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Summary 5 

1. Assessing the strength of density-dependence is crucial to understand population dynamics, 6 

but its estimation is difficult. Because estimates of population size and demographic 7 

parameters usually include errors due to imperfect detection, estimations of the strength of 8 

density-dependence will be biased if obtained with conventional methods which in addition 9 

lack statistical power to detect density-dependence.  10 

2. We propose a Bayesian integrated population model that combines different sources of 11 

demographic information (capture-recapture, population counts, and data on reproductive 12 

success) into a single model to study density-dependence. The model allows assessing the 13 

effect of density both on the population growth rate and on the demographic parameters 14 

while accounting for imperfect detection. We studied the performance of this model by 15 

simulation and illustrate its use with a case study on red-backed shrikes Lanius collurio.  16 

3. Our simulation results showed that the strength of density-dependence is identifiable and 17 

estimated with good precision. The strength of density-dependence was estimated with 18 

higher precision when the integrated population model was used than when a conventional 19 

regression model, which ignores the observation error, was applied. As expected, the 20 

conventional regression model tended to overestimate density-dependence at the 21 

population and to underestimate density-dependence at the demographic level. The 22 

analysis of the red-backed shrike data revealed negative density-dependence at the 23 

population level most likely mediated by a density-dependent decline in adult survival.  24 
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4. This work highlights the potential of integrated population models in assessing density-1 

dependence and its practical application in population studies. 2 

Key-words: Bayesian; demographic parameters; density-dependence; integrated population 3 

model; Lanius collurio; observation error; population growth rate; population size; simulation  4 

5 
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Introduction 1 

Factors that regulate population size are broadly classified into density-independent (stochastic) 2 

and density-dependent (deterministic) factors (Williams, Nichols & Conroy 2002, page 136). 3 

Density-independent factors (e.g. weather) affect all individuals in a population in the same way 4 

regardless of population density. In contrast, the effects of density-dependent factors intensify as 5 

the population density increases. Depending on their effect, they can be differentiated as negative 6 

and positive density-dependent processes. Negative effects of density-dependence occur if a 7 

demographic rate decreases as density increases, whereas positive effects occur when both 8 

increase (Sinclair & Pech 1996). Intraspecific competition for resources (e.g. food, nest site) and 9 

predation are the main drivers of negative density-dependence (Newton 1998; Gunnarsson et al. 10 

2006), whereas a low chance to find mates at low population density is a typical mechanism 11 

resulting in positive, or inverse, density-dependence (Allee effect) (Sæther, Ringsby & Røskaft 12 

1996; Courchamp, Clutton-Brock & Grenfell 1999; Morris 2002). The two mechanisms can 13 

operate within the same population at different periods of time, depending on current density 14 

(Courchamp et al. 1999).  15 

In order to understand better how populations are regulated, the effect of density on 16 

different age or stage classes should be quantified. Knowledge of density-dependence is also 17 

crucial in practical applications such as conservation or harvest regulations (Hanski, Foley & 18 

Hassell 1996; Sinclair & Pech 1996; Drake 2005). Many studies have used long-term time series 19 

data to estimate the strength of density-dependence (Dennis & Taper 1994; Lande, Engen & 20 

Sæther 2003). The main principle is to study whether there is a negative relationship between 21 

population growth rate and population size. An important limitation of this approach is that it 22 

needs the assumption of a population census, i.e., a complete enumeration without errors in the 23 

counts. If an observation error is present and not accounted for, it inflates the type I error and 24 



 5 

misleadingly indicates the presence of density-dependence (Shenk, White & Burnham 1998; 1 

Freckleton et al. 2006; Knape 2008; Lebreton 2009). More recently, state-space models have been 2 

used to reduce or remove bias in parameters or functional forms of density relationships resulting 3 

from observation error (de Valpine & Hastings 2002; Jamieson & Brooks 2004; Dennis et al. 4 

2006). However, estimates are unbiased only if the observation error is relatively small (Knape 5 

2008). A further limitation is that the analysis of population counts only reveals the effect of 6 

density at the population level and, consequently, the demographic mechanisms causing density-7 

dependence remain unknown.  8 

Some studies have used long-term data to assess the impact of density on demographic 9 

parameters by regressing estimates of demographic parameters on population counts (Coulson, 10 

Milner-Gulland & Clutton-Brock 2000; Sæther et al. 2000; Barker, Fletcher & Scofield 2002; 11 

Paradis et al. 2002; Barbraud & Weimerskrich 2003; Tavecchia et al. 2007). To get unbiased 12 

estimates of the strength of density-dependence this approach requires estimates of demographic 13 

rates and population counts that are not subject to observation errors. If there are observation 14 

errors (either on the demographic rates and/or on the population counts), the test for density-15 

dependence will suffer from a lack of statistical power (Lebreton 2009). Recently, Schofield, 16 

Barker & MacKenzie (2009) applied the Jolly-Seber model to mark-recapture data to estimate the 17 

strength of density-dependence on survival. Using this model, estimates of survival and of 18 

population sizes are obtained while accounting for imperfect detection, and thus the power to 19 

detect density-dependence is maximized.  20 

Despite the development of different methods for studying density-dependence, there are 21 

currently no approaches to assess the effect of density on all demographic parameters 22 

simultaneously while accounting for observation error. This is a drawback because the full 23 
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demographic mechanisms of density-dependent population regulation cannot rigorously be 1 

studied.  2 

Here we propose the use of a Bayesian integrated population model to study density-3 

dependence in a coherent fashion. Integrated population models combine different sources of 4 

demographic data into a single model and provide estimates of all demographic parameters and 5 

population size with improved precision and that are free of observation error (Besbeas et al. 2002; 6 

Brooks, King & Morgan 2004; Schaub et al. 2007; Abadi et al. 2010a). Parameters that are 7 

unidentifiable from a single source can be estimated with these models [e.g. fecundity (Besbeas et 8 

al. 2002); immigration rate (Abadi et al. 2010b)]. These models also are very appealing and 9 

powerful when the sample size is small (Abadi et al. 2010a). So far, integrated population models 10 

have been successfully used to estimate key demographic parameters from single-site 11 

demographic data (Brooks et al. 2004; Schaub et al. 2007; King et al. 2008; Véran & Lebreton 12 

2008; Reynolds et al. 2009; Abadi et al. 2010b) as well as from multi-site data (Borysiewicz et al. 13 

2009; Péron et al. 2010; McCrea et al. 2010) and their performance has been investigated using 14 

simulations (Besbeas, Borysiewicz & Morgan 2009; Abadi et al. 2010a).   15 

The model we propose for studying density-dependence potentially has several advantages. 16 

Firstly, because integrated population models involve the use of state-space models for the 17 

population counts, it is possible to assess density-dependence based on estimates of population 18 

indices corrected for random observation errors rather than on the population counts including 19 

errors, which avoids the confounding effect of observation errors. Secondly, because demographic 20 

parameters (e.g. age-specific survival, fecundity) are estimated, it allows a test of density-21 

dependence for them, and thus the demographic mechanisms of density-dependent population 22 

regulation can be identified. It also allows assessing density-dependence at the population level 23 

using the derived population growth rate. Thirdly, combined analysis of demographic data results 24 
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in improved precision of estimates, which is expected to increase the statistical power to detect 1 

density-dependence.  2 

We conducted simulations to examine the performance of integrated population model in 3 

estimating the strength of density-dependence under different magnitudes of observation error. We 4 

illustrate the method using a data set on a population of red-backed shrikes Lanius collurio. 5 

Previous studies have shown that the studied shrike population is regulated by density at the level 6 

of the population (Pasinelli et al. 2011), but that neither survival nor fecundity were a function of 7 

local density (Schaub, Jakober & Stauber in press). The latter study was performed with 8 

conventional methods which are expected to have lower power than the integrated analysis. Our 9 

objective here was to evaluate whether density-dependence at the level of the demographic rates 10 

could be identified using the new proposed model. 11 

 12 

Methods 13 

We present first the integrated population model to estimate the strength of density-dependence, 14 

and then describe the simulation set up and the procedure to generate the data sets. Finally, we 15 

describe the case study and how the model is implemented in the Bayesian framework. We were 16 

motivated by a short-lived bird species from which we sampled capture-recapture and reproductive 17 

success data, as well as annual population counts. However, the estimation of density-dependence 18 

using the integrated population model is not restricted to this life history type and these data sets, 19 

other life histories and data sets could also be modelled by adaptations of the underlying 20 

population and observation models.   21 

Modelling density-dependence in the integrated population model  22 

Integrated population models first require the formulation of the likelihood for the available 23 

demographic data sets. Detailed discussion of this likelihood formulation is provided in Abadi et 24 
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al. (2010a). In summary, we used the standard Cormack-Jolly-Seber model (CJS; Lebreton et al. 1 

1992) for the capture-recapture data. We assumed the number of individual encounter histories 2 

summarized in the m-array (m) follows a multinomial distribution with parameters that are 3 

functions of age-specific apparent survival (
jv ,

ad ) and recapture probabilities (p). 
jv denotes 4 

the probability that a newborn individual survives and becomes a yearling (1 year old) and 
ad  5 

denotes the survival probability of yearlings and adults (older than 1 year). We denoted the 6 

likelihood for this model by 
crL ( | , , )jv ad m p . For the data on reproductive output, we assumed 7 

that the number of offspring produced per female (J) is Poisson distributed whose parameter is the 8 

product of fecundity (f) and the number of females recorded to produce young (R). Fecundity (i.e. 9 

the number of newborns per adult females) of both yearlings and adults is assumed to be the same. 10 

The likelihood for this model is denoted by Lrp(J, R  f).  11 

To describe the population counts we use a state-space model, which consists of a process 12 

and an observation model (Besbeas et al. 2002). The process model describes the evolution of the 13 

underlying population sizes over time, thus it determines the link between the demographic rates 14 

and population size. Let N1,t denote the number of 1 year old individuals in year t, N2+,t denote the 15 

number of individuals older than 1 year in year t, and Nt = N1,t + N2+,t, denote the total population 16 

size in year t.   We assume that N1,t+1 is generated by a Poisson process, as N1,t+1 only takes a value 17 

between 0 (if no recruitment occurs) and ∞ (if recruitment is massive). The parameter of the 18 

Poisson process is the product of fecundity, juvenile survival and population size in year t. The sex 19 

ratio of newborn is assumed to be even and therefore we divide f by 2, and thus, 20 

,1, 1 )~Po( ( )
2
t

t jv tt

f
N N      eqn 1.       21 
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We further assume that N2+,t+1 is generated by a Binomial process, as N2+,t+1 only takes a value 1 

between 0 (if no individual survives) and the total population size a year before (if all survive). 2 

Thus,      3 

2 , 1 ,~ ( , )tt ad tN Bin N       eqn 2. 4 

The observation model links the population counts (i.e. the number of detected and counted 5 

female breeders, denoted by yt) to the latent population sizes (Nt). We then assume  6 

    yt ~ N(Nt ,
2

y )     eqn 3 7 

where the variance 2

y  quantifies the observation error. The likelihood for the state-space model is 8 

given by the product of the likelihood of the process and observation models, 
syL ( | , , )jv ad N f  9 

 Lob(y  N, 2
y). The likelihood of the complete integrated population model is obtained as the 10 

product of the likelihoods of all three data sources under the assumption of independence, as  11 

2

joint  L ( | , , , , , )jv ad y m, J, R, y f p N = 
crL ( | , , )jv ad m p   

rpL ( | )J, R f  12 

     
2

obL ( | , )yy N  
syL ( | , , )jv ad N f           eqn 4.  13 

A simulation study by Abadi et al. (2010a) that combined and analyzed completely dependent data 14 

of capture-recapture, population counts, and reproductive success showed that the violation of the 15 

independence assumption only had a negligible effect on the precision of parameter estimates. We 16 

assume that this is true also in the present study. 17 

All demographic parameters and population sizes appear in the likelihood of the integrated 18 

models as shown in eqn 4. This offers the possibility to model density-dependence of the 19 

demographic rates within a single model. We modelled the recapture probability with a random 20 

year parameter and assessed the effect of density on both survival probabilities and fecundity,   21 

, ,

*

,

2
0 1logit( )= ~ (0, )

jv jvt jv tjv tt N N             eqn 5 22 
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, ,

* 2
, 2 3logit( ) = ~ (0, )

ad ad adt tad tt N N             eqn 6 1 

* 2
54log( ) = ~ (0, )

t ttt f f fNf N          eqn 7 2 

where *

tN  is the standardized population size (i.e., * ( )

( )

t t

t

t

N mean N
N

sd N


 ), 

tN = 
1,tN + 

2 ,tN 
 is the 3 

population size in year t , and the 
2
 are the temporal variances of the demographic parameters as 4 

well as of recapture probability. The goal is to estimate the regression coefficients (, ) and the 5 

magnitude of temporal variability (
2
). The slope coefficients (1, 3, 5) estimate the strength of 6 

density-dependence on juvenile survival, adult survival and fecundity, respectively. For the 7 

recapture probability, which is a nuisance parameter, we assumed a random year effect, thus 8 

logit( ) = 
tptp    with 

2~ (0, )
tp pN  . 9 

We also estimated the strength of density-dependence on the population growth rate (i.e. at 10 

the level of the population). This was done by first calculating the population growth rate (t = 11 

Nt+1/Nt), and then regressing the growth rate on population size as 12 

* 2
76log( ) = ~ (0, )

t ttt N N                   eqn 8. 13 

We calculated this regression outside the integrated population model, because we did not want to 14 

induce any constraints on the density-dependence at the population level, since density-15 

dependence at the population level is always the result of density-dependent variation of 16 

demographic rates. 17 

We also estimated the strength of density-dependence, ignoring the observation error, by 18 

regressing demographic rates estimated with single data analysis (i.e. survival probabilities from 19 

capture-recapture data estimated with the CJS model, and fecundity estimated from data on 20 

reproductive success with a Poisson regression model) on standardised population counts. The 21 

relationships between demographic parameters and population counts were similar with eqns 5-8, 22 
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but here we used the population counts *

ty rather than *

tN  and the population growth rate was 1 

calculated as obs,t = yt+1/yt and modelled as a function of *

ty .  2 

Simulation study 3 

Using simulations we evaluated the identifiability of the estimates of the strength of density-4 

dependence () and assessed their precision at varying levels of observation error under the 5 

integrated population model developed above. We also evaluated the effect of ignoring the 6 

observation error on the estimates of density-dependence obtained by regressing demographic 7 

rates on population counts. 8 

 9 

A. Individual-based simulation of the data  10 

The way we conducted simulations is analogous to that described in Abadi et al. (2010a). It 11 

consists of creating a population by simulating fates of individuals, sampling demographic data 12 

from this population, and analyzing these data with the developed integrated population model. 13 

These steps are repeated several times and point estimates stored, serving the base to evaluate the 14 

performance of the model. 15 

To create the population, we mimic a short-lived bird species and the development of the 16 

population sizes from one year to another is described by eqns 1 and 2. We specified the 17 

relationship between demographic parameters and the actual population size in year t as 18 

,

2logit( )=0 0.05 ~ (0,(0.15) ) 
t tjv t t jv jvN N                     eqn 9 19 

,

2logit( ) = 1.735 0.02 ~ (0,(0.20) ) 
t tad t t ad adN N                 eqn 10 20 

2log( ) = 1.386 0.01 ~ (0,(0.10) )
t tt t f ff N N                          eqn 11 21 

If the population size (N) increases by 10 individuals, the slope coefficients can be interpreted as 22 

the expected change in juvenile survival odds ratio to be exp(-0.5); in adult survival odds ratio to 23 
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be exp(-0.2); and in fecundity to be exp(-0.1), indicating a negative effect of density on 1 

demographic parameters. The simulation parameters in eqns 9-11 were chosen in such a way that 2 

they result in reasonable demographic rates for a short lived bird species at the population size of 3 

about 50. 4 

Next, we created the life history of individuals in the population for 20 years. To start the 5 

creation of the population, we set the initial population size at 40 individuals. We then specified 6 

the actual probabilities of survival and fecundity applying eqns 9-11 under consideration of the 7 

actual population size. For each individual alive in the population it was then simulated whether it 8 

survived for another year, how many juveniles it produced, and how many of the juveniles 9 

survived. The sum of the number of yearlings and surviving adults gives then the population size 10 

in the following year, and we specified the demographic rates for this following year. This was 11 

repeated for 20 years. Information about the state of an individual (dead, alive, in which age group 12 

it is given alive) and the number of offspring it has produced were stored. To avoid transition 13 

effects of the initial conditions we only used the last 10 years of the simulated data sets. 14 

Once we created the population, the next step was to sample individuals for the different 15 

studies. We independently selected 1000 individuals at random from the population to be available 16 

for capture-recapture and reproductive success data sampling. To create the capture-recapture 17 

histories and reproductive success data based on individuals subject to each study, we set the 18 

initial capture probability at 0.90 and 0.50 for juveniles and adults (1 year and older), respectively, 19 

and the recapture probability at 0.50. The probability to detect and record reproductive success 20 

was set at 0.90. All these capture/recapture and detection probabilities were assumed to be 21 

constant across time. To create the population counts in each year, we used a binomial distribution 22 

with parameters actual population size in the given year (Nt) and detection probability (Ps). The 23 

detection probability was assumed to be constant over time. We considered two scenarios, one 24 
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with detection probabilities of female breeders of 0.50, and one with 0.90. The lower detection 1 

probability corresponds to a large observation error in the population counts. This is because the 2 

variance of binomial sampling (i.e. NPs(1-Ps)) is largest with Ps=0.50. Our sampling procedures 3 

did not result in completely independent data sets as some individuals that were involved in either 4 

capture-recapture or reproductive success data sampling also had a chance to be included in the 5 

population counts. We simulated 500 data sets and analyzed them using the proposed integrated 6 

population models.  7 

 8 

B. Case study 9 

We used 26 years of demographic data of red-backed shrikes collected from 1981-2006 in south-10 

western Germany near Göppingen (4839’N, 947’E) to illustrate the method. The red-backed 11 

shrike is a medium-sized (~30g) migratory passerine living in agricultural landscapes during the 12 

breeding season (Glutz von Blotzheim & Bauer 1993). The study area has a size of about 18 km
2
 13 

and mostly consists of meadows and pastures with interspersed orchards and hedgerows (for a 14 

more detailed description see Jakober & Stauber 1987). During numerous visits we localised each 15 

year the nests of nearly all breeding pairs, recorded the number of fledglings of each nest (n = 16 

3580 fledglings from 1242 nests) and ringed the nestlings at an age of about 8 days (n = 3598). 17 

Territorial adults were caught with clap or mist nets and ringed with individual colour rings (n = 18 

513 females). Each spring we visited the study area almost daily to resight colour-marked 19 

individuals. The population size varied between 35 and 71 observed breeding pairs, the mean size 20 

was about 50 pairs. For the analysis we assumed an even sex ratio and only considered capture-21 

recapture data of females. The goal was to estimate the strength of density-dependence at the 22 

population level and of the demographic rates to assess 1) whether the population is regulated by 23 

density, and 2) if so, through which demographic mechanisms. 24 
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 Because the studied red-backed shrike population is geographically open, we had to extend 1 

the integrated population model to include immigration (Abadi et al. 2010b). Therefore, we 2 

modified the state-space model (eqns 1-3) as follows: the number of 1 year old individuals N1,t+1 3 

followed a Poisson process with  4 

           
1, 1 ,~ Po( ( ) )

2

t

t t jv t

f
N N          eqn 12 5 

The number of immigrants Nim,t+1 was modelled with a Poisson distribution as  6 

            
, 1 ( )im t t tN Po N :             eqn 13 7 

where the immigration rate 
t  is defined as the number of female immigrants of age 1 year or 8 

older in year t+1 per breeding females in the previous year Nt.  9 

The number of at least 2 years old surviving individuals followed a binomial process with 10 

 
, 1 ,~ ( , )ad t t ad tN Bin N         eqn 14  11 

The total number of individuals in year t is given by
1, , ,t t ad t im tN N N N   . 12 

For the observation equation, we assumed a normal distribution, hence yt the annual number of 13 

counted breeding females in year t distributed as a N(Nt ,
2

y ) .   14 

To estimate the strength of density-dependence on the demographic parameters as well as 15 

the population growth rate, we fitted the models specified in eqns 5-8. We also modelled 16 

immigration rate with a random year parameter, but did not impose density-dependence on it. 17 

Further, the recapture probability (p) was modelled time-dependent where time was treated as 18 

random. Beside the model that includes density dependence for the demographic parameters, we 19 

also fitted a model without density-dependence (i.e. 
1 3 5 0     in eqns 5-7), in order to get 20 

unconstrained annual estimates of the demographic parameters. 21 

C. Bayesian analysis of the model 22 
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All the models were fitted within the Bayesian framework, specifying non-informative priors in 1 

order to reflect limited knowledge about the parameters. Specifically, we assigned a N(0, 100) 2 

distribution on the regression coefficients (  and  ). A N(100, 100) distribution truncated to 3 

positive values was assigned for age specific initial population sizes, and a U(0, 10) distribution 4 

for the temporal standard deviations of demographic parameters. To assess convergence of the 5 

Markov chain Monte Carlo (MCMC) algorithm to the stationary distribution, we randomly chose a 6 

single simulated data set and run three chains, each with different initial values, of 20000 iterations 7 

with a burn-in of 15000 iterations. The R̂ (Brooks & Gelman 1998) values were less than 1.1 for 8 

all parameters, suggesting convergence. We therefore run a single chain of 30000 MCMC 9 

iterations with a burn-in of 20000 thinning every 10
th

 observation in order to compute the posterior 10 

summary statistics. Using this setting, the analysis of one data set took approximately 50 minutes 11 

(on a 3.3 GHz processor, 2 GB RAM PC). For the case study, we first run three chains of 20000 12 

iterations with a burn-in of 10000 to check whether convergence was reached. Since convergence 13 

was obtained (all the R̂ values < 1.02), we run a single chain of length 100000, discarded the first 14 

50000 as burn-in and thinned every 10
th 

observation. The run time to analyse the red-backed shrike 15 

data set was approximately 5 days (on a 3.3 GHz processor, 2 GB RAM PC).  The posterior 16 

summary statistics were then computed based on 5000 samples. We used the R software version 17 

2.9.1 (R Development Core Team 2008) to simulate the data and the analyses were done using the 18 

WinBUGS software calling it from R through the package R2WinBUGS (Sturtz, Ligges & 19 

Gelman 2005). The R and WinBUGS codes for the density-dependence model of the red-backed 20 

shrike data are provided in Appendix S1 in Supporting Information. 21 

 22 

Results 23 
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Simulation study 1 

Our simulation study clearly showed that the strength of density-dependence in the demographic 2 

rates as well as in the population growth rate was identifiable with the integrated population model 3 

regardless of the magnitudes of observation error we considered, indicated by smooth posterior 4 

densities with a clear peak (Figs 1 & 2). If the parameters were not identifiable, we would have 5 

expected a posterior density that is similar to the specified prior distribution (Gimenez, Morgan & 6 

Brooks 2009). The widths of the posterior distributions resulting from the integrated population 7 

model were narrower when the observation error was small compared to when it was large. This 8 

indicates that the precision of the density-dependence estimator declines with increasing 9 

observation error of the population counts. In general, the strength of density-dependence was 10 

estimated with more precision at the population level than at the demographic level, indicated by a 11 

narrow width of the posterior distributions (Figs 1 & 2). 12 

Estimates of the strength of density-dependence obtained from the integrated population 13 

model were generally more precise compared to that of the regression analysis. This was 14 

particularly evident for adult survival (Figs 1 & 2). As expected, the estimates of strength of 15 

density-dependence in the demographic parameters were slightly shifted towards zero when the 16 

observation error was large and not accounted for. However, this effect was not very strong. The 17 

model which ignores the observation error yielded stronger and slightly less precise estimates of 18 

density-dependence at the population level in comparison to the integrated population model (Figs 19 

1 & 2).  20 

Case study 21 

Since there is no established goodness-of-fit test of the complete integrated population model 22 

available, we tested the goodness-of-fit just for the capture-recapture model using contingency 23 

tables (Pradel et al. 2005) via program U-CARE (Choquet et al. 2009): there was no sign of lack 24 



 17 

of fit ( 2
59 = 42.75, P = 0.94). Based on the integrated population model without density-1 

dependence, the annual estimates of age-specific survival, fecundity and population growth rate 2 

tended to decline with increasing population size in red-backed shrikes (Fig. 3), suggesting 3 

density-dependence in these demographic parameters and at the population level. We then 4 

explicitly estimated the strength of density-dependence in the demographic parameters and in the 5 

population growth rate using the integrated population model with density-dependence. The 6 

estimated linear relationships between demographic rates as well as population growth rate (on the 7 

transformed scale) and population size are shown in Fig. 3. The posterior distributions of the 8 

strength of density-dependence were wide for juvenile survival and fecundity, and more pointed 9 

for adult survival and population growth. As expected, the posterior means of the strengths of 10 

density-dependence were negative in all parameters (Fig. 4). The posterior probability that the 11 

estimated effect of density were negative was high for population growth (0.960), followed by 12 

adult survival (0.792), fecundity (0.598) and juvenile survival (0.559). Thus, there was clear 13 

evidence of a density-dependent population regulation at the level of the population that was more 14 

likely due to adult survival, than due to juvenile survival or fecundity. 15 

 16 

Discussion 17 

Density-dependence is an important ecological concept and understanding how it operates is 18 

crucial in conservation, harvesting and for accurate demographic projections (Sinclair & Pech 19 

1996, Lande et al. 2003). In this paper we provide a framework for studying density-dependence 20 

using a Bayesian integrated population model. A key advantage of this unifying framework is that 21 

it allows estimating strength of density-dependence both at the demographic and population level 22 

while accounting for observation error and, consequently, the demographic mechanism causing 23 

density-dependent population regulation can be identified. In contrast, most existing techniques for 24 
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testing density-dependence rely on time series data and do not account for observation error, or 1 

focus either on the effect of density on population growth rate or on a single demographic 2 

parameter only.  3 

Using simulations, we showed that integrated population models provide estimates of the 4 

effect of population size on demographic parameters as well as on population growth rate with 5 

good precision. The parameters estimating the strength of density-dependence were identifiable 6 

with our model regardless of the magnitudes of observation error we considered. As expected, the 7 

estimates were slightly more precise when the observation error was small than large. Our 8 

simulation study also highlight that ignoring observation error had differential impact on the 9 

estimators of the strength of density-dependence at the population than at the demographic level. 10 

The conventional regression model tended to estimate stronger density-dependence at the 11 

population than at the demographic level. These results are in agreement with previous findings 12 

(e.g. Shenk et al. 1998; Freckleton et al. 2006; Lebreton 2009). 13 

We also illustrated the application of the method using demographic data from a 14 

geographically open red-backed shrike population. We found strong support of density-15 

dependence for the population growth rate. Of the considered demographic parameters, only adult 16 

survival was likely to be regulated by density-dependence, while juvenile survival and fecundity 17 

were hardly impacted by breeding density. Using the same data analysed with regression analyses 18 

with population counts uncorrected for observation error, Schaub et al. (in press) did not find 19 

support of density-dependence for survival and fecundity. With the application of the integrated 20 

population model the power to detect density-dependence increases (see simulations), which is the 21 

reason why we now found support of density-dependence operating on adult survival. One may 22 

wonder how there can be strong density-dependence for population growth and only relatively 23 

weak density-dependence for the demographic rates. First, even if density-dependence for the 24 



 19 

demographic rates is weak, all demographic rates work jointly, and thus the effect at the 1 

population level magnifies. Second, the red-backed shrike population is geographically open, and 2 

immigration is substantial (mean (sd): 0.545 (0.036)). It is well possible that immigration is 3 

regulated by density, i.e., few individuals immigrate in years where the number of survivors and 4 

local recruits is high, and vice-versa. Yet, immigration is a parameter in our integrated population 5 

model that is estimated without having explicit data (Abadi et al. 2010), and for such parameters it 6 

appears that the strength of density-dependence cannot be estimated (i.e., it is not an identifiable 7 

parameter of the model). To evaluate for which demographic parameter density-dependence is 8 

important, we computed the probability that the strength of density-dependence is negative and use 9 

this as a testing criterion. Alternatively, one could also apply model selection for the same 10 

purpose. The set of models could then include models that impose density-dependence in some 11 

demographic parameters only. Yet, model selection in Bayesian hierarchical models is not an easy 12 

task (Link & Barker 2006; Millar 2009).   13 

In our simulation as well as in the case study we expressed density in terms of population 14 

size. Since the study area associated with the red-backed shrike population remained the same over 15 

time, the use of population size as a measure of density was justified. However, it is important to 16 

note that the influence of density on biological processes can be overlooked due to an 17 

inappropriate measure of density (Williams et al. 2002; Barker et al. 2002). Moreover, the main 18 

driving force for density-dependence is often competition for resources and not space. Ideally, one 19 

would therefore model the strength of density-dependence not with population size, but with the 20 

available resources per individual. Our model could be extended in this way if an estimate of 21 

resource availability could be obtained.  22 

The goals of our simulation were mainly on the assessment of the identifiability of the 23 

estimates of strength of density-dependence and on the evaluation of the effect of observation 24 
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error. We specified a short study period (i.e., 10 years), thus conditions where the estimation of 1 

density-dependence were difficult. Yet, the model was able to estimate density-dependence with 2 

good precision in this set-up. We could further examine the performance of the model in different 3 

directions. For instance, we could set up a simulation varying the strength of density-dependence 4 

and also the length of the study period. The ability to detect density-dependence often increases 5 

with long time series data (Brook and Bradshaw 2006). In our simulation study, we focused on the 6 

common kind of observation error (i.e. non-detection or false-negative error). One might further 7 

evaluate the performance of the model considering other kinds of observation error such as false-8 

positive errors occur.  9 

The integrated population model is very flexible to include different shapes of density-10 

dependence. Here we used the density-dependence model of the Ricker type for population growth 11 

rate (Dennis & Taper 1994), but specifying other density-dependence models which are discussed 12 

in the literature (e.g. Dennis & Taper 1994; Jamieson & Brooks 2004) is straightforward. 13 

Moreover, some studies have shown that the effect can be non-linear in the parameters (Paradis et 14 

al. 2002; Saether & Engen 2002; Tavecchia et al. 2007). The integrated population model could 15 

also be extended to assess non-linear density-dependence, for instance by using penalized splines 16 

(Gimenez et al. 2006). In the present study, we looked at the direct effect of density but it is 17 

possible that density-dependence can affect demographic parameters and population growth rate 18 

with time lag (Paradis et al. 2002). Our model can easily be extended to study delayed density-19 

dependence.  20 

Overall, our model provides an improved statistical tool over current methods for 21 

estimating density-dependence. We believe it has great potential in conservation, management and 22 

ecology. 23 

 24 
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Figure Captions 1 

 2 

Fig. 1. Density plots of 500 estimated posterior means of strength of density-dependence on 3 

juvenile survival (
jv ), adult survival (

ad ), fecundity ( f ) and population growth rate ( ) 4 

obtained from integrated population model (blue), and from single data analysis ignoring 5 

observation error (red) when the observation error for population count data was large (probability 6 

to detect female breeders = 0.50). Dotted, vertical lines are the means of the estimated posterior 7 

means of the strength of density-dependence over 500 simulations. 8 

 9 

Fig. 2.  Density plots of 500 estimated posterior means of strength of density-dependence on 10 

juvenile survival (
jv ), adult survival (

ad ), fecundity ( f ) and population growth rate ( ) 11 

obtained from integrated population models (blue), and from single data analysis ignoring 12 

observation error (red) when the observation error for population count data was small (probability 13 

to detect female breeders = 0.90). Dotted, vertical lines are the means of the estimated posterior 14 

means of the strength of density-dependence over 500 simulations. 15 

 16 

Fig. 3. Annual variation in demographic rates and population growth rate against standardized 17 

population size in the studied red-backed shrike population. Posterior means (open circles) with 18 

95% credible intervals (vertical line) obtained from an integrated population model without 19 

density-dependence, along with the estimated linear relationship between demographic parameters 20 

as well as population growth rate and standardized population size obtained from an integrated 21 

population model with density-dependence.  22 

 23 



 30 

Fig. 4. Posterior distributions of the estimated strength of density-dependence on juvenile survival 1 

(blue), adult survival (brown), fecundity (black) and population growth rate (red) in studied red-2 

backed shrike population. 3 
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