
HAL Id: hal-03524342
https://hal.science/hal-03524342

Preprint submitted on 13 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-resolution deep learning pipeline for dense large
scale point clouds

Thomas Richard, Florent Dupont, Guillaume Lavoué

To cite this version:
Thomas Richard, Florent Dupont, Guillaume Lavoué. Multi-resolution deep learning pipeline for
dense large scale point clouds. 2022. �hal-03524342�

https://hal.science/hal-03524342
https://hal.archives-ouvertes.fr


Multi-resolution deep learning pipeline for dense large scale point
clouds

Thomas Richard, Florent Dupont and Guillaume Lavoue

CNRS, Université de Lyon, LIRIS, France

Abstract

Recent development of 3D sensors allows the acquisition of extremely dense 3D point clouds of large-scale scenes. The main
challenge of processing such large point clouds remains in the size of the data, which induce expensive computational and
memory cost. In this context, the full resolution cloud is particularly hard to process, and details it brings are rarely exploited.
Although fine-grained details are important for detection of small objects, they can alter the local geometry of large structural
parts and mislead deep learning networks. In this paper, we introduce a new generic deep learning pipeline to exploit the full
precision of large scale point clouds, but only for objects that require details. The core idea of our approach is to split up the
process into multiple sub-networks which operate on different resolutions and with each their specific classes to retrieve. Thus,
the pipeline allows each class to benefit either from noise and memory cost reduction of a sub-sampling or from fine-grained
details.

CCS Concepts
• Computing methodologies → Supervised learning by classification; Neural networks; • Applied computing → Architecture
(buildings);

3D point clouds from an underground car park. It contains large
scale objects, like ground or walls, as well as small scale objects,
like electric boxes or extinguishers.

High density point clouds allow to capture much more fine de-
tails. However, to exploit the latter a segmentation needs to oper-
ate at full resolution which induces high memory and computa-
tional cost. Although details are useful to segment detailed objects,
they can become problematic for large scale objects due to noise or
small geometric artefacts that can alter their local geometry.

To tackle these issues we propose a new generic deep learning
pipeline which adapts the cloud resolution according to the suitable
level of details for the segmentation of each object. This approach
exploits the full cloud precision but only for objects that require
details, which allow its usage even on large scale point clouds.
To do so, we split up the segmentation into multiple sub-networks
which operate on different resolutions and with each their specific
objects to segment. Although this approach can be used with any
deep learning framework, we used it in combination with the Super-
Point graph framework [LS18] for our experiment.

1. Introduction

Recent development of 3D acquisition technologies presents sev-
eral new challenges to the semantic segmentation of 3D point 
clouds. In addition to being unstructured, unordered and irregu-
larly sampled, point clouds can now contain very large scale scenes 
which induce higher computational and memory cost. Moreover, 
3D point cloud semantic segmentation requires the understanding 
of both large scale geometric structure and detailed geometry of 
the scene. Obtaining these two elements is even harder with the 
substantial scale difference brought by large scale point clouds.

Few works have succeeded in processing these massive point 
clouds. Among them, RandLA-Net [HYX∗20] can process up to 1 
million points in a single pass with a smart use of random sampling. 
SPG [LS18] uses a superpoint graph as an intermediate structure 
to learn from clouds with several million points. Flex-Convolution 
[GWL18] proposes a new convolution kernel designed to benefit 
from GPU acceleration, which allows very large point cloud pro-
cessing.

All of these approaches have been tested on publicly available 
dataset like semantic3D [HSL∗17] or S3DIS [ASZS17]. These 
datasets contain scenes with each approximately 0.1 and 0.2 mil-
lion points per m2. Our work will focus on extremely dense point 
clouds with up to 1 million points per m2, see figure 1. These clouds 
are provided by the LPA dataset, see section 5, a set of 23 labeled
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Figure 1: Comparison of different densities of a cloud from LPA
dataset. Left: original LPA density, 1 million points per m2. Right:
density of the S3DIS dataset, 0.2 million points per m2.

2. Related work

In this section we will briefly present different deep learning frame-
works designed to tackle the problem of the semantic segmentation
of 3D point cloud scenes.

2.1. Grid based

As point clouds are unstructured, a natural way to process is to per-
form a projection into a structured data structure. Thus, early ap-
proaches propose to embed point clouds into 3D voxel structure and
operate convolution using 3D kernels [RUG17,TCA∗17,QSN∗16].

Other methods use advances of matured 2D CNNs by rendering
3D point clouds into sets of 2D images from different points of
view [BLSA, CMW∗17, QSN∗16].

2.2. MLP based

The pioneer work PointNet [QSMG17] directly consumes point
cloud by learning pointwise features independently with several
shared Multi-Layer Perceptrons (MLPs). However, this type of ar-
chitecture cannot capture the relations between points and there-
fore the local geometry. To process a wider context, several ap-
proaches propose to use information from local neighborhood
[JWZ∗18, ZJFJ19, ZHY19, HYX∗20].

2.3. Convolution based

Many recent works introduced various designs of convolution ker-
nels for points, which operate directly on point clouds without any
intermediate representation [TQD∗19, LBS∗18, Bou20]. These ap-
proaches rely on the fact that multiple points are needed to form a
meaningful shape, and thus perform convolution between points in
a local area.

2.4. Graph based

Some approaches design new convolution operators to learn from
point clouds represented as a graph structure, in which each point is
a node [WSS18, WSL∗19]. ECC-MV [SK17] generalizes the con-
volution operator to arbitrary graphs of varying size and connec-
tivity. GAC [WHH∗19] proposes a Graph Attention Convolution
to learn features from a local neighborhood by assigning attention
weights.

2.5. Large scale based

Few works focus on segmentation of large scale 3D point clouds.
FCPN [RWS∗18] uses both voxel and MLP based networks in a
fully-convolutional point network able to process clouds with up
to 200k points. Instead of a more complex point sampling strat-
egy, RandLA-Net [HYX∗20] uses a simple but efficient random
point sampling, which can process up to 1 million points in a sin-
gle pass. To avoid the potential discard of key features, they intro-
duce a local feature aggregation module to preserve details. Flex-
Convolution [GWL18] manages to speed up the computation and
decrease the memory consumption of convolution based methods
with a new convolution kernel defined as a simple scalar product
allowing massive GPU acceleration.

The vast majority of the previously presented methods have been
designed and evaluated on publicly available dataset like seman-
tic3D [HSL∗17] or S3DIS [ASZS17]. In contract, our work focuses
on the segmentation of large-scale point clouds provided by the
LPA dataset, which are much denser. These are a new type of data
to study which opens up new possibilities, especially in the use of
fine grained details that are rarely available.

3. Method

Our method proposes a generic deep learning pipeline to exploit
the full cloud precision only when details are useful to the segmen-
tation. To do so, we split up the process into multiple sub-networks
which operate on different cloud resolutions and with each their
optimized learning parameters.

3.1. High and low resolution classes

Low resolution classes are associated with objects that do not need
fine details analysis to be segmented. They generally include large-
scale objects like walls, ground or ceiling. For such classes, details
can even bring noise and small unwanted geometry artefacts that
can alter their local geometry and thus mislead the network. On
the other hand, high resolution classes are associated with detailed
objects that can benefit from the precision of a full resolution point
cloud. They generally include small-scale objects such as electrical
boxes or mural lights from the LPA dataset.

However, it is important to point out that the size alone is not
sufficient to determine the class resolution. The details of the local
geometry should always be considered. For example, objects like
doors can be seen as large scale objects. However, they contain fine
geometry like handles or frames that help a lot to dissociate them
from a wall. Thus, as they benefit from details, doors are considered
as high resolution class. Another exception are signs from the LPA
dataset, they do not benefit from details because of their circular
shape that is sufficient to dissociate them from the ceiling, see fig-
ure 3. They are therefore considered as low resolution class despite
their small scale.

3.2. Multi resolution segmentation

To ensure the most discriminating geometry possible, we propose
to classify each class at its suitable resolution. However, in order
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Figure 2: The proposed multi resolution deep learning pipeline ap-
plied to a made-up dataset with 4 classes. In this example wall′ is
the concatenated class of wall and board.

from eigenvalues of the covariance matrix of their respective neigh-
bors. Superpoints are then modelized using an adjacency graph, as
the piecewise constant approximation of a global energy problem.
An approximation of this problem solution is computed using the
l0-cut pursuit algorithm proposed by [LO17].

To retrieve entire objects, the relationship between superpoints is
modeled by a superpoint graph, in which each node is a superpoint,
and edges represent their adjacency relationship. Each edge has a
set of features to bring more information about the relationship, like
the centroid offset or surface ratio.

4.2. Classification

First, a set of descriptors is computed for each superpoint accord-
ing to its global shape, by a PointNET [QSMG17] network. Points
are rescaled to the unit-sphere before their embedding, in order to
learn from the superpoint shape and not from its spatial distribu-
tion. However to stay covariant to the superpoint size, the original
metric diameter is concatenated to the final descriptors.

Then to take adjacency between superpoints into account, a con-
textual classification is performed. It uses both descriptors previ-
ously computed and information from the superpoint graph in a
Gated Graph Neural Network (GGNN) [LTBZ17]. Each superpoint
is embeded in a GRU initialized with previously computed de-
scriptors from PointNET. To take edge features into account, the
convolution-like operation ECC [SK17] idea is used over the su-
perpoint graph.

to adapt the resolution we need to know if each point is considered 
as high or low resolution class, and an unlabelled cloud does not 
contain such information.

To overcome this issue, we propose to perform a first segmen-
tation with a different set of classes. This new set of class is con-
structed such that all high resolution classes are merged into ex-
isting low resolution classes, referred as the concatenated classes, 
see figure 2. Thus we obtain a low resolution cloud populated with 
low resolution classes only, which are suitable conditions for a seg-
mentation of a low resolution cloud. Low resolution classes to be 
merged are chosen according to their adjacency in the scene with 
the high resolution classes. As an example, doors and mural lights 
can be merged into walls, because of their close positioning. This 
first low resolution segmentation with only low resolution classes 
and the concatenated classes, will then be referred as the initial seg-
mentation.

To retrieve high resolution classes, we simply perform a second 
segmentation on all points classified a s c oncatenated c lasses. As 
high resolution classes benefit from details, this step is performed 
at full resolution. The memory cost is greatly reduced because all 
large-scale structural objects considered as low resolution classes 
are not considered.

3.3. Final results computation

The final r esult c louds a re c omputed b y p rojecting b oth l ow and 
high resolution segmentation results on the original full resolution 
clouds.

The segmented low resolution clouds are projected on the high 
resolution clouds using a voxel based projection. For each voxel in 
the high resolution cloud, we label all its points with the label of 
the unique point contained in the corresponding voxel of the low 
resolution cloud. The voxel size is the same that was used to sub-
sample the low resolution cloud. Finally the segmented high reso-
lution clouds are directly projected on the original high resolution 
clouds using a closest point projection. This operation is necessary 
as the segmented high resolution clouds have missing parts since 
they do not contain points associated with low resolution classes, 
see figure 2.

4. Superpoint graph

Although our proposed pipeline can be used with any deep learning 
framework, we used it in combination with the Super-Point graph 
framework [LS18]. This section is a brief reminder of this paper 
work.

4.1. Geometric partition

The first step is a weakly supervised over-segmentation of the input 
cloud into geometrically simple point clusters. These clusters are 
called superpoints. Points of each superpoint have homogeneous 
geometric features, therefore it is assumed that they belong to the 
same object, but without making any assumption about its classi-
fication yet. To better describe the local geometry of each point, 4 
features are chosen, proposed by [GL17], linearity, planarity, scat-
tering and verticality. These features are computed for each point



4 Thomas Richard, Florent Dupont & Guillaume Lavoue / Multi-resolution deep learning pipeline

OA mIoU Ground Wall Ceiling Sign Barrier Box Fence Platform Door Mur. Light Elec. Box Extin.
SPG [LS18] 96.43 67.99 96.62 84.78 96.73 87.46 79.10 72.17 94.32 80.28 19.70 64.79 15.94 24.02

Ours 97.22 76.01 97.88 85.72 96.93 84.19 93.68 75.95 94.00 88.17 40.73 65.97 40.66 48.26
Ours (init) 97.09 87.14 98.09 85.51 96.04 81.55 90.42 65.78 93.58 86.18 n/a n/a n/a n/a

Table 1: Quantitative results comparison on LPA dataset between SPG [LS18] and our deep learning pipeline in combination with SPG. OA
is the overall accuracy, the intersection over union is split per class, and mIoU refers to the average of the latter. init is referred as the initial
segmentation in our pipeline.

5. Experiments

5.1. Presentation of the LPA dataset

The LPA dataset is a set of point clouds of an underground car
park, which contains 23 clouds from 4 parking floors for a total of
127Mi points. This dataset is extremely dense and precise, however
it contains lots of noise and some minor misalignment issues. These
properties are explained by its direct origin from the industry, with
a minimum cleaning preprocess. All available classes as well as
their association to high or low resolution type are presented in the
figure 3. As the dataset contains 4 floors, the evaluation will be a
4-folds cross validation.

5.2. Evaluation

Results comparison between the original SPG method and our deep
learning pipeline in combination with SPG is presented in the ta-
ble 1. Qualitative results of our approach are shown in the figure 3.
Our method has been evaluated on the full resolution LPA dataset.
For the original SPG, its evaluation at full resolution induces heavy
pre-processes that can take several dozen hours per cloud and huge
memory consumption. Therefore we performed a sub-sampling of
the clouds before their classification, which is the same strategy
used by the original SPG method [LS18]. The results are then pro-
jected using a voxel based projection on the full resolution cloud to
obtain comparable results.

We can see that small scale and/or detailed objects like doors,
electrical boxes or extinguishers are the hardest classes to retrieve.
It is explained by their particularly detailed geometry and the im-
portant point number imbalance they suffer from. However, fine-
grained details brought by our approach lead to substantial im-
provements in the segmentation of these classes. The segmenta-
tion of large scale objects like ground or walls demonstrate good
results for original SPG as well as our approach. This is the ex-
pected behaviour as the segmentation resolution for these classes
are identical for both approaches. We can still observe some mi-
nor improvements, especially for classes like barriers of platforms.
They are made possible by the merge of high resolution classes
into a single low resolution class. As the most difficult classes are
merged into walls, it limits potential segmentation errors that can
confuse contextual information, and thus mislead the method even
more.

In table 1, init is referred to as the initial segmentation in our
pipeline, using only low resolution classes including the concate-
nated class. We can see differences between our final results and the
initial segmentation results, even for low resolution classes. These
differences are induced by the projection of the initial segmentation

results into a high resolution cloud, in order to compute the final
full resolution results. Indeed, as the point cloud density is irregu-
lar, this operation affects the class’s scores. This is especially true
for dense classes, in which a single point correctly classified in the
low resolution cloud can represent many more points in the high
resolution one. The exact same projection is used to compute the
original SPG results. We perform a segmentation at low resolution
using raw SPG, and then project those results on the high resolution
cloud using a voxel based projection, to obtain comparable results.

6. Conclusion

In this paper, we presented a new deep learning pipeline to exploit
fine-grained details from dense large scale 3D point clouds. We
showed that these details are important to segment certain objects,
and introduced new ideas like adaptive density or class merging to
process such details on large scale scenes scenario. This approach
leads to better semantic segmentation results of our dataset, com-
posed of dense large scale 3D point clouds.
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