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Abstract. Real-time pricing is considered as a promising strategy to
flatten the power consumption provided with perfect knowledge of con-
sumers’ demand level. However, the gathering of full information of
demand levels might be cumbersome or even impossible for the provider
in practical scenarios. In this paper, instead of assuming the perfectly
known demand levels, we investigate the problem where the provider has
the sole knowledge of the probabilistic distribution of the demand lev-
els. Furthermore, a penalty term caused by the prediction error of the
consumption prediction is introduced due to the incomplete information.
By solving the stochastic optimization problem, the optimal consump-
tion prediction and optimal price to maximize the expected social welfare
is derived analytically. Numerical results show that the degradation on
the social welfare brought by the partial information can be less than
1% when the price and consumption prediction are well designed.

Keywords: Real-time pricing · Demand response · Consumption
prediction

1 Introduction

An essential goal of smart grids is to create reliable communications between
many components. the exchange and control of information can provide more
effective generation and transmission of electricity, resulting in flattening the
power consumption. To reduce the power consumption during the peak time,
demand side management (DSM) has been proposed and shown to be a promis-
ing strategy in certain scenarios [1,2].

Pricing-based demand response (DR) is one of the most widely used DSM
methods, where the electricity price designed by the provider is related to the
overall demand (or aggregate load) of the served consumers. In a smart grid
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system, the energy provider can send the tariff information to the energy con-
sumption controller (ECC) unit located at the consumer’s devices (e.g., the smart
meters), and thus the consumers can schedule their activities to low price peri-
ods. To shift the power consumption from the rush hours, the dynamic pricing
is in accordance with the overall demand levels. Several different pricing have
been proposed recently. For instance, the time of use pricing has on-peak tariff
and off-peak tariff [3], the day-ahead pricing predicts the following day’s con-
sumption and propose a tariff according to its consumption prediction [4]. Due
to the large deployment of smart meters, the real-time pricing can be imple-
mented by communicating the demand of current period and feeding back the
real-time tariff to the consumers. Under the ideal communication environment,
the real-time price can be designed to maximize the social welfare or the benefit
of the provider [5,6].

However, due to the limitation of available resources in the communication
channels, the perfect observation of the demand levels can be prohibitive. In this
paper, we consider the case where only partial information can be acquired by
the provider. More precisely, the provide has the sole knowledge of the demand
level statistics instead of knowing its instantaneous realizations. Moreover, the
information shortage about the demand levels in provider’s side leads to the
uncertainty of total power consumption of the system. As a consequence, the
procurement (or generation) of electricity in advance will be affected and thus a
penalty term has been introduced in this paper to model this impact. Knowing
the statistics of demand and the penalty term to the provider’s cost function,
the stochastic optimization problem has been studied here. The rest of the paper
is organized as follows. The system model is introduced in Sect. 2. The problem
is formulated and The optimal price and optimal load prediction are derived in
Sect. 3 and Sect. 4 respectively. The paper ends by numerical results.

2 System Model

In this paper, we consider a smart power system consisting of an unique energy
provider and several consumers. It is assumed that there is an ECC unit embed-
ded in each consumer’s smart meter. The role of the ECC is to control the power
consumption such that the consumer’s utility can be maximized.

Let N = {1, . . . , N} denote the set of all the consumers. For each consumer
i ∈ N , denote xk

i as the power consumption of consumer i at time slot k. In
fact, considering the problems during several time slots K = {1, . . . ,K}, the
solutions can be found separately in each time-slot. Without loss of generality,
we consider our problem for one given time-slot and remove the index k for all
the definitions. For each consumer i. the available power consumption interval
Ii is defined as

Ii = [mi,Mi] (1)

and thus mi ≤ xi ≤ Mi.
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2.1 Utility Function of Consumers

The energy demand of each consumer depends on several parameters, e.g., the
climate condition, tariff, the variation of the energy demand over different time
of the day. For all consumers, we denote the utility function as U(x, ω), where
x represents the power consumption and ω is a parameter representing the sat-
isfaction level (based on climate, time and so on). Here we choose the utility
function proposed in [5] defined as:

U(x, ω) =

⎧
⎪⎪⎨

⎪⎪⎩

ωx − α
2 x2, if 0 ≤ x ≤ ω

α

ω2

2α , if x > ω
α .

(2)

2.2 The Cost Function of the Provider

Denoting the total power consumption L as L =
∑N

i=1 xi, the cost function
C1(L) for the provider, representing the cost of providing L units of energy, is
chosen as [5]:

C1(L) = aL2 + bL + c (3)

Different from most of the existing works, we also consider the cost caused by
the prediction error of the power consumption. Note that it is assumed that
the provider has imperfect knowledge of ωi. The imperfect information can
be induced by privacy issue, or the bad quality of communication channels.
Indeed, in the worst case (all consumer want to keep its private information),
it is assumed that the provider knows solely the probability density function
(p.d.f.) of the ωi, which is possible to be acquired by knowing the past real-
izations (values) of the ωi. As a consequence, the provider needs to predict the
total consumption by L̃ and thus brings a penalty term depending on L− L̃. For
instance, the provider purchased L̃ units of energy in advance from the energy
generator. If L̃ > L, the provider will sell the superfluous energy to the Trans-
mission System Operator (TSO) with a lower price. If L̃ < L, the provider needs
to purchase more energy from the TSO with a higher price to satisfy the energy
need by all the consumers. Define the penalty term as C2(L − L̃), with C2 (·)
fulfilling the following properties:

1) The penalty function is non-negative.

C2(x) ≥ 0 (4)

2) The penalty function is non-decreasing when L − L̃ > 0 and non-increasing
otherwise.

∂C2(x)
∂x

≥ 0 if x > 0 (5)

∂C2(x)
∂x

≤ 0 if x < 0 (6)
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In this paper, we choose the absolute value function to describe the penalty
term as follows:

C2(L − L̃) = d|L − L̃| (7)

Hence, the total cost of the provider can be expressed as:

C(L, L̃) = C1(L) + C2(L − L̃) (8)

3 Problem Formulation

3.1 Demand Side Response of Consumers

For user i ∈ {1, . . . , N}, consuming xi kW electricity with a tariff Pi dollars per
kWh needs to pay Pixi dollars to the provider, its utility can be expressed as:

Wi(xi, ωi) = U(xi, ωi) − Pixi (9)

To maximize its own utility, the optimal power consumption can be written as:

x�
i =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

mi, if ωi−Pi

α ≤ mi

ωi−Pi

α , if mi ≤ ωi−Pi

α ≤ Mi

Mi, if ωi−Pi

α ≥ Mi

(10)

For the sake of clarify, we assume the power consumption interval is sufficient
large so that the condition mi ≤ ωi−Pi

α ≤ Mi is always met. Hence, the optimal
consumption can be simplified to

x�
i =

ωi − Pi

α
(11)

.

3.2 Expected Social Welfare Maximization Problem

When the communication channel between consumers and the provider is
assumed to be perfect (lossless information can be exchanged), the social wel-
fare can be optimized by using the algorithm proposed in [5]. However, for the
scenario with no available communication channels unreliable communication
channels, the maximization problem becomes totally different. In our case, it
is assumed that the provider has the sole knowledge of the p.d.f. of all the ωi.
Hence, due to the lack of information, it is difficult to optimize the instantaneous
social welfare. Consequently, we propose to maximize the expected social welfare
as follows:

Exi,ωi
[
∑

i∈N
U(xi, ωi) − C(L, L̃)] (12)
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Note that the power consumption xi has been determined by (11) in the con-
sumer’s side. Plug (11) into (12), the expected social welfare can be rewritten
as:

W (P1, . . . , PN , L̃)

=Eωi
[
∑

i∈N
U(x�

i , ωi) − C(L�, L̃)]

=Eωi
[
∑

i∈N
U(

ωi − Pi

α
, ωi) − C(L�, L̃)]

(13)

where L� =
∑

i∈N x�
i . To maximize the expected social welfare defined by (13),

the provider can optimize the tariff Pi and the prediction of total power con-
sumption L̃ as follows:

max
P1,...,PN ,˜L

Eωi
[
∑

i∈N
U(

ωi − Pi

α
, ωi) − C(L�, L̃)] (14)

Additionally, from the following proposition, it can be seen that the expected
welfare can be optimized by using a common tariff P for all consumers rather
than a different tariff for each consumer.

Proposition 1. For any given tariff P̃1, . . . , P̃N , the following inequality always
hold:

W (P̃1, . . . , P̃N , L̃) ≤ W (P c
1 , . . . , P c

N , L̃) (15)

where P c
i = 1

N

∑N
j=1 P̃j for every i ∈ N .

Proof. It can be calculated that

W (P̃1, . . . , P̃N , L̃) − W (P c
1 , . . . , P c

N , L̃)

=
1
2α

(
N∑

i=1

(P c
i )2 −

N∑

i=1

P̃ 2
i )

(16)

Note that
∑N

i=1 P̃i =
∑N

i=1 P c
i . Furthermore, it can be found that

(P c
1 , . . . , P c

N ) = arg min
∑N

i=1 Pi=C

N∑

i=1

P 2
i (17)

As a consequence, it can be seen that

N∑

i=1

(P c
i )2 −

N∑

i=1

P̃ 2
i ≤ 0. (18)

Our claim is proved.
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According to Prop. 3.1, the optimization problems (14) can be further simplified
to the following problem:

max
P,˜L

Eωi
[
∑

i∈N
U(

ωi − P

α
, ωi) − C(L�, L̃)] (19)

The provider will find the optimal price and the optimal power consumption
prediction to maximize its expected social welfare. The approach to derive them
will be presented in the subsequent section.

4 Optimal Consumption Prediction and Price

In this section, we proposed one approach to derive the optimal power con-
sumption prediction and the optimal price. One can easily observe that these
two variables are correlated. Without loss of optimality loss, the optimization
problem (19) can be solved in two steps. Firstly, we focus on find the optimal
consumption prediction for a given price P , i.e.,

L̃�(P ) ∈ arg max
˜L

Eωi
[
∑

i∈N
U(

ωi − P

α
, ωi) − C(L�, L̃)] (20)

When the L̃�(P ) has been derived, the optimal price can be obtained by solving
the following problem:

P � ∈ arg max
P

Eωi
[
∑

i∈N
U(

ωi − P

α
, ωi) − C(L�, L̃�(P ))] (21)

4.1 Optimal Prediction of the Total Power Consumption

We notice that only the term C2(L� − L̃) is related to the prediction L̃, thus the
optimization problem (22) is equivalent to the following problem:

L̃�(P ) ∈ arg max
˜L

Eωi
[|

N∑

i=1

ωi − P

α
− L̃|] (22)

Proposition 2. For a given price P , the optimal prediction of the total power
consumption can be written as

L̃�(P ) = MED(ω) − NP

α
(23)

where MED(.) represents the median of the variable and ω =
∑N

i=1
ωi

α .

Proof. The proof is omitted because of the lack of space.

According to the Prop. 4.1, the optimal prediction decreases when the price rises.
This can be explained by the fact that the rise of price will bring a degradation of
the power consumption, and further the prediction of total power consumption
will decline.
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4.2 Optimal Price

Knowing the optimal prediction for a given price, the second step can be done
by solving the optimization problem (21). Interestingly, according to (23), the
problem can be further simplified. We notice that the term C(L�, L̃�(P )) can be
rewritten as:

C(L�, L̃�(P ))

=C1(L�) + d|
N∑

i=1

ωi − P

α
− L̃�(P )|

=C1(L�) + d|
N∑

i=1

ωi

α
− MED(ω)|

.

(24)

Since d|∑N
i=1

ωi

α −MED(ω)| is independent of P, the optimization problem (21)
can be further simplified as:

P � ∈ arg max
P

Eωi
[
∑

i∈N
U(

ωi − P

α
, ωi) − C1(L�)] (25)

Therefore, when the prediction has been optimized, the pricing problem is inde-
pendent of the optimal prediction L̃�.

Proposition 3. The optimal price to maximize the expected social welfare can
be derived by solving (25) and written as:

P � =
2aαE[ω] + αb

α + 2aN
(26)

Proof. The proof is omitted because of the lack of space.

Knowing the optimal price P �, the optimum prediction of the total power
consumption can be calculated. Plug (26) into (22), the optimal consumption
prediction can be written as:

L̃�(P �) = MED(ω) − 2NaαE[ω] + Nαb

α2 + 2Naα
(27)

5 Simulation Results

In this section, numerical results are shown to evaluate the performance of our
approach. We consider a system with an unique provider and N = 10 con-
sumers. For the sake of simplicity, we assume each ωi is identically independent
distributed (i.i.d.) and remains fixed during one time-slot. Each ωi is uniformly
distributed over the interval [ωmin, ωmax]. The scenario with asymmetric ωi can
be treated in the same way. The parameter d to define the penalty term is set to
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be 0.1. For other parameters, they are chosen same as [5], i.e., α = 0.5, a = 0.01,
b = 0, and c = 0.

Firstly, we assess the performance degradation by using our approach com-
pared with the algorithm proposed in [5]. The reason for the degradation is
twofold: the imperfect knowledge of ωi in our scenario leads to the sub-optimal
power consumption solution, and also the deviation between the real power con-
sumption and predicted power consumption brings the penalty to the provider.
Assume ωmin = 2.5−σ and ωmax = 2.5+σ, Fig. 1 represents the expected social
welfare against σ. It can be observed that the performance degradation induced
by the imperfect knowledge is quite small. Even with largest σ, the optimal-
ity loss is close to 1%. Furthermore, the performance degradation rises when
σ increases. Indeed, larger σ leads to higher variance of ωi. When ωi changes
faster, knowing the real value of ωi becomes more important. As a consequence,
when the provider has limited resource to communicate with the consumers, it
is better to communicate with the consumer which has higher variance of its ωi.
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Fig. 1. Even have the sole knowledge of the p.d.f. of ωi, the relative optimality loss is
less than 1% under typical scenarios.

In Fig. 2, the optimal price against the expectation of ωi is shown. Assume
ωmin = E[ωi] − 1.5 and ωmax = E[ωi] + 1.5. The optimal price is derived by
computing the expected utility defined in (25) with exhaustive search. From this
figure, it can be seen that the optimal price is linear to E[ωi], which verified our
analytical result shown in Prop. 4.2. When ωi increases, the consumer prefers
to respond with a higher power consumption to maximize its individual welfare.
Therefore, the provider needs to increase the price to avoid the high load for
the system. Therefore, it is better to have a rise in price in the evening since
consumers are more demanding and have a drop in price after midnight since
consumers are much less demanding at that time.
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Fig. 2. When consumers are more probably to have higher power consumption, the
price of the electricity designed by the provider will rise.
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