exits, another
for future prices and revenues. Assuming that the forward-looking anticipation of future inframarginal rents is not
truncated ensures that current investment and retirement decisions are optimal from a system perspective in the
case of perfect dynamic anticipation of future entries and exits (see Section 2.2.1 and footnote 14).
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temporary losses in the short term can be offset by larger gains in the long term.19 To capture

this, we implement a simplified procedure whereby retirement occurs only if revenues do not

cover fixed O&M costs both in the current year and over the asset’s remaining lifespan.

The NPVs of all potential decisions in a given year are computed as described above and the

investor picks up the one with the highest NPV per megawatt of capacity in absolute terms. The

decision-making process thus places investment and retirement decisions on an equal footing and

treats both types of decisions simultaneously.20 Once a decision is made, the asset fleet is adjusted

for the corresponding capacity addition or withdrawal, which affects the economic profitability of

all other units – be they installed or under consideration. That is, at each iteration of the loop,

expected market revenues and NPVs of all assets are updated on the basis of the iterative evolution

of the asset fleet. Importantly, the profitability of all previous decisions made in the current year is

reassessed at each iteration: if an earlier decision becomes unprofitable because of some following

decisions, it is called off; and only those decisions that stay profitable until the end of the iterative

loop become firm and effectively materialize.

Additionally, note that we implement a standard modeling artifact to account for those years

in the profitability assessment that extend beyond the simulation period. Specifically, we assume

market revenues earned in the last year of the simulation period are duplicated and repeated over

the following years until the entire asset lifetime is covered in the profitability assessment. Because

the ‘edge effects’ induced by this artifact become increasingly prevalent as the end of the simulation

period nears, our interpretation of the simulation results in Section 4 will essentially focus on the

time window where they are less distorted (i.e., in the first part of the simulation period).

Finally, the iterative loop in a given year terminates when one of the two following conditions is

met: either there is no profitable decision left, or a given state of the asset fleet (i.e., the number of

units per technology, which is stored at the end of each iteration) is reached for the second time.21

An algorithmic description of the decision loop is provided in Appendix C.

Uncertainty and risk preferences. We adopt a simple approach to introducing uncertainty

around the reference scenario produced by the long-term anticipation module (Section 2.2.1). We

follow Neuhoff et al. (2022) and bypass the explicit modeling of multifaceted uncertainty, e.g. on

demand, commodity prices, regulatory changes and so forth.22 That is, we consider that risk bears

directly on the discounted sum of net revenues for a given asset in the reference scenario, denoted

r̄. Specifically, our main case considers that asset-specific net revenues are uniformly distributed

19For simplicity, mothballing decisions are not considered. See Ousman Abani (2019) for these developments.
20The related literature typically focuses on investment and retirement issues in isolation, often effectively modeling

only one. When both decisions are endogenous, they are typically modeled sequentially, which is not inconsequential
for market outcomes. Our framework circumvents and goes beyond these issues.

21This preempts infinite back and forth and addresses indeterminacy due to unit indivisibility (see Section 4.1).
22This single risk can be thought of as the aggregate of all risks, but note their cross-effects are not captured.
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between 0 and 2r̄.23 In contrast to Neuhoff et al. (2022), therefore, the central value around which

we cast our probability distribution is endogenously determined in the model.24

In the face of uncertainty, we consider that the representative investor can exhibit different

degrees of risk aversion, including risk neutrality. There are many reasons why investors and firms

(or firms acting on behalf of investors) de facto behave as if they were risk averse, resulting in a

higher utility from more stable profits. These include, inter alia, hedging demand, corporate risk

management policies (e.g., financial and operational constraints) or costs associated with financial

distress (e.g., Froot et al., 1993; Bessembinder and Lemmon, 2002; Willems and Morbee, 2010;

Acharya et al., 2013; Jagannathan et al., 2016). Additionally, in the electricity industry where

assets are often capital-intensive with long lifetime, investment decisions are the result of careful

profitability assessments, and one may intuitively expect risk aversion to prevail (e.g., Vázquez

et al., 2002; Neuhoff and de Vries, 2004; Abada et al., 2019).

There are different approaches to representing risk aversion, including risk-adjusted discount

factors (e.g., in the spirit of the CAPM), coherent risk measures (e.g., a linear mixture of expected

surplus value and conditional value-at-risk), and concave utility functions. Although the first two

approaches allow for a more detailed and state-of-the-art analysis of risk impacts, they deploy a

heavier machinery than the third approach that is irrelevant given our rather crude representation

of uncertainty. We thus assume that the investor preference for stable and secure profits is described

by a concave von Neumann-Morgenstern utility function U . Additionally, as is standard in the

related literature (e.g., Petitet et al., 2017; Fraunholz et al., 2023), we consider that risk aversion

applies directly on the (distribution of the) asset-specific discounted sum of net revenues.25

We choose a functional form that satisfies the property of constant relative risk aversion. This

property ensures that the coefficient of risk aversion does not vary with the economic value of the

decision under consideration, which typically is of a different order of magnitude for investments

and retirements. Specifically, following Petitet et al. (2017), U is defined by

U(r) =

 1− exp (−αr/r̄) for α > 0

r for α = 0

with α the coefficient of (constant relative) risk aversion, r the random discounted sum of net

revenues, and r̄ = E{r} by definition.26 Under risk neutrality (α = 0), the investor considers the

mean of the net revenues distribution E{U(r)} = E{r} = r̄ when computing the NPV of a given

23In Appendix E, we illustrate how our qualitative results are unchanged when we vary the interval of the uniform
distribution or when we consider another distribution type for the random variable.

24Neuhoff et al. (2022) consider the last year for which liquid futures contracts exist and assume constant electricity
prices and market values.

25This assumption is reasonable for our purposes, and it also allows us to keep the model tractable given the other
key modeling details and specificities that we need to account for. Specifically, we do not develop a recursive utility
model à la Kreps-Porteus or Epstein-Zin as the issue of intertemporal substitution is of second-order consideration
and applicability for the problem at hand. There is thus no need to disentangle risk aversion from intertemporal
substitution, and we can apply risk averse preferences directly on the overall discounted net revenue streams.

26One can easily check that constant relative risk aversion holds, that is −r̄U ′′(·)/U ′(·) = α.
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asset. Under risk aversion (α > 0), the investor considers the certainty equivalent of net revenues

r⋆, that is the certain revenue that yields the same utility as the expected utility over the random

distribution of revenues, U(r⋆) ≡ E{U(r)}. The certainty equivalent r⋆ is decreasing with α and

tends to r̄ in the limit as α goes to zero. Analytical details are relegated to Appendix E.

3 Case study

In this section, we introduce and document our Californian case study. We first describe the fun-

damentals used to calibrate the model (Section 3.1) and then present the optimal simulation results

derived from the GEP model (Section 3.2). All input data are available here: Zenodo/Dataset.

Before we proceed, a short discussion on market design is in order. In practice, the Californian

system is composed of a nodal electricity market with a soft offer cap at 1,000 $/MWh, a mandatory

resource adequacy requirement with no formal capacity market, an emissions trading system (ETS),

and a renewable portfolio standard (RPS) program. However, we intend to leverage our stylized

case study to represent a canonical energy-only market (EOM). Bearing in mind that our study is

for illustrative purposes, we thus make several simplifications in terms of implementation.

We consider a zonal market with an hourly resolution over a 20-year period, focusing only on

wholesale electricity (ancillary services are outside the scope of this paper). There is no offer price

cap and the single hourly price can go up to the VoLL set at 15,000 $/MWh. Moreover, we model

an isolated system (no interconnection) and do not represent the internal network (‘copper plate’

assumption).27 Although we do not formally account for the resource adequacy requirement, we

set load scenarios in line with the ‘one-in-ten’ regulatory criterion. Similarly, we do not represent

the RPS program, but note that CPUC (2019) found the RPS constraint to be non-binding (the

associated shadow price is zero) and decarbonization to be driven only by the constraint on emis-

sions. Likewise, the ETS is not explicitly modeled and the price of carbon is set as the shadow price

associated with annual emission targets. In sum, this stylized setup allows us to capture the essence

of EOM outcomes and to purposely assess how they hinge on investor behavior assumptions.28

3.1 Calibration

We use and adapt data from three open-data sources: the integrated resource planning (IRP)

exercise by the California Public Utilities Commission (CPUC, 2019), Ninja Renewables (Ninja

Renewables, 2021), and historical data from the California Independent System Operator (CAISO,

2018, 2019). Below, we describe how we calibrate demand, supply and decarbonization parameters

for both the optimization (GEP) and simulation (SD) models.

27Imports and exports are relatively small compared to domestic generation and consumption: imports cover 17%
of total supply today (CAISO, 2022) and decline in CPUC’s scenario to a slight net exporter situation in the 2030s.

28See Bruninx et al. (2020) and Osorio et al. (2021) for related modeling approaches that jointly represent these
different markets. Although they also look into investment decisions in the electricity sector, their focus is on policy
design assessment and interactions, and they assume perfectly rational agents.
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Figure 4: Load assumptions (grid load = gross load – distributed solar generation)

Demand. We consider that demand is fully inelastic to price variations and does not adjust to

installed capacity. While this simplifies the model and its calibration, note that this is innocuous for

the EOM performance we aim to appraise. Indeed, price-inelastic demand does not fundamentally

alter the peak-load pricing logic inherent to the EOM (e.g., Joskow and Tirole, 2007; Joskow and

Léautier, 2021).29 Specifically, gross load is exogenously given and assumed to increase linearly

between two given data points taken from CPUC, namely 250 TWh in 2025 and 360 TWh in 2045.

Similarly, we assume that distributed solar generation is increasing linearly between two given data

points, 29 TWh in 2025 and 66 TWh in 2045, and we subtract it (on an hourly basis, see below)

from the gross load to obtain the grid load. The result is graphically depicted in Figure 4.

Next, we convert the above annual amounts into hourly time series. To do so, we start from

two historical years, 2018 and 2019, for which we obtain hourly load from CAISO (CAISO, 2018,

2019) and hourly capacity factors for wind and solar from Ninja Renewables (Ninja Renewables,

2021). These constitute our two representative scenarios capturing ‘short-term’ uncertainties (i.e.,

which resolve as real time nears). Working with historical data allows us to infer and then utilize

realistic correlations between various sources of uncertainty such as load and weather. We then set

the hourly load profile so as to reflect the ‘one-in-ten’ capacity adequacy criterion that applies in

California. We proceed in four steps: First, we normalize both series. Second, we set 2018 as the

representative year for the one-in-ten peak and 2019 as the representative average year. Third, we

scale the normalized 2018 profile homothetically to have a demand peak that is 15% larger than

that in 2019. Fourth, we scale the two load profiles so that they sum up to the annual amounts in

Figure 4, considering 10% and 90% probabilities for 2018 and 2019 respectively.

Supply. There are two types of technologies: ‘exogenous’ technologies, whose installed capacities

are exogenously given and in line with planned evolution over time (e.g., by mandate or regulation),

and ‘endogenous’ technologies for which entry and exit decisions are explicitly modeled.

The set of ‘exogenous’ technologies consists of Combined Heat and Power (CHP), nuclear,

existing and planned wind and solar (with shorthand ‘E&P’), as well as geothermal, biomass and

29In other words, demand elasticity is not a theoretical requirement for the EOM to yield optimal outcomes. With
price-inelastic demand, demand is curtailed when it exceeds capacity and the price is set at the VoLL.
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Figure 5: Annual generation of ‘exogenous’ technologies

small hydro, which we group into one category (labeled ‘Other RES’).30 Hourly availability factors

for these technologies are set on the basis of data from CPUC (2019), which we translate into an

hourly resolution using Ninja Renewables (2021) if necessary. Figure 5 depicts the evolution of

generation volumes over time for these technologies.

The set of ‘endogenous’ technologies is further divided in two groups on the basis of decisions

available to the representative investor: existing fossil-fired dispatchable technologies – Peaker and

Combined Cycle Gas Turbine (CCGT) – can only be decommissioned (i.e., no new investment is

possible), whereas Solar and Storage technologies can also be invested into. The storage technology

we consider is generic and has the characteristics of a lithium-ion 6-hour Battery Energy Storage

System (BESS) with a 85% roundtrip efficiency. The technical and economic parameters of these

four technologies are given in Table 1.

We make several realistic or mild assumptions to streamline the simulations and their interpre-

tations. That is, they allow us to isolate the impacts of varying investor behavior assumptions and

are largely inconsequential for the qualitative nature of our results. First, all ‘endogenous’ tech-

nologies have a common weighted average cost of capital of 8%.31 Second, they have a common

lifespan of 25 years that is longer than the simulation horizon. Third, investments are realized

with no build time (i.e., new capacities are built and start operations on the year the investment

decision is made). Fourth, in our central scenario, all technologies have a common indivisible unit

size of 500 MW. Taken together, these four assumptions essentially guarantee that investment and

decommissioning decisions are not structurally tilted towards specific technologies. Taken individ-

ually, each assumption is mild and simplifies the anticipation and decision modules introduced in

Section 2.2.32 Although the first three assumptions have relatively straightforward and innocuous

implications (e.g., the higher the WACC, the lower the investment volume), Section 4.1 provides

a sensitivity analysis of the fourth assumption as a basis for a general discussion of capacity unit

discreteness/indivisibility for modeling outcomes.

Finally, we set the initial conditions – that is, the capacities installed in 2025 – so as to start the

30Solar technology on the supply side corresponds to grid-scale solar PV (recall that distributed solar generation
is accounted for exogenously on the demand side).

31For a literature review on the representation of the cost of capital in energy system models and a discussion of
the associated impacts on model outcomes, see Lonergan et al. (2023).

32For instance, the second assumption implies that we do not have to address the issues of refurbishing, repowering
or closing the assets that are built during the simulation period.
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Technology
Available CAPEX Fixed O&M Variable cost Carbon intensity
decision [USD/kW-yr] [USD/kW-yr] [USD/MWh] [kgCO2/MWh]

Peaker D only 42.5 20 51∗ 610
CCGT D only 117 30 31∗ 370

Solar I & D 72 9 0 0
Storage I & D 108 13 - -

Table 1: Technical and economic parameters for ‘endogenous’ technologies

Note: The letters D and I refer to decommissioning and investment, respectively. The superscript ∗ indicates average
values over the simulation period and the symbol - denotes parameters whose measurement is not straightforward
due to yield and intertemporal use issues. For simplicity, Solar’s variable cost and carbon intensity are assumed to
be zero. In addition, all technologies are assumed to have no build time, the same weighted average cost of capital
(8%), and the same lifespan (25 years) that extends beyond the simulation duration.

simulations from an equilibrium state that is congruent with the anticipation and decision modules

described in Section 2.2. Specifically, CCGT, Peaker and Storage capacities are determined by

running the GEP model for the year 2025 alone – they amount to 11, 19 and 10 GW, respectively.

‘Endogenous’ Solar capacities for 2025 are initialized to zero since the existing and planned (E&P)

fleet is already accounted for in the set of ‘exogenous’ technologies.

Decarbonization. We consider that the climate change externality associated with electricity

production is fully internalized through a carbon price signal that is commensurate with the strin-

gency of decarbonization targets.33 In our setup, the shadow price associated with the constraint

on CO2 emissions is equivalent to the equilibrium price that would arise in a perfectly competitive

market for permits (Montgomery, 1972).34 Specifically, we assume that the annual cap on CO2

emissions is decreasing linearly over time and we calibrate it with a linear interpolation between

2025 and 2045 emission levels. We compute the former as the emissions resulting from the initial

brownfield fleet (31 MtCO2) while we get the latter from CPUC (12 MtCO2). Figure 7 depicts the

resulting emissions cap trajectory (left panel) and associated optimal price signal (right panel).

3.2 GEP results (optimal trajectories)

We run the GEP model with continuous capacity adjustment to determine the optimal capacity

trajectories for ‘endogenous’ technologies (Figures 6–7). Regarding new developments, Solar and

Storage reach 84 and 59 GW of installed capacity in 2045 respectively with a quasi-linear trend.35

Regarding existing assets, Peaker capacity is reduced by 6 GW (down to 13 GW), whereas CCGT

capacity remains unchanged. The annual emissions constraint is satisfied and binding every year

with the shadow price of carbon rising over time (399 $/tCO2 in 2045).36

33As a result, the failure to decarbonize in line with targets identified in Section 4.2 cannot be attributable to an
inefficient carbon price signal – rather, this has to do with investor behavior assumptions. See Ruhnau et al. (2022)
for a recent review and cross-model comparison of carbon price impacts in electricity market models.

34Since we do not explicitly model the ETS, we abstract away from inter-annual flexibility via banking, which may
induce second-order changes in emission and price levels (e.g., Rubin, 1996; Schennach, 2000); and price containment
mechanisms, which may have an impact on investment decisions (e.g., Burtraw et al., 2022; Cason et al., 2023).

35This trend is essentially driven by the input data and foreseen evolution of load over time (Figure 4).
36As a quick sanity check, we compare our results to those of CPUC: Solar and Storage capacities amount to 64.3

and 50.8 GW in 2045 respectively; Peaker and CCGT capacities are reduced by 4.2 and 1.8 GW over 2025–45, down

19

Electronic copy available at: https://ssrn.com/abstract=4537161



2025 2030 2035 2040
Year

14
16
18

GW

Peaker

2025 2030 2035 2040
Year

10

12

14

GW

CCGT

2025 2030 2035 2040
Year

0
25
50
75

GW

Solar

2025 2030 2035 2040
Year

0
20
40
60

GW

Storage

Figure 6: Optimal capacity trajectories for endogenous technologies (GEP results)
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Figure 7: Annual CO2 targets and emissions (left) and shadow price (right) (GEP results)

Interestingly, note that only a few hours of load rationing occur in the first years and that they

vanish afterwards, even as decarbonization progresses (Figure 9, dashed line).37 This result holds

in our case study because of the massive build-out in both new Solar and Storage capacities which

is driven by decarbonization targets and, as a by-product, satisfies the system’s capacity needs.

That is, the emissions constraint always binds and prevails over the overall capacity constraint.

One may rightly wonder how Peakers are able to recover their costs in such conditions, i.e. in the

absence of inelastic load rationing events with prices reaching the VoLL. One must first recognize

that the formation of electricity prices (i.e., the system’s hourly marginal values of electricity) in

carbon-constrained systems with high shares of renewables and storage is complex and “determined

dynamically by demand and intertemporal storage decisions, breaking the static logic of ‘merit order’

with dispatchable generation” (Ekholm and Virasjoki, 2020). In particular, prices can settle above

the highest conventional generator’s variable costs because of storage’s roundtrip efficiency and

intertemporal arbitrage, possibly forming “price plateaus”.38 Moreover, prices can factor in long-

term cost components when capacity additions and retirements are endogenous in the model (e.g.,

from 8.6 and 16.2 GW respectively; and the carbon price is found to reach 403 $/tCO2 in 2045. Although there are
some quantitative deviations, our modeling results for a stylized system are qualitatively very comparable overall.

37Again, this is in line with CPUC’s results where the shadow price associated with the Reserve Margin constraint
is 63 $/kW-yr in 2026, 0 $/kW-yr in 2030 (i.e., the constraint is not binding) and 1 $/kW-yr in 2045.

38Recall that storage units are optimized over a one-month window with perfect foresight.
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Mallapragada et al., 2021). In this context, all conventional generators (including Peakers) pocket

sufficient inframarginal rents to recover their fixed costs.

Running the GEP model allows us to illustrate numerically how, in line with theoretical prin-

ciples, cost recovery is ensured for all assets with no ‘excessive’ rents. Specifically, we compute the

Cost Recovery Ratio (CRR), i.e. the ratio of net market revenues (price – variable costs) to fixed

investment and operational costs.39 GEP column in Table 2 shows that each endogenous technol-

ogy recovers exactly 100% of its costs. Note that for initially existing (brownfield) assets, economic

viability only requires fixed O&M costs to be recovered (respectively 20 and 30 USD/kW-yr for

peaker and CCGT) as CAPEX is sunk. This explains why existing Peakers recover only 32% of

their fixed costs, which corresponds to the share of their fixed OPEX. Since Peakers are at the

margin regarding total capacity – i.e., Peaker capacity is adjusted downward against new capacity

additions –, retained units just break even, exactly recouping their fixed OPEX with no extra rent

to cover their CAPEX. By contrast, infra-marginal CCGTs recover 91% of their total fixed costs,

which is sufficient to cover the 20% share of fixed OPEX but also recoup a certain amount of

CAPEX though not its entirety.

4 Results and discussion

In this section, we present our simulation exercise and discuss the results. First, we examine the

conditions under which the SD energy-only market (EOM) model is able to replicate the optimum

as defined in Section 3.2, and we discuss the impacts of unit indivisibility. Second, we explore how

the simulated EOM outcomes deviate from the optimum when we relax these conditions.

Our quantitative analysis is based on the following indicators:

• Capacity trajectories to assess how investments and retirements for each technology com-

pare with the optimal ones over time,

• Carbon emissions to check if decarbonization targets are achieved,

• Total cost as an overall cost efficiency indicator,

• Cost recovery ratios (CRR) as technology-specific capacity remuneration indicators,

• Average marginal cost, interpreted as an average price, as an affordability indicator,

• Loss of load expectation (LOLE) as a system-wide capacity adequacy indicator.

39Formally, with the notations of Appendix A, for a given vintage of a technology t invested in year y, one has

CRRt,y =

min(#Y,Lu)∑
k=y

βk−y

∑
w∈W Πw

[∑
h∈H

[
qt,k,h

nk,tkt

[
λk,h − V Ck,t

]]]
ICy,t +OCy,t

.

Table 2 shows the CRR averaged over vintages, but note that CRRt,y=100% holds for all vintages y for endogenous
technologies. In Section 4.2, we compute and analyze CRRt,y across vintages.
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Since some simulation or sensitivity cases are computationally demanding (notably as we reduce

the capacity step size, see Section 4.1.2) we run the simulations and present the results only over

the 2025–35 horizon. Yet note that this is largely innocuous for the validity of our analysis beyond

this window given the relative ‘monotonicity’ of our case study, as evidenced by the quasi-linear

trends for capacity trajectories in the optimal case over the 2025–45 horizon (Figure 6).

4.1 EOM outcomes with idealistic assumptions

4.1.1 Definition of idealistic assumptions

As discussed in the Introduction, it is often regarded as well-established that the long-run

optimum can in principle be decentralized through competitive market prices. Although the pre-

requisites are regularly stated in general and concise terms (e.g., ‘perfect markets’, ‘Arrow-Debreu

economy’), some authors including Rodilla and Batlle (2012), Newbery (2018) and Joskow (2008,

2022) establish more detailed lists that we transcribe below:40

1. Agents (i.e., buyers and sellers) are anonymous, atomistic and fully rational (i.e, price-taking

and non-strategic behavior);

2. Agents have convex cost and utility functions (no non-convexities, no economies of scale);

3. Capacity, generation and consumption levels can be adjusted continuously (no lumpiness);

4. There is perfect information with well-informed agents and no asymmetries;

5. There is a complete set of markets covering all relevant contingencies and over all relevant

timescales, including markets for insurance.

Let us translate these canonical assumptions to our modeling framework. The first is satisfied

by construction since we consider one representative investor who behaves non-strategically and

makes investment and retirement decisions on the basis of a competitive profitability assessment.

The second is met by ruling out cost non-convexities and because we do not represent the demand

side formally. The third does not hold since capacity increments and decrements are discrete by

implementation in the SD model. As capacity indivisibility also holds in practice, its impacts on

market outcomes are analyzed and discussed below (Section 4.1.2).

Next, because the decision-making process crucially hinges on available information, we break

down the fourth assumption into two sub-assumptions:

A1. Agents have perfect information on all exogenous parameters over the whole horizon (e.g.,

demand, generation costs). In particular, the carbon price is assumed to coincide with the

shadow price from the GEP model (see Section 3.1).

40These authors do not claim to be exhaustive, and neither do we.
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A2. Agents have perfect information on endogenous future investments and retirements (see the

anticipation module defined in Section 2.2.1).

Finally, for the fifth assumption, we need to find an alternative equivalent formulation since

our model does not represent long-term and insurance markets. Here, we follow Newbery (2018)

who argues – drawing on Newbery and Stiglitz (1981) – that the theoretical requirement of market

completeness can be substituted by the combination of rational expectations and risk-neutrality.

Because long-term markets for electricity are incomplete or ‘missing’ in practice (e.g., Rodilla et al.,

2015; Newbery, 2016; Abada et al., 2019; Keppler et al., 2022; Wolak, 2022), this substitution also

makes sense for our assessment of EOM performance. We thus make the following assumption:

A3. Agents have risk-neutral preferences.

As explained in Section 2.2, when A1, A2 and A3 hold, the representative investor behaves

rationally with perfect information, fully anticipates its future decisions and understands the inter-

play with its current decisions, and implements the optimum in the spirit of a rational expectations

equilibrium. Before relaxing A1, A2 or A3, we turn to the issue of capacity indivisibility.

4.1.2 EOM outcomes with capacity indivisibility

To explore the impacts of discrete vs. infinitesimal capacity unit sizes, we run sensitivities with

respect to the unit step size around the reference of 500 MW used in the main analysis (Section

4.2). Specifically, we assume that A1–A3 hold and consider step sizes of 250, 750 and 1,000 MW.

These can be interpreted as the typical sizes of investment projects, or as the volumes of disclosed

projects that induce market participants to update their long-term price anticipation.

Figure 8 depicts the simulated capacity trajectories. Intuitively, the smaller is the capacity step

size, the closer the simulated trajectories for an EOM are to the optimal GEP solution on average.

As the step size increases, the deviation from the optimum is characterized by a delay in Solar and

Storage investments and in the fossil fleet phaseout. Indicators given on average in Table 2 or on

an annual basis in Figure 9 further reveal that a larger step size is conducive to larger total system

cost, wholesale prices, emission levels and loss of load.41

Indivisibility issues in the electricity industry have long been recognized and analyzed in the

literature, already in the seminal contributions by Boiteux (1949, 1960) and Williamson (1966) as

well as in ensuing discussions (e.g., Andersson and Bohman, 1985). Yet they address these issues in

a regulated utility environment and mainly focus on practical pricing policy considerations. More

recently, Keppler (2017) reviews the literature and discusses the implications of indivisibility in a

market context, observing that it leads to under-investment when coupled with inelastic demand.

41The LOLE increases but remains within acceptable bounds as per regulations in liberalized electricity markets
(usually between 2 and 4 hours per year in expectation). Yet the increase in the LOLE explains part of the increase
in average wholesale prices: as a rule of thumb, one hour of VoLL pricing at 15,000 $/MWh is tantamount to an
increase in the annual average baseload price in the order of 2 $/MWh (see e.g. Figure 9).

23

Electronic copy available at: https://ssrn.com/abstract=4537161



Our results add to this literature by illustrating how indivisibility also hampers the joint dynamic

of fossil phaseout with investment in renewable and storage units to achieve decarbonization.

In fact, this reveals a coordination (or circularity) issue between new entrants and existing (and

possibly exiting) assets. Recall how the SD model’s decision module proceeds, gradually selecting

the most profitable available asset entry or exit up to an end state characterized by a zero-profit

condition (Section 2.2.3). Incentives thus decrease in size as the iterative process progresses, and

coordination issues start to materialize as the end state nears. For instance, in the neighborhood of

optimal capacity, a potential new entry without a simultaneous exit typically leads to over-capacity

that deters the actual entry decision. This is notably true for Storage that has a large contribution

during scarcity hours if Peakers are not retired in a coordinated way. In turn, this further affects

Solar that has to be associated with Storage to mitigate the revenue cannibalization effect.

Importantly, the materiality of this effect depends on the sensitivity of the entry and exit signals

near the optimum rather than on the capacity step size relative to the overall size of the system.

Appendix D illustrates that the long-term profit of a marginal investment in a given technology can

be interpreted as the total cost function’s gradient component with respect to installed capacity for

this technology. Because these gradients are steep and asymmetric in the neighborhood of optimal

capacity, this effect remains tangible even in relatively large systems.42 As is the case here, this

effect translates into extreme price sensitivity around optimal capacity, with prices jumping from

a few hundreds to a few thousands $ per MWh in some peak hours. This echoes previous results

in the literature highlighting that the EOM is intrinsically prone to “erratic” (Cramton and Stoft,

2005) price movements or “discontinuity” (Kraan et al., 2019).

It is worth making one final observation regarding computation time, which increases steeply

as capacity step size decreases. Specifically, in our setup, reducing step size from 1,000 (resp. 500)

to 500 (resp. 100) MW increases computation time by a factor of 3 (resp. 5). In a loose sense, this

illustrates how long-run efficiency in an EOM is informationally and computationally demanding,

especially as capacity step size gets smaller to approach GEP-style optimization with continuous

capacity adjustment. That is, one realizes the amount of computations needed and information

that must be processed, assessed and updated when unpacking the anticipation framework inherent

to an EOM in order to attain long-run efficiency.

42To capture this effect, Anderson and Zachary (2023) use an approximation with costs increasing exponentially
(resp. linearly) for (resp. over–) under-capacity around optimal capacity, in line with an approach implemented by
the British authorities since 2016 (National Grid, 2022).
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Figure 8: Capacity trajectories with different capacity step sizes (EOM with A1, A2 & A3)

Note: Although capacity trajectories are not perfectly ordered by capacity step size (they intersect for some years),
the ordering holds on average (in terms of distance to the GEP trajectory).
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Figure 9: Annual indicators with different capacity step sizes (EOM with A1, A2 & A3)

Capacity step size

GEP 250MW 500MW (ref) 750MW 1,000MW

Annual Total Cost [109 USD/yr] 8.71 8.74 8.75 8.76 8.77
Marginal Cost [USD/MWh] 84.5 87.7 89.1 90.4 92.2

Annual Emissions [MtCO2/yr] 26.1 27.5 28.1 28.4 29.4
LOLE [h/yr] 0.39 1.67 1.85 2.20 2.37

CRR Peaker [%] 32 36 56 43 48
CRR CCGT [%] 91 97 108 105 115
CRR PV [%] 100 101 105 101 104
CRR Storage [%] 100 102 108 105 112

Table 2: Average indicators with different capacity step sizes (EOM with A1, A2 & A3)

4.2 EOM outcomes with relaxed assumptions

Let us now relax assumptions in turn and separately, keeping the capacity step size constant at

500 MW, and compare simulated EOM outcomes with those in our reference case where A1–A3

jointly hold. For brevity, the case where we drop A1 (Case 1) is relegated to Appendix F. Indeed,

the impacts of downward biased anticipations of future carbon prices in Case 1 are qualitatively

similar to those when we consider risk aversion and drop A3 below (Case 3). Table 3 contains the

definition of the different cases and the associated assumptions.
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Reference Case 1 Case 2 Case 3
(Sec. 4.1.2) (App. F) (Sec. 4.2.1) (Sec. 4.2.2)

A1: Perfect information on exogenous
parameters

✓ ✗ ✓ ✓

A2: Perfect information on endogenous
future investments and retirements

✓ ✓ ✗ ✓

A3: Risk-neutral preferences ✓ ✓ ✓ ✗

Table 3: Definition of studied cases and associated assumptions

4.2.1 Case 2: Biased anticipation of future entries and exits (only A2 does not hold)

In Case 2, we dropA2 while retaining A1 andA3. That is, we consider that investors and asset

owners make incorrect anticipations about future investment and retirement decisions. Specifically,

we consider three cases. In the first case, labeled ‘static’, there is no anticipation of future entries

and exits (see Section 2.2.1). In the other two cases, future entries and exits are anticipated but in

contrast to the perfect reference case, anticipations deviate from the optimal capacity trajectories:

in the ‘overestimate’ (resp. ‘underestimate’) case, we skew positively (resp. negatively) the optimal

future dynamics of Solar and Storage development, all else being equal. For illustration, we choose

a + (resp. –) 40% factor bias on annual capacity additions.43

The ‘static’ and ‘understimate’ cases exhibit faster development for Solar and Storage early on

relative to the perfect anticipation case (Figure 10). This is because the anticipation of no or lower

future capacity additions magnifies expected future market revenues and in turn the incentive to

invest today. That is, future capacity additions that will have a dampening effect on the whole

price distribution and number of scarcity hours prices are not accounted for in full when assessing

future earnings of assets possibly being invested into today. In turn, cost recovery is lower than

initially expected and than in the perfect case for all assets (Table 4). This situation also illustrates

a practical coordination issue across investors that is inherent to an EOM (e.g., herding behavior

when investment conditions are good overall, difficulty to anticipate others’ investment decisions)

and possibly conducive to boom-and-bust cycles (e.g., Arango and Larsen, 2011; Hill, 2021).44

Over-investment is particularly salient for the first investment vintages (i.e., in the first years of

the period) while the deviation is then gradually reduced over time with capacities being close to

their optimal levels in the final year (Figure 10). Note that this convergence results from a modeling

edge effect due to the model’s finite horizon (see Section 2.2.3): as the end of the simulation horizon

nears, ever less future decisions have to be anticipated, which mechanically reduces the impact of

the anticipation bias. Hence, our results can only be meaningfully interpreted in the beginning of

the simulation period. On the face of it, this faster early development may be seen as a positive

43Notice that the ‘static’ case can be seen as an extreme version of the ‘underestimate’ case. Moreover, the size
of the bias only affects the quantitative nature of our results.

44Despite initial over-investment, a cycle does not emerge in our case study, notably because demand is structurally
growing over time. This strongly mitigates potential under-profitability of assets normally linked to over-investment,
and reinforces a natural asymmetry between investment and retirement decisions – the former is evaluated against
both fixed OPEX and CAPEX whereas the latter only against fixed OPEX (i.e., economic conditions must turn out
to be asymmetrically worse than expected to justify decommissioning).

26

Electronic copy available at: https://ssrn.com/abstract=4537161



outcome as emissions and prices are lower than in the reference case (Figure 12). However, because

the first investment vintages turn out not to recoup cost in full due to biased anticipation (Figure

11), this situation will risk being economically unsustainable further down the road.

Symmetrically, the ‘overestimate’ case exhibits slower development for Solar and Storage early

on relative to the perfect anticipation case (Figure 10). Anticipating inflated capacity additions in

the future reduces expected future prices and weakens investment incentives today, hence the under-

investment. But because actual capacity development happens to be lower than anticipated, cost

recovery ratios are well above 100% for new assets (Figure 11). At the same time, under-investment

threatens security of supply (the LOLE reaches close to 10 h/yr) and drives up prices (Table 4).

Under-investment is also not conducive to reducing emissions, jeopardizing decarbonization targets.
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Figure 10: Capacity trajectories with different entry-exit anticipations (EOM with A1 & A3)
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Figure 11: Cost recovery by vintage with different entry-exit anticipations (EOM with A1 & A3)
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Figure 12: Annual indicators with different entry-exit anticipations (EOM with A1 & A3)
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Future entry-exit anticipation

GEP perfect (ref) static underestim. overestim.

Annual Total Cost [109 USD/yr] 8.71 8.75 8.90 8.75 8.87
Marginal Cost [USD/MWh] 84.5 89.1 74.1 79.4 99.9

Annual Emissions [MtCO2/yr] 26.1 28.1 20.2 24.3 31.0
LOLE [h/yr] 0.39 1.85 0.30 0.30 4.21

CRR Peak [%] 32 56 44 44 72
CRR CCGT [%] 91 108 92 97 120
CRR PV [%] 100 105 100 103 106
CRR Storage [%] 100 108 102 104 111

Table 4: Average indicators with different entry-exit anticipations (EOM with A1 & A3)

4.2.2 Case 3: Risk aversion (only A3 does not hold)

In Case 3, we drop A3 while retaining A1 and A2. That is, we consider that investors and

asset owners are averse to risk about future revenues and apply the certainty-equivalent decision-

making criterion presented in Section 2.2.3.45 Specifically, we consider that future market revenues

r are uniformly distributed between 0 and 2r̄.46 Because we lack empirical guidance to discipline

the selection of a relevant risk aversion coefficient α, we follow Petitet et al. (2017) and consider a

range of integer values for α between 0 and 3, where α = 0 coincides with risk neutrality whereas

α = 3 is deemed to capture a high degree of risk aversion.47 As we will see, the value of α affects

our quantitative results monotonically, hence not their qualitative nature.

Capacity trajectories in Figure 13 exhibit a pattern of under-investment in Solar and Storage

in conjunction with a delay in fossil phaseout. Risk aversion also has a noticeable impact on total

system cost, ranging from +3% (α = 1) to +14% (α = 3). Closely looking into the central case

α = 2 shows that the delay in investment and retirement yields net savings on fixed costs (both

fixed OPEX and CAPEX) of –18%, but increased fossil generation hikes total variable cost by 20%

and the cost of rationing rises by +4%, totaling a net total cost increase by circa 7%.

Table 5 shows other important insights for an EOM under risk aversion. First, decarbonization

is not achieved, with emissions at the end of the simulation horizon possibly even higher than at

the beginning. This is because demand, which is increasing over time because of electrification in

our case study, remains in an inadequate part served by fossil units instead of low-carbon units.

Second, security of supply deteriorates, with both under-investment and the LOLE increasing with

the degree of risk aversion (LOLE ≥ 10 h/yr for α ≥ 2). Third, price spikes (including hours of

VoLL pricing) entail significant financial transfers between consumers and producers. Higher prices

for consumers also result from risk premiums that producers need to secure to run operations.

45Recall that our approach to modeling risk aversion is in part grounded on the absence of sufficient, adequate
hedging instruments (see Section 4.1.1).

46Appendix E shows that our results are qualitatively unaltered when we change the variance and the type of
the probability distribution. One may also conjecture that our results would be amplified if we considered stronger
forms of uncertainty and corresponding preference representation theorems. Deep uncertainty indeed prevails in the
long run, especially in the context of decarbonization where the long-term energy mix, market conditions and price
distributions remain largely elusive for now (e.g., Keppler et al., 2022).

47Following an applied study by RTE (2018) for France, we consider α = 2 as a central value.
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The effect of risk aversion has been studied in the literature with numerical models, essentially

with a focus on security of supply and under-investment, and in turn on the scope and design of

capacity remuneration mechanisms (e.g., Ousman Abani et al., 2018; Petitet et al., 2017; Fraunholz

et al., 2023). Our results support previous findings and add to the literature on decarbonization

aspects. Specifically, under-investment resulting from risk aversion hinders the existing fossil fleet

phaseout which, especially when combined with growing demand for electricity, leads to emission

levels jeopardizing if not even undershooting on decarbonization targets.48
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Figure 13: Capacity trajectories with different risk aversion degrees (EOM with A1 & A2)

Risk aversion degree

GEP α = 0 (ref) α = 1 α = 2 α = 3

Annual Total Cost [109 USD/yr] 8.71 8.75 8.98 9.33 9.61
Marginal Cost [USD/MWh] 84.5 89.1 108 125 136

Annual Emissions [MtCO2/yr] 26.1 28.1 33.5 36.1 37.4
LOLE [h/yr] 0.39 1.85 5.67 10.0 13.4

CRR Peak [%] 32 56 80 214 301
CRR CCGT [%] 91 108 163 243 290
CRR PV [%] 100 105 120 146 170
CRR Storage [%] 100 108 129 162 182

Table 5: Average indicators with different risk aversion degrees (EOM with A1 & A2)

4.3 Summary of modeling results and policy implications

Practical limits of price-based coordination. Several conclusions emerge from our modeling

approach and results. First, the implementation and unpacking of the EOM framework clarify the

assumptions needed to reproduce the optimal long-run outcome from a GEP model. By contrast,

these theoretical assumptions and their practical implications are often implicit or remain elusive in

the literature. Notably, we highlight the high level of informational and computational complexity

associated with optimal anticipations of all relevant future market fundamentals and future entry

and exit decisions. Assuming optimal anticipations, rational decision-making and risk neutrality,

48One may also conjecture that capturing the feedback loop between price and demand dynamics in the long run
(not represented in our framework) would exacerbate the shortcomings of the EOM for decarbonization. For instance,
high or volatile electricity prices could be detrimental to electrification, either directly by deterring investment in
electrical equipment or indirectly by limiting public support if low-carbon generation investment does not keep pace.
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Simulated case

GEP
Reference Case 2 Case 3
(indivisibility) (biased anticipation) (risk aversion)

Annual Total Cost [109 USD/yr] 8.71 8.74–8.77 8.75–8.90 8.98–9.61
Marginal Cost [USD/MWh] 84.5 87.7–92.2 74.1–99.9 108–137

Annual Emissions [MtCO2/yr] 26.1 27.5–29.4 20.2–31.0 33.5–37.4
LOLE [h/yr] 0.39 1.67–2.37 0.30–4.21 5.67–13.4

CRR Peaker [%] 32 36–48 44–72 80–301
CRR CCGT [%] 91 97–115 92–120 163–290
CRR PV [%] 100 101–104 100–106 120–170
CRR Storage [%] 100 102–112 102–111 129–182

Table 6: Summary of average indicators across simulations (range of values is provided)

we further illustrate how the convergence of the EOM outcomes towards the optimum occurs only

when the capacity step size is small enough – ideally infinitely small –, highlighting the issue of

lumpy investment and retirement decisions. While the total system cost is not very sensitive to

unit indivisibility, this causes a coordination issue between new low-carbon investments and the

phaseout of fossil assets that affects carbon emissions more markedly.

In the second part of our analysis, we relax these assumptions in isolation and find significant

deviations (see Table 6 for a summary of quantitative indicators). Intuitively, the direction of the

deviation in investment depends on the direction of the bias in the anticipation of future market

entries – an upward bias relative to the optimum leads to a downward bias in anticipated market

revenues that delays investment decisions, and vice versa. Moreover, on top of the standard result

of under-investment when investors are risk averse, our joint modeling of entry and exit decisions

also shows how decarbonization targets risk not being met if the existing fossil fleet is not pushed

out of the market economically by new low-carbon entrants in due time.

Potential benefits of complementary quantity-based coordination. Our modeling frame-

work constitutes a good basis for extensions to explore changes in market design that could improve

long-run coordination and risk-sharing mechanisms (e.g., Keppler et al., 2022). Different add-ons

such as a long-term contracting module could be plugged into our core model, of which a variety of

designs could be assessed and compared. To illustrate, let us consider the case where assumptions

A1–A3 hold and the optimal fossil phaseout is exogenously enforced, although we do not specify

at this stage through which mechanism it is implemented. A cursory examination of the results in

Figure 14 shows that capacity trajectories are closer to the optimum. Importantly, this holds not

just for Peakers whose phaseout is exogenously driven, but also for Solar and Storage. This shows

how explicit coordination through quantities has the potential to complement implicit coordination

through prices and improve on market efficiency in the long run.

Of course, the extent to which this potential can be tapped into depends on the implementation

mechanism. One may for instance think of a situation where the regulator steers the decommission-
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Figure 14: Capacity trajectories with vs. without optimal phaseout (EOM with A1, A2 & A3)

ing trajectory through an auction scheme, similarly to what is done in Germany (e.g., Tiedemann

and Müller-Hansen, 2023). But various alternatives could also be investigated, notably regarding

the form of compensation payments awarded in the auction or the type of planning used to define

the phaseout path enforced by the regulator (in a bid to avoid the pitfall of substituting an ‘imper-

fect’ market mechanism by ‘perfect’ regulation). Similar crucial design options also exist in the case

of long-term contracting mechanisms for investment, be they government-backed contracts issued

through public auctions or private contracts stimulated through the provision of public guarantees

or through an obligation on retailers (see notably CEPR, 2023, for a review).

5 Conclusion

In these times of renewed debates on electricity market design in the context of decarbonization,

the EOM has often been criticized for various, at times dubious reasons. For instance, the increasing

share of generation with (near) zero short-term marginal cost has been blamed for reducing prices

and (expected) asset profitability. However, this merit-order effect is either transitory (Antweiler

and Muesgens, 2021) or caused by inadequate policy choices (Brown and Reichenberg, 2021) rather

than reflective of a limitation inherent to the EOM. In fact, price distributions are more likely to

change in shape than to be lowered on average (e.g., Ekholm and Virasjoki, 2020; Mallapragada

et al., 2021). Rather, our results suggest that a key issue with the EOM paradigm is that long-run

efficiency holds only under a set of idealistic assumptions. When one of these preconditions is not

met, entry-exit coordination through market price signals alone is insufficient and deviations from

the optimum occur (see Section 4.3 for a summary). This notably leads to higher electricity prices,

lower security of supply, and higher emission levels that imperil decarbonization.

Different market design reform options are being debated at the time of writing, primarily in

Europe. Our modeling framework can be extended in different ways to inform these debates and

ensuing policy choices. For instance, assessing and comparing design alternatives for a long-term

contracting module (as delineated e.g. in Joskow, 2022; Keppler et al., 2022; Wolak, 2022) would

be particularly relevant. This includes various approaches to auction design (e.g., Iossa et al., 2022;
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Fabra and Montero, 2023), contract design (e.g., Billimoria and Simshauser, 2023; Newbery, 2023)

and planning (e.g., Corneli, 2020; Anderson and Zachary, 2023). In this respect, accounting for

realistic behavioral, informational and structural assumptions will be of the essence.

Data and code availability

The Python source code and setup instructions are provided here: GitHub/ANTIGONE.

Datasets and a detailed documentation are provided here: Zenodo/Dataset.
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Rodilla, P., Garćıa-González, J., Álvaro Báıllo, Cerisola, S., Batlle, C., 2015. Hydro resource
management, risk aversion and equilibrium in an incomplete electricity market setting. Energy
Economics 51, 365–382.

Roques, F., Finon, D., 2017. Adapting electricity markets to decarbonisation and security of supply
objectives: Toward a hybrid regime? Energy Policy 105, 584–596.
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Appendices

A Notations and units

Sets and indices

H Set of hours in a year, indexed by h
Y Set of years, indexed by y
W Set of weather scenarios, indexed by w
G Set of conventional dispatch technologies, indexed by g
V Set of variable renewable energy technologies, indexed by v
S Set of storage technologies, indexed by s
T Set of all technologies (T = G ∪ V ∪ S), indexed by t
Ut Set of units of technology t, indexed by u

Parameters and variables

β Discount factor
∆ Time step duration (here, one hour)
Πw Probability of weather scenario w
Dy,w,h Load in year y, weather scenario w and hour h [MW]
λy,w,h Marginal cost of electricity in year y, weather scenario w and hour h [USD/MWh]
OCy,t Annual fixed O&M cost for technology t [$/MW/yr]
ICy,t Investment cost annuity for technology t [$/MW/yr]
V Cy,t Annual operating cost for technology t [$/MWh]
γt Carbon intensity of technology t [tCO2/MWh]
Qy Annual CO2 emissions cap [tCO2]
ℓt Lifespan of technology t [yr]
Lu Year of initially scheduled closure of unit u
Ry,u Net market revenues in year y for unit u
ny,t Number of operating units in year y for technology t
n+
y,t Number of developed units in year y for technology t

n−
y,t Number of closed units in year y for technology t

κy,t Total installed capacity in year y for technology t [MW]
αt,w,h Hourly availability of technology t [%]
kt Power capacity of technology t [MW/unit]
qt,y,w,h Production of technology t in year y, weather scenario w and hour h [MW]
cs,y,w,h Power charged into technology s in year y, weather scenario w and hour h [MW]
socs,y,w,h State of charge of technology s in year y, weather scenario w and hour h [MWh]
ρs Charging and discharging efficiency of technology s [%]
ds Storage duration for technology s [hours]
fy,w,h Lost load in year y, weather scenario w and hour h [MW]
VoLL Value of Lost Load [$/MWh]

Table A.1: Model notations and units
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B GEP model description

This Appendix describes and interprets the equations and constraints of the generation expan-

sion planning (GEP) optimization model using notations given in Appendix A.

The objective function is the expected discounted total cost over the planning horizon, that is

min
{n,n+,n−,q,f,c}

∑
y∈Y

βy

{ ∑
w∈W

Πw

∑
h∈H

[∑
t∈T

V Cy,t · qt,y,w,h +VoLL · fy,w,h

]

+
∑
t∈T

OCy,t · ny,t + ICy,t · n+
y,t ·

min(ℓt,#Y−y)∑
i=0

βi


where #X denotes the cardinality of set X . This formulation accommodates: conventional dis-

patchable generation units characterized by variable generation costs and availability profiles; vari-

able renewable units with zero variable cost and hourly capacity factors; short-term storage units

with power and energy components linked by duration and round-trip efficiency parameters. Stor-

age units are modeled deterministically and dispatched across time steps assuming intertemporal

arbitrage with perfect foresight. Each technology is represented by discrete homogeneous units

(i.e., the decision variables are expressed in terms of number of units).

The first set of constraints (B.1–B.4) represent the hourly dispatch, that is ∀y ∈ Y, w ∈ W,

∀h ∈ H,
∑
t∈T

qt,y,w,h + fy,w,h = Dy,w,h +
∑
s∈S

cs,y,w,h, (B.1)

∀h ∈ H, t ∈ T , qt,y,w,h ≤ ktαt,w,hny,t, (B.2)

∀h ∈ H, s ∈ S, socs,y,w,h ≤ ksdsny,s, (B.3)

∀h ∈ H⋆, s ∈ S, socs,y,w,h = socs,y,w,h−1 + ρscs,y,w,h−1 − qs,y,w,h−1/ρs, (B.4)

where (B.1) imposes load balance, (B.2) imposes the upper limit on generation (for simplicity

dynamic generation constraints such as ramp-up rates are not represented), (B.3) imposes the

upper limit on stored energy, and (B.4) reflects the storage dynamics with round-trip efficiency.

The second set of constraints (B.5–B.6) represent the fleet dynamics, that is

∀y ∈ Y⋆, h ∈ H, t ∈ T , ny,t = ny−1,t + n+
y,t − n−

y,t, (B.5)

∀y ∈ Y, t ∈ T , if y + ℓt ≤ #Y :

#Y∑
i=y

n−
i,t ≥ n+

y,t, (B.6)
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where (B.5) tracks the number of units per technology over time and (B.6) imposes that each

endogenous investment can be associated with a decommissioning decision during its lifespan.

Third, constraint (B.7) imposes an annual cap on CO2 emissions whose trajectory {Qy}y is

exogenously given, that is

∀y ∈ Y,
∑
w∈W

Πw

∑
t∈T

∑
h∈H

γt · qt,y,h ≤ Qy. (B.7)

Each decision variables can be constrained in an ad-hoc manner with an upper/lower bound or

with a specific value. This feature is used to model the existing fleet for which n can be fixed at

the beginning of the simulation (the initial fleet described in Section 3) and n+ can be constrained

to 0 afterwards if the technology is not available for new developments.

Finally, all decision variables (i.e., n, n+, n−, q, f, c) have non-negativity constraints.

C Decision algorithm description

The structure of the investment and decommissioning decision algorithm for the representative

agent in our System Dynamics market simulator is sketched below.
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Algorithm 1 Decision module in the SD market simulator

1: for y ∈ Y do
2: Remove all units reaching the end of their lifespan
3: Initialize empty array Udecom to store decommissioned units during decision loop
4: Initialize empty array Uinvest to store invested units during decision loop
5: Initialize empty array S to store successive states of the fleet
6: Form the set of anticipations for representative agents (see Section 2.2.1)
7: continue = True

8: while continue do ▷ decision loop
9: Create an empty array D to store NPV of all possible decisions

10: for t ∈ T do ▷ assess new investment options
11: if t is eligible for investment then
12: Compute NPV of a new project over its whole lifespan, including full CAPEX
13: if NPV > 0 then
14: Store NPV value associated with this investment decision in D

15: for t ∈ T do ▷ assess decommissioning decision for units in existing fleet
16: if t is eligible for decommissioning then
17: Compute net revenues Ry,t in year y (infra-marginal rent minus fixed OPEX)
18: if Ry,t < 0 then
19: Compute NPV over the remaining lifespan, considering avoidable costs (i.e.,

fixed OPEX)
20: if NPV < 0 then
21: Store NPV value associated with this decomissioning decision in D

22: for u ∈ Udecom do ▷ assess postponing closures decided in previous iterations
23: Compute NPV of running the asset for one extra year, considering avoidable costs

(i.e., fixed OPEX and not CAPEX)
24: if NPV > 0 then
25: Store NPV value associated with this closure postponement in D

26: for u ∈ Uinvest do ▷ assess renouncing to investments decided in previous iterations
27: Compute net revenues Ry,u in year y (infra-marginal rent minus fixed OPEX and

annualized CAPEX)
28: if Ry,u < 0 then
29: Compute NPV over the remaining lifespan, including full CAPEX
30: if NPV < 0 then
31: Store NPV value associated with this investment renouncement in D

32: if D is not empty then ▷ stopping criterion
33: Pick and implement decision with highest NPV in absolute terms
34: if new state of the fleet is already in S then
35: continue = False
36: else
37: Store the state of the fleet in S
38: else
39: continue = False
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D Convergence of the simulation model

This Appendix lays out some theoretical considerations regarding the convergence of the sim-

ulation model. For clarity and without loss of generality, we consider a simplified setup with one

representative year, one weather scenario, continuous capacity adjustments, full availability, no

storage and no fixed O&M costs. This simplified case helps build intuition, and its logic and reso-

lution extend to more complex cases. If we consider the representative year as a steady state, our

optimization problem can be interpreted as a long-term cost-minimization problem that writes

min
{κt},{qt,h},{fh}

C(κt, qt,h, fh) =
∑
t∈T

ICt · κt +
∑
h∈H

[
VoLL · fh +

∑
t∈T

V Ct · qt,h

]

subject to

fh +
∑
t∈T

qt,h = ∆ ·Dh (λh), and

qt,h ≤ ∆ · κt (µt,h), qt,h ≥ 0 (νi,h), fh ≥ 0 (ξh), κt ≥ 0 (πt),

where the variables within parentheses denotes the constraints’ dual variables.

For any given positive values of {κt}t > 0 (i.e., not necessarily optimal), the gradient component

with respect to κt of the Lagrangian function (of all primal and dual variables) is given by

∂L
∂κt

= ICt −∆ ·
∑
h∈H

µt,h.

If we minimize C for these given {κt}t (i.e., we solve the dispatch problem for a given capacity

vector), we can define the set of hours H+
t where technology t is infra-marginal and we get from

the dispatch problem’s KKT conditions

∑
h∈H

µ̃t,h =
∑

h∈H+
t

(λ̃h − V Ct).

Combining the above equations, it comes

∂L
∂κt

= ICt −∆ ·
∑

h∈H+
t

(λ̃h − V Ct) = −LTP,

where LTP is the long-term profit. We thus see that the normalized long-term profit calculated

for a given technology in an out-of-equilibrium state (in terms of installed capacity) corresponds

to the Lagrangian function’s gradient component with respect to the capacity installed for this

technology. Therefore, the iterative procedure defining the simulation model in Appendix C can

mathematically be interpreted as a coordinate gradient descent algorithm in an ideal case. While it

may not be the most computationally-efficient approach to solve this linear problem, it does have

the merit to be meaningful from an economic point of view.
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E Certainty-equivalent formulation

This Appendix provides details on the approach and calculations of the certainty equivalent

used in the decision module under risk aversion and uncertain aggregate market revenues r (Section

2.2.3). By definition, the certainty equivalent r⋆ is the certain revenue that yields the same utility

as the expected utility over the random distribution of revenues, i.e. U(r⋆) ≡ E{U(r)}. With the

functional form for U defined in Section 2.2.3, we can compute U(r⋆) and infer r⋆ assuming specific

probability density functions fR for r. The overall approach is sketched in Figure E.1.

Figure E.1: Certainty equivalent calculation when revenues r are uniformly distributed over [0, 2r̄]

We consider two cases as in Neuhoff et al. (2022). For the central case of a uniform distribution

with finite support [0, 2r̄] used in Section 4.2, we get

U(r⋆) =
∫ +∞

−∞
U(r)fR(r)dr = 1 +

exp(−2α)− 1

2α
⇒ r⋆ = − r̄

α
· ln

(
1− exp(−2α)

2α

)
.

Alternatively, we consider a normal distribution with finite mean µ and variance σ2. In this

case, we have that U(r⋆) = 1− E{exp (−αr/r̄)}, where the second term on the right-hand side is

the mean of a log-normal distribution. We thus have

U(r⋆) = 1− exp

(
−α+

1

2

(ασ
r̄

)2
)

⇒ r⋆ = r̄ − α

2r̄
σ2.

Next, we explore numerically how the certainty equivalent varies with the degree of risk aversion

and the variance for both types of distribution. Figure E.2 shows that the certainty equivalent to

expected revenue ratio r⋆/r̄ decreases with α, and that it is always larger in the case of a uniform

distribution. This implies that considering a normal distribution would amplify the results with a

uniform distribution in Section 4.2, especially for high values of α.

Additionally, a higher variance in the sense of a mean-preserving spread is conducive to a lower
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Figure E.2: Certainty equivalent to expected revenue ratio under different modeling assumptions

r⋆/r̄ ratio. Specifically, we consider the case where the variance varies by a factor of four. For the

uniform distribution, this is tantamount to reducing the support by a factor of two: the variance

is r̄2/3 with the [0, 2r̄] support vs. r̄2/12 with the [r̄/2, 3r̄/2] support. For the normal distribution,

we simply adjust the variance parameter accordingly. With this calibration, Figure E.2 illustrates

that the qualitative nature of the results in Section 4.2 is unaltered by the type and variance of

the probability distribution for aggregate market revenues.

F Biased carbon price anticipation (Case 1)

This Appendix provides additional simulations for the case of downward biased anticipations

of future carbon prices. Case 1 is appended because the results are qualitatively similar to those

with risk aversion (Case 3, Section 4.2.2), at least in the first years of the simulations before the

‘edge effect’ materializes. It also relies on a more arbitrary, less micro-founded modeling choice.

In Case 1, we drop A1 while retaining A2 and A3. That is, we consider that investors and

asset owners make conservative carbon price forecasts relative to the optimal trajectory satisfying

annual emissions targets. Motivations for this assumption are threefold. First, prices in existing

carbon markets have by and large been too low or volatile to convey robust long-term investment

signals in line with these targets (e.g., Tvinnereim and Mehling, 2018; Perino et al., 2022). Second,

market imperfections or regulatory distortions including limited foresight, excessive discounting or

insufficient policy credibility may distort price formation and anticipation downwards in the short

to mid term (e.g., Fuss et al., 2018; Quemin and Trotignon, 2021). Third, carbon price formation

may be driven by various factors other than fundamentals, making it difficult to predict future

prices (e.g., Friedrich et al., 2020; Quemin and Pahle, 2023).

We consider that for each year in the simulation, the current price coincides with the optimal

one from the GEP model, but that the representative agent anticipates that the price will grow at

a lower rate than in the optimal trajectory. Specifically, we consider three cases for the anticipated

annual growth rate of the carbon price (CAGR), namely 0, 2 and 4% compared to the reference
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case with an optimal growth rate of around 6%. Figure F.1 shows that the lower the CAGR is,

the more capacity entries and exits are delayed. Recall that we found similar results by increasing

the degree of risk aversion (see Case 3, Section 4.2.2), but the driving mechanism is different. This

time, the delay originates from a biased anticipation of competitive advantage (resp. disadvantage)

tilted towards (resp. against) fossil-fired plants (resp. solar and storage assets).

Additionally, note that by the same token as in Case 2 (Section 4.2.1), all the capacity trajecto-

ries converge towards the reference case with unbiased carbon price anticipation at the end of the

horizon due to a factitious edge effect (i.e., anticipations are by construction less and less biased

the nearer the end of the simulation period due to the modeling artifact whereby the last year of

the simulation period is repeated until assets’ lifetimes are covered in whole). To illustrate this

further, whereas emissions are equal across all CAGRs on the last year of the simulation period

(because the installed asset fleet and market conditions are the same), the delay induced by a lower

CAGR results in higher emissions over the whole period (Table F.1).

Finally, the cost recovery analysis reveals extra revenues for all asset types, which are increasing

with the anticipation bias (i.e., decreasing with the CAGR). This is because the realized carbon

price is actually higher than anticipated, which increases the realized price of electricity on average

and is overall economically beneficial across the whole asset fleet. Intuitively, Figure F.2 shows

that this effect is more pronounced early on in simulation period (i.e., when a given anticipation

bias has a greater impact on entry and exit decisions, all else being equal).
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Figure F.1: Capacity trajectories with different anticipation biases (EOM with A2 & A3)
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Figure F.2: Cost recovery by vintage with different anticipation biases (EOM with A2 & A3)
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CAGR

GEP 0% 2% 4% 6% (ref)

Annual Total Cost [109 USD/yr] 8.71 8.84 8.80 8.76 8.74
Marginal Cost [USD/MWh] 84.5 98.3 95.2 90.9 87.9

Annual Emissions [MtCO2/yr] 26.1 30.6 29.7 28.5 27.1
LOLE [h/yr] 0.39 3.79 3.22 2.33 2.02

CRR Peaker [%] 32 68 64 58 56
CRR CCGT [%] 91 118 114 109 106
CRR PV [%] 100 106 105 105 104
CRR Storage [%] 100 110 109 108 106

Table F.1: Average indicators with different anticipation biases (EOM with A2 & A3)
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