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New image reconstruction algorithm for fluorescence optical
tomography based on the adjoint radiative transfer equation

Fatmir Asllanaja and Ahmad Addouma

aUniversity of Lorraine, ENSEM, LEMTA, F-54518, Nancy, France

ABSTRACT

A new reconstruction algorithm for fluorescence optical tomography of biological tissues is proposed. The
radiative transport equation in the frequency domain is used to model light propagation. The adjoint method
studied in this work provides an efficient way for solving the inverse problem. The methodology is applied
to a 2D tissue-like phantom subjected to a collimated laser beam. Indocyanine Green is used as fluorophore.
Reconstructed images of the spatial fluorophore absorption distribution is assessed taking into account the
residual fluorescence in the medium. We show that illuminating the tissue surface from a collimated centered
direction near the inclusion gaves a better reconstruction quality. Two closely positioned inclusions can be
accurately localized and quantified. However, the algorithm fails to reconstruct smaller or deeper inclusions
due to light attenuation in the medium. Reconstructions with noisy data are also achieved with a reasonable
accuracy.

Keywords: fluorescence molecular imaging, radiative transport equation, inverse source problem, Lagrangian
optimization, cancer diagnosis.

1. INTRODUCTION

In recent years, fluorescence imaging has received particular attention. This is due considerable potential for
biomedical research and clinical applications.1 The quantification of fluorophore absorption and its distribution
through biological tissues is of major interest. Fluorescence Diffuse Optical Tomography (FDOT) is an imaging
method that aims to reconstruct the internal distribution of fluorochromes or chromophores within biological
tissues. This is based on light measurements collected at the tissue surface.1–3 Especially in small animals,
this technology has facilitated monitoring of molecular activity, tumor growth, response to drug therapy, etc.
In FDOT, a near-infrared excitation light source is used to measure fluorescence emission. Detection uses a
CCD camera opposite the source that is rotated around the subject. However, due to the diffuse nature of light
propagation in biological tissues, the image reconstruction problem is ill-posed and the images obtained are of
low resolution. The reconstruction of the optical properties of the medium requires an accurate forward model
for light propagation combined with an efficient inverse method.

The radiative transport equation (RTE) is considered as the gold standard for accurate prediction of light
propagation through biological tissues at both the meso and the macroscale. I.e. the typical length of the
scattering medium, beam diameter, etc. are high compared to the wavelength of the incident beam.3 Several
studies deal with fluorescence molecular imaging based on the diffusion equation used as forward model. The
diffusion equation is an approximation relative to the RTE and has limitations in optically thin media. Equally, it
fails in media with small geometries where boundary effects are dominant and where sources and detectors are not
sufficiently far apart. This presents specific problems for example in the field of small animal fluorescence imaging.
Their fluorescent sources are potentially very close to detectors on the tissue surface. An image reconstruction
method based on the RTE overcomes these limitations. There are very few reports in the literature concerning
the inverse fluorescent source problem in fluorescence molecular imaging based on RTE as the forward model.
Accordingly, this problem needs further investigation.
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The image reconstruction methods based on the RTE can be found in4 (steady-state domain) and5,6 (fre-
quency domain). There was also considerable work on developing other RTE-based methods for optical imag-
ing.7,12 The fluorescent source reconstruction is achieved by minimizing an objective function. This latter
describes the discrepancy between measured light intensity and predicted numerical data on the tissue surface.
The gradient of the objective function is a crucial indication of update through line minimization of the un-
known fluorescent source distribution. The adjoint method is known to be efficient for inverse problems. It is
used in research areas covered by shape optimization, fluid flow control, etc. The adjoint equation is derived from
its primal equation using integration by parts. Gradient values can be efficiently calculated from a particular
quantity of interest by solving the adjoint equation. The computation of the objective function gradient for
large-scale problems using the finite differences method is extremely time consuming. A distinct advantage of
using the adjoint method is that an explicit expression of the gradient is obtained that allows the gradient to be
computed efficiently. This is achieved by solving an additional (adjoint) equation for the adjoint variable. The
computational cost is equivalent to that of the forward model.Furthermore, the adjoint method is independent
from the number of parameters. Thus, it allows more accurate computing of the objective function gradient and
the computational cost is much lower than for the finite differences method. The adjoint method was applied to
DOT problems based on RTE in the time domain8 and the frequency domain.9 In the reports cited, a forward
model including partly reflected boundary conditions (Fresnel reflection) was considered in.9 The adjoint method
was applied to FDOT problems based on the RTE frequency domain in.5,6 In,5 a unit strength isotropic source
located at one point and transparent boundary conditions were considered in the forward model. In,6 a unit
strength isotropic source located at four points with partly reflected boundary conditions was considered in the
forward model. The Lagrangian formulation and the forward model were solved implicitly using a linear system.
This paper proposes a reconstruction algorithm for FDOT using the RTE in the frequency domain to model
the light propagation. The adjoint method studied in this work provides an efficient way for solving the inverse
problem of FDOT based on RTE.

The remainder of this manuscript is organized as follows. Section 2 presents the forward model in a 2D
medium, subjected to a collimated laser beam. Section 3 deals with the mathematical background of the
Lagrangian formulation to derive the adjoint RTE and the objective function gradient. Section 4 discusses the
results of the fluorophore absorption coefficient reconstructions with simulated data. Conclusions are summarized
in the final section.

2. FORWARD MODEL

2.1 Excitation light propagation

The ψexc (rrr, ω) collimated excitation radiance at location rrr ∈ D in direction ΩcΩcΩc and angular modulation frequency
ω ∈ RRR is governed by the Bouguer-Beer-Lambert attenuation equation:[

ΩΩΩc · ∇∇∇+
( i ω
vex

+ µext (rrr) + µex→ema (rrr)
)]
ψexc (rrr, ω) = 0 for rrr ∈ D (1)

The µex→ema coefficient is the absorption coefficient of a fluorescent source in the tissue at the excitation wave-
length λex. The speed of light vex in the tissue, is given by the ratio vex = c/nex of the speed of light in vacuum
and the refractive index of the tissue. The boundary conditions of Eq. 1 are:

ψexc (rrr, ω)−Υex(rrr, ω) = 0 for rrr ∈ ∂Dc and ψexc (rrr, ω) = 0 for rrr ∈ ∂D \ ∂Dc (2)

The diffuse excitation radiance ψexs (rrr,ΩΩΩ, ω) in direction ΩΩΩ is the solution of the RTE in the frequency domain
at an excitation wavelength of λex:[

ΩΩΩ · ∇∇∇+
( i ω
vex

+ µext (rrr) + µex→ema (rrr)
)]
ψexs (rrr,ΩΩΩ, ω)

−µexs (rrr)

∫
Ω′=2π

pex(Ω
′

Ω
′

Ω
′
·ΩΩΩ) ψexs (rrr,ΩΩΩ

′
, ω) dΩ

′
− Sexc (rrr,ΩΩΩ, ω) = 0, (3)



where Sexc (rrr,ΩΩΩ, ω) = µexs (rrr) pex(ΩcΩcΩc · ΩΩΩ) ψexc (rrr, ω) is a source term and pex(Ω
′

Ω
′

Ω
′ · ΩΩΩ) is the Henyey-Greenstein

(H-G) phase function.10 The boundary conditions for the diffuse excitation radiance are:

ψexs (rrr,ΩΩΩ, ω)− ρ(Θsp) ψ
ex
s (rrr,ΩspΩspΩsp, ω) = 0 with cos Θsp = ΩspΩspΩsp ·nnn = −ΩΩΩ ·nnn (specular reflection),

ψexs (rrr,ΩΩΩ, ω)− 1

π

∫
Ω′Ω′Ω′·nnn>0

ρ(Θ′) ψexs (rrr,Ω′Ω′Ω′, ω) Ω′Ω′Ω′ ·nnn dΩ′ = 0 with cos Θ′ = Ω′Ω′Ω′ ·nnn (diffuse reflection), (4)

The directional reflection coefficient ρ is given by Snell-Descartes laws assuming that the refractive index of the
outside medium (air) is unity. The specular reflection ΩspΩspΩsp = ΩΩΩ−2(ΩΩΩ ·nnn) nnn is defined as the direction from which
a laser beam must hit the surface. The excitation reflectance Rex is obtained from the photon boundary flux at
each boundary point such as:10

Rex(rrr, ω) =

∫
ΩΩΩ·nnn>0

[
1− ρ(Θ)

]
ψexs (rrr,ΩΩΩ, ω) ΩΩΩ ·nnn dΩ with cos Θ = ΩΩΩ ·nnn,

(5)

2.2 Emission light propagation

The quantum yield of the fluorochrome is denoted η and τ denotes the local lifetime of the fluorescent source.
The fluorescent source term is defined by:1

Qem(rrr, ω) =
1

2π

η µex→ema (rrr)

1− i ω τ(rrr)
Φex(rrr, ω) for rrr ∈ D (6)

The source emits isotropic light, since all directional information is lost after excitation. The equation that
describes the transport of emitted light at the emission wavelength λem due to the fluorescent source in tissues
is expressed as:[

ΩΩΩ · ∇∇∇+
( i ω
vem

+ µemt (rrr)
)]
ψem(rrr,ΩΩΩ, ω)− µems (rrr)

∫
Ω′=2π

pem(Ω
′

Ω
′

Ω
′
·ΩΩΩ) ψem(rrr,ΩΩΩ

′
, ω) dΩ

′
−Qem(rrr, ω) = 0, (7)

where ψem(rrr,ΩΩΩ, ω) denotes the emission radiance. The boundary conditions for the emission radiance are:

ψem(rrr,ΩΩΩ, ω)− ρ(Θsp) ψ
em(rrr,ΩspΩspΩsp, ω) = 0 with cos Θsp = ΩspΩspΩsp ·nnn = −ΩΩΩ ·nnn (specular reflection),

ψem(rrr,ΩΩΩ, ω)− 1

π

∫
Ω′Ω′Ω′·nnn>0

ρ(Θ′) ψem(rrr,Ω′Ω′Ω′, ω) Ω′Ω′Ω′ ·nnn dΩ′ = 0 with cos Θ′ = Ω′Ω′Ω′ ·nnn (diffuse reflection), (8)

The emission photon boundary flux (emission reflectance Rem) is:

Rem(rrr, ω) =

∫
ΩΩΩ·nnn>0

[
1− ρ(Θ)

]
ψem(rrr,ΩΩΩ, ω) ΩΩΩ ·nnn dΩ with cos Θ = ΩΩΩ ·nnn, for rrr ∈ ∂D (9)

3. INVERSE FLUORESCENT SOURCE PROBLEM

To define more easier the state equation presented therafter, we denote by Rexc (·, ψexc ), Rexs (·, ψexc , ψexs ) and
Rem(·, ψexc , ψexs , ψem) the equations (1), (3) and (7).

3.1 The objective function

The spatial distribution of the fluorophore absorption coefficient µex→ema is reconstructed by applying a nonlinear
optimization technique to an objective function J that is an explicit function of θ = µex→ema . It describes the
discrepancy between the measured light intensity, demobs(rrr) and the predicted numerical data, Rem(rrr) (given from
Eq. (9)) for positions rrr ∈ ∂Dc:

J(θ) =
1

2

∣∣∣∣Rem(θ)− demobs
∣∣∣∣2
B

(10)

The reconstruction algorithm consists of minimizing J when the state equations are satisfied :

Rexc (θ, ψexc ) = 0, Rexs (θ, ψexc , ψ
ex
s ) = 0 and Rem(θ, ψexc , ψ

ex
s , ψ

em) = 0 (11)

The optimization algorithm chosen in this work requires the objective function gradient with respect to unknowns.
To compute this gradient, the adjoint method is introduced as described in the following section.



3.2 The Lagrangian and adjoint method

The Lagrangian is written in the L2 space as:11

L(θ, ψexc , ψ
ex
s , ψ

em, φexc , φ
ex
s , φ

em) =
1

2

∣∣∣∣(Hψem)− demobs
∣∣∣∣2 +

〈
φexc

∣∣∣Rexc 〉+
〈
φexs

∣∣∣Rexs 〉+
〈
φem

∣∣∣Rem〉
where φexc , φexs and φem represent the adjoint variables associated to ψexc , ψexs , ψem in the medium. The
fundamental remark is that if (ψexc , ψ

ex
s , ψ

em) is the solution of the state equation (11) for the θ parameter, then
we have the identity:

L(θ, ψexc (θ), ψexs (θ), ψem(θ), φexc , φ
ex
s , φ

em) = J(θ), for all φexc , φ
ex
s , φ

em (12)

By deriving this equation with respect to θ it yields :

J ′(θ) δθ =
〈
∇∇∇J(θ)

∣∣∣δθ〉 =
∂L(θ, ψexc , ψ

ex
s , ψ

em, φexc , φ
ex
s , φ

em)

∂θ
δθ (13)

Using the definition of the adjoint operator13 and the inner product properties, the adjoint variables are solutions
of the following adjoint equations model :[

ΩΩΩ · ∇∇∇+
(−i ω
vem

+ uemt (rrr)
)]
φem(rrr,−ΩΩΩ, ω) = µems (rrr)

∫
Ω′=2π

pem(Ω
′

Ω
′

Ω
′
· (−ΩΩΩ)) φem(rrr,ΩΩΩ

′
, ω) dΩ

′
,[

ΩΩΩ · ∇∇∇+
(−i ω
vex

+ µext (rrr) + µex→ema (rrr)
)]
φexs (rrr,−ΩΩΩ, ω)

= µexs (rrr)

∫
Ω′=2π

pex(Ω
′

Ω
′

Ω
′
· (−ΩΩΩ)) φexs (rrr,ΩΩΩ

′
, ω) dΩ

′
+
η µex→ema (rrr)

1 + i ω τ(rrr)
φem(rrr,−ΩΩΩ, ω),[

ΩΩΩc · ∇∇∇+
(−i ω
vex

+ µext (rrr) + µex→ema (rrr)
)]
φexc (rrr, ω)

= µexs (rrr)

∫
Ω′=2π

pex(Ω
′

Ω
′

Ω
′
· (−Ωc−Ωc−Ωc)) φ

ex
s (rrr,ΩΩΩ

′
, ω) dΩ

′
+

1

2π

η µex→ema (rrr)

1 + i ω τ(rrr)

∫
Ω′=2π

φem(rrr,Ω
′

Ω
′

Ω
′
, ω) dΩ

′
(14)

The adjoint boundary conditions in the case of diffuse reflection of the first two equations of system (14) are:

φem(rrr,ΩΩΩ, ω) =
1

π

∫
Ω′Ω′Ω′·nnn<0

ρ(Θ′) φem(rrr,Ω′Ω′Ω′, ω)
∣∣∣Ω′Ω′Ω′ ·nnn

∣∣∣ dΩ′ for, (15)

φem(rrr,ΩΩΩ, ω) = −
[
1− ρ(Θ)

]
(Rem − demobs)(rrr, ω) +

1

π

∫
ΩΩΩ′·nnn<0

ρ(Θ′) φem(rrr,ΩΩΩ′, ω)
∣∣∣ΩΩΩ′ ·nnn∣∣∣ dΩ′ for, (16)

φexs (rrr,ΩΩΩ, ω) =
1

π

∫
Ω′Ω′Ω′·nnn<0

ρ(Θ′) φexs (rrr,Ω′Ω′Ω′, ω)
∣∣∣Ω′Ω′Ω′ ·nnn

∣∣∣ dΩ′, (17)

with cos Θ′ = −Ω′Ω′Ω′ · nnn and cos Θ = ΩΩΩ · nnn. It can be seen that the adjoint equations model takes a similar form
to the forward model. They can be solved in a similar manner to that used to solve the forward model. It also
shows that the set of equations should be solved in the order presented in (14). The adjoint emission equation
must be solved before the adjoint excitation equation. Thus, the emission adjoint field φem obtained first, is
used as the source term in the other two equations. After the first equation is solved, the second can be worked
out and the excitation diffuse adjoint field φexs deduced. The resulting φexs field is used as the source term for
the excitation collimated adjoint field φexc .

3.3 Gradient of the objective function and the optimization problem

As the objective function does not depend explicitly on θ (see Eq. (10)), then we have ∂J(θ)
∂θ = 0. Using Eq.

(13), we have : 〈
∇∇∇J(θ)

∣∣∣δθ〉 =
〈
φexc

∣∣∣∂Rexc
∂θ

δθ
〉

+
〈
φexs

∣∣∣∂Rexs
∂θ

δθ
〉

+
〈
φem

∣∣∣∂Rem
∂θ

δθ
〉
. (18)



Applying Eq. (18) to θ = µex→ema we deduce that:〈
∇∇∇J(µex→ema )

∣∣∣δµex→ema

〉
=
〈
φexc

∣∣∣ψexc δµex→ema

〉
+
〈
φexs

∣∣∣ψexs δµex→ema

〉
−
〈
φem

∣∣∣( 1

2π

η

1− i ω τ
Φex

)
δµex→ema

〉
, (19)

Then, the components of the objective function gradient, with respect to µex→ema , are obtained with:

∇∇∇J(µex→ema ) = <
{
φexc ψexc +

〈
φexs

∣∣∣ ψexs 〉
A
− 1

2π

〈
φem

∣∣∣ η

1 + i ω τ
Φex

〉
A

}
. (20)

where < {z} is the real part of the complex number z. The right-hand side of (19) is a complex value but only
its real part is taken for the gradient of the objective function to be a real value. The objective function J
was iteratively minimized using the quasi-Newton algorithm with L-BFGS (Limited-Memory Broyden-Fletcher-
Goldfarb-Shanno).2 It iteratively updates an initial estimate of the fluorophore absorption coefficient along a
search direction. Once the minimum is found, the final result is the distribution of the fluorophore absorption
coefficient. The updating procedure can be formulated as detailed in.4

4. RESULTS AND DISCUSSION

We present numerical results obtained with the reconstruction algorithm developed in the theoretical section.
The calculations were carried out with an Intel Xeon Processor E5-2643, 3.3GHz, 32GoRAM, 8 cores. This
last uses Hyper-Threading and Intel C compiler. The computation time for a reconstruction is about 3 hours.
The algorithm was used to localize and quantify one and two fluorescent inclusions embedded in a biological
medium. The simulations were carried out in a 2D circular domain with a 2 cm radius. The center of the circle
is defined as the origin. The chosen size mimics fluorescence tomographic problems that are typical for small
animal imaging. The same unstructured triangular mesh composed of 2,129 nodal points and 4,128 triangular
elements was used for the forward and inverse solutions. Each inclusion is a disk of 0.4 cm radius and its center
is located at different positions. The intrinsic optical properties of the medium, namely µexa = µema = 0.1 cm−1

and µexs = µems = 100 cm−1 were identical at the excitation and emission wavelengths. The anisotropy factor of
the H-G phase function g was set to 0.9. This corresponds to a highly forward-scattering medium. The optical
properties are typical for biological tissues in the near-infrared spectral range. The refractive indices of the
medium and the surrounding (air) were chosen as n = 1.4 and nout = 1.0, respectively. The medium surface was
assumed to be semi-transparent with specular Fresnel reflection at the interface. ICG (Indocyanine Green)3 is
the most widely-used fluorophore probe for biomedical applications and was effectively used here. The quantum
yield and lifetime of the probe were homogeneously distributed with η = 0.012 and τ = 0.52 ns, respectively.
We intended to reconstruct the fluorophore absorption coefficient. To this end we allowed determination of the
relative ICG concentration in the medium. This process is known as the absorption-contrast mode in FDOT. The
fluorescent inclusions represent heterogeneities in the µex→ema coefficient.3 The medium is not ideal, meaning
that some ICG molecules remained in the homogeneous background medium leading to residual fluorescence.
Therefore, the fluorescence signal detected on the surface had not only been caused by fluorescent inclusions.
The fluorophore absorption coefficient in the background was assigned the value µex→ema = 0.01 cm−1. This
value was used as the initial estimate in the reconstruction algorithm for all cases described below. A collimated
source using ten boundary nodal points (positions all around the disc) was used. These were equally spaced
by about 0.1 cm and their centered points were denoted PcPcPc. 64 detectors were used that where equally spaced
along the boundary nodal points of reflectance. The intensity of the source was modulated at 100 MHz. The
use of this modulation frequency leads to a large observation time which is longer than the fluorescence life
time of ICG in order to obtain sufficient fluorescence decay. To solve the RTE, the angular space (2πSr) was
uniformly subdivided into 32 control solid angles. Furthermore, there were 8 subdivisions into a control solid angle
for phase function normalization.10 The reconstruction was stopped when the normalized difference between
two subsequent error functions was smaller than 10−5. We also tested other values for the initial estimate,
namely µex→ema = 10−5 cm−1, µex→ema = 0.03 cm−1 and we obtained reconstruction results close to those for
µex→ema = 0.01 cm−1. In the first case, a fluorescent inclusion was embedded inside the homogeneous medium.
Its center was located at the exact position (1, 1) as indicated by the dashed circle in Fig. 1. The true fluorophore



absorption coefficient in the inclusion was assigned µex→ema = 0.05 cm−1. For all reconstructions, the synthetic
fluorescence data were generated by running the forward model. The true spatial distribution of the fluorophore
absorption coefficient we wanted to reconstruct in such a case was used. Particular attention was paid to the
optimal configuration of source positions and their collimated directions. Figs. 1 and 2a depict the results when
the collimated directions of the sources were Ω1

cΩ1
cΩ1
c = (0,−1) (with P 1

cP
1
cP
1
c = (0, 2)) and Ω2

cΩ2
cΩ2
c = (cos( 5π

4 ), sin( 5π
4 )) (with

P 2
cP
2
cP
2
c = (2 cos(π4 ), 2 sin(π4 ))). The algorithm gave a well-defined spatial position of the fluorescent inclusion for

both directions. However, the (Ω2
cΩ2
cΩ2
c ,P

2
cP
2
cP
2
c ) source led to a superior reconstruction quality in terms of estimation and

localization of the inclusion. With the (Ω1
cΩ1
cΩ1
c ,P

1
cP
1
cP
1
c ) source, the inclusion was attached to the medium surface and was

rather bean shaped. Absorption by the retrieved fluorophore in the inclusion was slightly underestimated relative
to its real value. The surface near the inclusion could be illuminated with (Ω2

cΩ2
cΩ2
c ,P

2
cP
2
cP
2
c ). Then, the circular shape

and spatial position were clearly improved as was accuracy. Moreover, the local value retrieved in the inclusion
was accurately estimated (µex→ema = 0.05 cm−1). We could then deduce the best configuration to accurately
localize and quantify a fluorescent inclusion. It was to illuminate the medium surface near the inclusion using
a centered collimated source. The reconstructed images of Fig. 1 and Fig. 2a were obtained after 129 and 138
iterations, respectively.

Figure 1: Reconstruction of the fluorescent inclusion. The center of the inclusion is located at (1, 1). The
collimated direction of the source was Ω1

cΩ1
cΩ1
c = (0,−1) with P 1

cP
1
cP
1
c = (0, 2).

In the second case we assessed the effect of the inclusion depth on the reconstruction. For this the center of the
inclusion can take different exact positions, as shown by the dashed circle in Fig. 2. The ΩcΩcΩc = (cos( 5π

4 ), sin( 5π
4 ))

direction (with PcPcPc = (2 cos(π4 ), 2 sin(π4 ))) was used as a collimated direction of the source. The estimation and
spatial localization of the fluorescent inclusion became less accurate as the depth increased (Fig. 2). The algo-
rithm failed to reconstruct deeper inclusions, leading to poor image quality. It should be noted that illuminating
with more than one collimated sources didn’t lead to improve the reconstruction. This could be explained by
the ill-posedness of the whole problem, in particular light attenuation in the medium. The reconstructed image
quality is assessed through the relative RMSE (Root Mean Square Error). This is defined between the true and



reconstructed values of the fluorophore absorption coefficient:

E = 100 ·
∣∣∣∣µex→ema (reconstructed)− µex→ema (true)

∣∣∣∣
2∣∣∣∣µex→ema (true)

∣∣∣∣
2

, (21)

where
∣∣∣∣·∣∣∣∣

2
denotes Euclidian norm. The relative RMSE was computed over the target region and over the whole

reconstructed image domain. As expected, Table 1 shows that the relative RMSE increases with the inclusion
depth, much more for the target region than that for the whole reconstructed image domain.

Position of the center of the inclusion (1,1) (0.8,0.8) (0.5,0.5) (0.0)
Relative RMSE of the target region 27.22 % 55.00 % 71.10 % 78.55 %

Relative RMSE of the whole image domain 36.14 % 45.53 % 54.18 % 54.13 %
Table 1: The relative RMSE versus the inclusion depth.

(a)

(b)

(c) (d)

Figure 2: Reconstruction of the fluorescent inclusion located at different positions.

As a third case, we assessed the effect of both size and depth of the inclusion on the reconstruction. The
relative RMSE over the target region is given in Fig. 3a. For each inclusion size, the error decreases as the
center of the inclusion moves toward the sources positions. This is because the reconstruction (of shapes and
values) is improved when the inclusion is located nearer to the illuminated medium boundary. At each position
of the inclusion in the medium, the relative RMSE increases when the inclusion size decreases. As expected,
the algorithm failed more to reconstruct a small inclusion located deeper in the medium. Fig. 3b shows the
relative RMSE over the whole reconstructed image domain versus the depth and size of the inclusion. The error
is lower (less than 36.5 %) when the inclusion size is smallest (R = 0.2 cm) whatever its position in the medium.



When the inclusion is deeper in the medium (located at the center of the medium) the relative RMSE is inverted
compared to that over the target region. This means that the reconstruction quality of the whole domain is
worst when the inclusion size is bigger and the inclusion is deeper in the medium. Moreover, when R is bigger
than 0.2 cm, the relative RMSE over the whole domain increases as the inclusion goes deeper. This is mainly due
to the wrong inclusion location inside the homogeneous medium which leads, therefore, to a poor reconstruction
quality of the whole domain.

(a) (b)

Figure 3: The relative RMSE versus the size and depth of the inclusion.

In the thourth case, a second inclusion with a lower fluorophore absorption coefficient (µex→ema = 0.03 cm−1)
was considered. This allowed us to distinguish between two fluorescent inclusions at different separations. For this
purpose, two examples are presented. Fig. 4a shows the reconstructed image when both inclusions were closed.
The centers of the inclusions were located at (−1, 1) and (1, 0.8) and the phantom medium was simultaneously
illuminated by ΩlcΩlcΩlc = (cos( 7π

4 ), sin( 7π
4 )) with P lcP

l
cP
l
c = (2 cos( 3π

4 ), 2 sin( 3π
4 )) and ΩrcΩrcΩrc = (cos( 5π

4 ), sin( 5π
4 )) with

P rcP
r
cP
r
c = (2 cos(π4 −

π
32 ), 2 sin(π4 −

π
32 )). Fig. 4b depicts the result for a somewhat higher separation between the

two inclusions. Here, the centers of the inclusions were located at (−1, 1) and (1.4, 0) and the medium was
illuminated by ΩlcΩlcΩlc = (cos( 7π

4 ), sin( 7π
4 )) with P lcP

l
cP
l
c = (2 cos( 3π

4 ), 2 sin( 3π
4 )) and ΩrcΩrcΩrc = (−1, 0) with P rcP

r
cP
r
c = (2, 0). The

dashed circles in the figures indicate the exact positions of the inclusions. For both separations, the inclusions
were accurately recovered and localized in the medium. The algorithm can detect and reconstruct separately
the two different fluorescent inclusions. This is so even when they are only separated by small distances (see
Fig. 4a). The mean retrieved values of both inclusions in the small and large separation cases are (0.024 cm−1,
0.031 cm−1) and (0.025 cm−1, 0.038 cm−1), respectively. The mean retrieved values of inclusions were always
underestimated compared to their exact values. Also, when the inclusions are relatively close to each other the
fluorescent photons interfere.

In the last case study, the robustness of the reconstruction algorithm was tested in the presence of noisy data
with Gaussian distribution.14 The noise was added to the complex simulated measurement reflectance (module
and phase shift). The simulated measurement data are corrupted by adding random errors: 3 %, 6 % and 10
%. Like the first case, the probed medium contains one inclusion. The relative RMSE versus the noise level is
shown in Table 2.

Noise σm = 0 % σm = 3 % σm = 6 % σm = 10 %
Relative RMSE of the target region 27.22 % 29.69 % 30.97 % 31.16 %

Relative RMSE of the reconstructed image domain 36.14 % 39.58 % 49.31 % 63.35 %
Table 2: The relative RMSE versus the noise level.

The example of 10 % noise is illustrated in Fig. 5. This figure shows that despite the relatively high noise



(a) (b)

Figure 4: Reconstruction of two fluorescent inclusions located at different positions.

level, the inclusion is accurately reconstructed. Furthermore, the local retrieved value is well-estimated. This
confirmed that the proposed algorithm is robust and efficient, even in the presence of noisy data. However,
artifacts and some perturbations of the medium boundary are note compared to the noise-less reconstructed
image (see Fig. 2a). This is because detection occurred on the surface and the algorithm converged around a
random value. Higher noise levels for the boundary data led to degraded image quality. Relative RMSE decreases
with the noise level, much more for the whole reconstructed image domain than that for the target region. (see
Table 2).

Figure 5: Reconstruction of the fluorescent inclusion when 10 % of noise was added to the simulated measurement
data. The center of the inclusion is located at (1, 1).



5. CONCLUSION

We studied the inverse problem of ICG fluorescent source. For the first time, we derived the adjoint model
for fluorescence molecular imaging based on the RTE to efficiently obtain the objective function gradient. This
is ensured by solving an additional (adjoint) equation for the adjoint variable. The latters’s computational
cost is equivalent to that of the forward model. The coupled forward and adjoint models were solved with
the same modified finite volume method. This had been demonstrated in a previous publication to be highly
accurate.10 The objective function was iteratively minimized using a nonlinear optimization L-BFGS algorithm.
Reconstructed images were obtained based on simulated data on the tissue surface. Thus, the spatial fluorophore
absorption distribution was assessed taking into account the residual fluorescence in the medium. Positions and
directions of the sources were measured on a single fluorescent inclusion. We showed that illuminating the tissue
surface from a collimated centered direction near the inclusion gave a better reconstruction quality. Furthermore,
we analyzed the effect of both size and depth of the inclusion on the reconstruction. We found that the algorithm
failed to reconstruct smaller or deeper inclusions. This was due to light attenuation in the medium. Also, two
closely positioned inclusions could be accurately localized. Additionally, their fluorophore absorption coefficients
could be quantified. Reconstructions with noisy data were achieved with a reasonable accuracy for several
random noise levels. The sum of our results demonstrated that the algorithm is robust. Also, it yields promising
results in fluorescence molecular imaging. The present work was a prerequisite study to evaluate the potential
of the algorithm. We plan to extend it to 3D geometries (for real applications) using parallel computing with
MPI and Open MP, running on a set of multi-core machines.
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