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Abstract—Long Short-Term Memory (LSTM) neural 
networks offer state-of-the-art results to compute sequential 
data and address applications like keyword spotting. Mel 
Frequency Cepstral Coefficients (MFCC) are the most common 
features used to train this neural network model. However, the 
complexity of MFCC coupled with highly optimized machine 
learning neural networks usually makes the MFCC feature 
extraction the most power-consuming block of the system. This 
paper presents a low complexity feature extraction method 
using a filter bank composed of 16 channels with a quality factor 
of 1.3 to compute a spectrogram. It shows that we can achieve 
an 89.45% accuracy on 12 classes of the Google Speech 
Command Dataset using an LSTM network of 64 hidden units 
with weights and activation quantized to 9 bits and inputs 
quantized to 8 bits.  

Keywords—Keyword Spotting, Machine Learning, Long 
Short-Term Memory, MFCC 

I. INTRODUCTION 
 The latest developments in consumer electronics made 

voice-activated devices used every day. The need to embed 
Keyword Spotting (KWS) solutions at the edge led to the 
development of always-on low-power preprocessing units to 
avoid the computation of the audio signal by power-hungry 
elements. Figure 1 shows a typical architecture, in which a 
preprocessing unit triggers the main processor only if the 
analyzed audio signal is a relevant keyword. The unit is 
composed of a feature extractor that will divide the audio 
signal into multiple frequency bands to compute the per band 
energy. A classification neural network uses these features as 
inputs to detect if the audio signal corresponds to one of the 
predefined classes learned by the classifier. Long Short-Term 
Memory (LSTM) [1] neural networks are well-suited 
classifiers to manage sequential data. However, LSTMs 
require lots of data and computational power and therefore 
need to be optimized for integration at the edge. This is 
achieved, for example, by training the network with a small 
number of hidden units (56 in [2]) or by quantizing weights 
(5-bit in [3]). These optimizations are made possible thanks to 
the use of input features such as Mel Frequency Cepstral 
Coefficients (MFCC). However, MFCC extraction requires 
Fast Fourier Transforms (FFT) and Discrete Cosine 
Transforms (DCT). For this reason, the feature extraction (FE) 
block usually consumes most of the energy of the system. To 
tackle this challenge, this paper presents the following 
contributions: 

− A low-complexity feature extraction technique with 
a 16 channels filter bank with a quality factor of 1.3 
was used to compute the power spectral density. 

− An associated optimized LSTM model with 64 
hidden units post-quantized on 8 bits for inputs and 
9 bits for weight/activation achieving 89.45% 
accuracy on recognition of 12 classes of the Google 
Speech Command Dataset (GSCD) [4]. 

The remainder of this article is structured as follows. Section 
II reviews different feature extraction methods and introduces 
the proposed filter bank together with simulations using 
Matlab®. Section III presents the LSTM neural network and 
the method to quantize it. Section IV explores the results in 
comparison with the state-of-the-art circuits before section V 
concludes this paper. 

II. FEATURE EXTRACTION 
The GSCD is used as a reference for keyword spotting 

applications. It is composed of 60,000 audio files of 
approximately 1-second length with recordings of 31 different 
keywords. A common test case for comparison is to train 
networks using 12 classes (10 selected keywords + unknown 
words + silence).  

A. Impact of feature extraction on the global consumption 
To extract features from this dataset, state-of-the-art 

solutions [2], [3], [5], [6] use MFCC features. The MFCC is 
computed in this order: (i) FFT of an audio sample window, 
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Fig. 1. Typical architecture of a preprocessing unit 

TABLE I.  CONTRIBUTION OF FE IN STATE-OF-THE-ART CIRCUITS 

Reference [2] [3] [5] [6] 

Embedded FE 
FE on 

software 
FE on 

software 
Real FFT 
- MFCC 

Serial FFT 
- MFCC 

Global Consumption 
(µW) 5 0.5a 16.1 0.51 

Percentage of global 
consumption due to 

FE 

- 
(Soft.) 

- 
(Soft.) 50% 66% 

a. Estimation from available metrics 

 



(ii) Mel filtering using a digital high-order filter bank, 
(iii) computation of the log of the power for each filter output, 
and (iv) DCT of each computed value. The MFCCs are 
extracted as the amplitudes of the output spectrum. We can 
analyze from the literature (Table I) that the contribution of 
the feature extraction is more than half of the global 
consumption of the classification system. In [5], the authors 
report that the computational power is dominated by the FFT, 
which accounts for 72% of the total number of sums and 
multiplications of the FE block. To reduce the 
computationally expensive MFCC extraction, [7] presents a 
32-channel analog filter bank employing a passive N-path 
filter topology consuming 800nW, while [8] introduces an 
event-driven approach, in which the system simulations show 
up to a 4000x lower consumption compared to a conventional 
discrete-time system.  

B. Proposed feature extraction architecture 
The proposed FE architecture is composed of a 16-

channel filter bank, with center frequencies spread from 
50 Hz to 5 kHz. The quality factor Q is only 1.3, making this 
solution easily realizable in analog or mixed-signal domains. 
Table II presents the configuration of our filter bank and 
Figure 2 presents the frequency response of the filter bank 
according to Mel, Bark, and Logarithmic scales. Mel and 
Bark scales are perceptual scales and are created from how 
humans hear. Classification results using these scales are 
compared in section V. 

When the spectral signal is divided into 16 bands, the 
energy in each band is calculated as: 
 

𝐸𝐸 =  � |𝑦𝑦(𝑡𝑡)²|
𝑡𝑡0+𝑑𝑑𝑑𝑑

𝑡𝑡=𝑡𝑡0

 (1) 

with 𝑦𝑦(𝑡𝑡) the filtered audio signal and dt the frame duration 
(set to 25 ms with an overlap of 12.5 ms). The filter bank is 
simulated in Matlab using Butterworth filters. There is no 
logarithmic scaling on the output data, meaning that when the 
energy is extracted from each band, it can directly be 
converted using an ADC and sent to the classifier. 

III. CLASSIFICATION NEURAL NETWORK 

A. Long Short-Term Memory 
LSTM networks are a type of recurrent neural network 

composed of 4 intermediate sets of neurons called gates (input 
𝑖𝑖𝑡𝑡  , forget 𝑓𝑓𝑡𝑡 , output 𝑜𝑜𝑡𝑡 , candidate gate 𝑔𝑔𝑡𝑡 ) (2)-(5) that will 
compute a state vector 𝑐𝑐𝑡𝑡 (6) that in turn is used to compute 
the hidden vector ℎ𝑡𝑡 (7). This vector will be used in the next 
inference together with the next input vector 𝑥𝑥𝑡𝑡. 

 𝑓𝑓𝑡𝑡 = 𝜎𝜎𝑠𝑠(𝑊𝑊𝑓𝑓𝑥𝑥𝑡𝑡 + 𝑅𝑅𝑓𝑓ℎ𝑡𝑡−1 + 𝑏𝑏𝑓𝑓) (2) 

 𝑖𝑖𝑡𝑡 = 𝜎𝜎𝑠𝑠(𝑊𝑊𝑖𝑖𝑥𝑥𝑡𝑡 + 𝑅𝑅𝑖𝑖ℎ𝑡𝑡−1 + 𝑏𝑏𝑖𝑖) (3) 

 𝑜𝑜𝑡𝑡 = 𝜎𝜎𝑠𝑠(𝑊𝑊𝑜𝑜𝑥𝑥𝑡𝑡 + 𝑅𝑅𝑜𝑜ℎ𝑡𝑡−1 + 𝑏𝑏𝑓𝑓) (4) 

 𝑔𝑔𝑡𝑡 = 𝜎𝜎ℎ(𝑊𝑊𝑔𝑔𝑥𝑥𝑡𝑡 + 𝑅𝑅𝑔𝑔ℎ𝑡𝑡−1 + 𝑏𝑏𝑓𝑓) (5) 

 𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∘ 𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∘ 𝑔𝑔𝑡𝑡 (6) 

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∘ 𝜎𝜎ℎ(𝑐𝑐𝑡𝑡) (7) 

where 𝑊𝑊∗  and 𝑅𝑅∗  are weight matrices for each gate and 𝑏𝑏∗ 
biasing values that are obtained by training the neural 
networks. Figure 3 shows a schematic of the LSTM 
architecture. The length of the states and hidden unit vectors 
allows storing information in time at each loop, meaning that 
the LSTM has the faculty to remember what just happened and 
therefore modify its outputs knowing this information, making 
this type of network a good choice for sequential tasks. 

TABLE II.  FILTER BANK CONFIGURATION 

Number of bands 16 

Filter order 3 

Frequency range 50 Hz to 5 kHz 

Q 1.3 

 

 

Fig. 3. Schematics of a Long Short-Term Memory neural network 

 

Fig. 2. 16-channel filter bank frequency response according to different 
scales. Mel and Bark scales are perceptual scales, used to mimic human 
hearing. There is less frequency bands under 100 Hz with these scales. 



 LSTM models can be stacked and are followed by one or 
more fully connected layers: 

 𝑧𝑧𝑡𝑡 = 𝑊𝑊𝑓𝑓𝑓𝑓ℎ𝑡𝑡 (8) 

where 𝑊𝑊𝑓𝑓𝑓𝑓 is a weight matrix for the fully connected layer. A 
softmax layer is added at the end to perform the prediction as 
can be seen in Figure 4. This network is trained using 
Stochastic Gradient Descent algorithms. 

B. Post-Quantization 
Post-quantization techniques are introduced to perform an n-
bit quantization of the LSTM model. The custom LSTM 
layers are described in Matlab® and are initialized with the 
weights obtained from the full-precision training, to 
accelerate the convergence. At each forward propagation, the 
results of equations (2)-(7) are quantized using equation (9). 
 

 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞(𝑥𝑥) = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(
𝑥𝑥

max(𝑥𝑥) × 2𝑛𝑛−1 − 1) ×
max (𝑥𝑥)
2𝑛𝑛−1 − 1

 (9) 

 
where 𝑛𝑛 is the number of quantization bits. Figure 5 shows 
that the weights and activation vectors follow a normal 
distribution. Therefore, to improve the internal representation 
of the system, clipping can be introduced with little impact. 
The introduced method consists of performing iterations with 
decreasing clipping values until the accuracy drops by a given 
amount. The clipping value associated with the maximum 
accuracy is eventually selected. This simple and effective 
method is suited to a low-complexity network that allows 
exploring several parameters over multiple iterations. 
However, for larger and computationally-intensive networks, 
more efficient in-training quantization methods such as 
PACT [9] have been developed.  

IV. SIMULATION RESULTS 
To compose the dataset, 10 keywords are chosen from the 

GSCD: {“zero”, “one”, “two”, “three”, “four”, “five”, “six”, 
“seven”, “eight”, “nine”} (around 1800 samples of each word) 
plus 20% of other keywords from the dataset labeled 
“unknown” and 4,000 samples of background noise. The 
selected dataset is shared between training, validation, and 
testing datasets following this repartition: 70%, 15%, and 
15%. The simulations are made with an LSTM composed of 
64 hidden units. Using the computed spectrograms from the 
FE block as described in section II, multiple simulations are 
run to observe the impact of the number of bands and the input 
bit width on the accuracy. The per-band energy values are 
quantized on n bits and are then trained with the basic 
LstmLayer model from Matlab® with weights and activation 
coded on 32 bits. Figure 6 recapitulates those simulations and 
shows that there is no particular scale that stands out and 
would give better results than others. However, filter banks 
with more than 12 frequency bands offer better results than the 
8 band case. An input bit width below 8 bits significantly 
decreases the accuracy. The best accuracy obtained for the test 
dataset is 90.02% for a 16-channel filter bank using a 
logarithmic scale with input data quantized on 8 bits. This 
setup is taken as a reference point for the development of the 
quantized LSTM model. 

 
1 https://github.com/kevinherisse/leo_lstm 

b. Texas Instrument Massachusetts Institute of Technology dataset [10] 

A custom LSTM model has been developed to explore the 
impact of quantization. Simulating our custom LSTM model 
with the previous setup gives a similar reference accuracy 
value. The code of our model and the simulation methods are 
available on GitHub 1 . The model allows quantizing the 
network to n bits using the proposed post-quantization 
method. The simulated accuracy is shown in Figure 7. The 

 

Fig. 5. Histograms showing the weights and activation functions 
distributions. 

 

Fig. 4. Schematics of the neural network used in this paper. 

LSTM Fully
Connected Softmax

TABLE III.  COMPARISON WITH SOA 

Reference [2] [3] [5] Our Work 
Feature 

Extraction MFCC MFCC MFCC Power 
Spectrum 

FFT Yes (soft.) Yes (soft.) DFT No FFT 

DCT Yes (soft.) Yes (soft.) Yes No DCT 
Number of 
channels 39 40 13 16 

Quantization 
Method 

Post 
Quantization In-training Post 

Quantization 
Post 

Quantization 

Hidden Units 56 128 64 64 

Inputs Bit 
width 8 5 8 8 

Weights Bit 
width 8 5 8 9 

Activation 
Bit width 32 8 8 9 

Number of 
classes 4 12 12 12 

Dataset TIMIT b: 
4 KW 

GSCD: 
10KW 

 + unknown 
+ silence 

GSCD: 
10KW  

+ unknown 
+ silence 

GSCD: 
10KW  

+ unknown 
+ silence 

Accuracy 91.7% 90% 90.87% 89,45% 

 



quantization only implies an accuracy drop of 0.55% for 8-bit 
input and 9-bit activation/weight.  

Table III shows a comparison with state-of-the-art 
approaches. Similar accuracy is obtained while the feature 
extraction method is much less complex than the MFCC 
computation. The presented method uses a 16-channel filter 
bank, with third-order filters and a quality factor of 1.3 that 
could be implemented with low-consumption techniques 
such as [7] or [8]. 

V. CONCLUSION 
This paper shows that it is possible to extract relevant audio 
features with a simple FE block composed of a 16-channel 
third order filter bank. Using a quantized 64-hidden unit 
LSTM model, an accuracy of 89.45% on 12 classes of the 
GSCD is demonstrated. These results open significant 
perspectives on reducing the hardware complexity of the FE 
function. Future work will concern the implementation of the 
complete processing chain and measurement of the impact on 
energy consumption. 
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Fig. 7. Accuracy versus quantization weight bit width for multiple 
activation quantization 
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Fig. 6. Accuracy of the full-resolution network as a function of the input bit 
width according to different number of bands. The values are extracted as the 
best accuracy found over multiple trainings. The best value obtained during 
training is 90.02% with 16-channel and 8-bit input quantization. 
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