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Abstract

We propose a novel approach inspired from non-local damage continuum mechan-
ics to describe damage evolution in heterogeneous quasi-brittle materials. Material
heterogeneities are introduced at a mesoscopic continuous scale through spatial
variations of the resistance to damage. The damage field evolution is computed
from irreversible thermodynamics principles by assuming that the elastic energy
released during loading is dissipated into failure. The onsets of damage localization
and catastrophic failure in the material are studied as a fonction of the strength of
the heterogeneities and the interaction function involved in the non-local formula-
tion of the model. The predictions obtained numerically are explained theoretically
for weak heterogeneities using a linear stability analysis and confirmed through
a complementary approach based on a global energy minimization. Two distinct
quasi-brittle failure behaviors are identified: For interaction functions that impose a
reloading of the material points after the occurence of a damage event, the damage
grows rather uniformly in the material until catastrophic failure takes place. On the
contrary, when damage events trigger reloading, but also a sufficiently strong un-
loading in some material regions, catastrophic failure is preceded by a stable regime
of damage localization characterized by a lengh scale emerging from the structure
of the load redistribution. Our study reveals the cooperative nature of the damage
localization process, showing that quasi-brittle failure emerges from the interaction
between the elements constituting the material. It also highlights the central role
played by the mechanism of load redistribution that is shown to control the failure
behavior of quasi-brittle solids.

Preprint submitted to Elsevier Preprint January 6, 2022



Nomenclature

α Interaction function

X̄ Non-local variable

∆ Macroscopic displacement

δ Distance to failure

∆c Failure onset

∆el Elastic limit

∆h Localization onset

` Interaction length

η Hardening parameter

κ Interaction parameter

λ Perturbation wavelength

F Total damage driving force

G Redistribution function

σ Disorder level

σ(~x) Stress field

X̃(q) Fourier transform of X

ξ Heterogeneity size

a Stiffness parameter

D System dimension

d(~x) Damage field

dc Damage level at failure

dh Damage at localization

dp Damage at peak load

dsb Damage level at snap-back

E Total energy

F Macroscopic force

gc Random noise

k(~x) Stiffness field

k0 Initial stiffness value

LD Sample size

ND Element number

ND
ξ Heterogeneity number

P (q) Power spectrum

q Perturbation mode

Y Elastic energy released rate

Yc0 Initial fracture energy

Yc Fracture energy

1 Introduction

Macroscopic failure properties of quasi-brittle materials emerge from the com-
plex evolution of a large number of microcracks in interaction (Kachanov,
1987; Lockner et al., 1991; Bazant, 1994), making their prediction a challeng-
ing task. Yet, a remarkable property of these materials is that, despite this
complexity and the variety of microscopic damage mechanisms involved like
e.g. crack face friction (Lawn and Marshall, 1998; Poon et al., 2011), crack
kinking (Horii and Nemat-Nasser, 1985; Ravichandran and Subhash, 1995)
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or pore collapse (Fortin et al., 2006; Baro et al., 2013), their failure behav-
ior shares many similarities. They generally display an initial regime where
damage events are homogeneously distributed within the material, followed
by a localization regime during which failure events concentrate into bands
that, subsequently, lead to the catastrophic failure of the specimen. Another
striking feature of the failure behavior of quasi-brittle solids is the intermitent
evolution of the damage that grows through bursts of activity separated by
silent periods. These giant fluctuations revealed from the acoustic signals emit-
ted during fracture (Lockner, 1993; Fortin et al., 2006) display characteristic
power law statistics that are still poorly understood (Hirata, 1987; Petri et al.,
1994; Guarino et al., 1998; Alava et al., 2006; Davidsen et al., 2007; Girard
et al., 2010). Last but not least, quasi-brittle fracture leaves scale-free failure
patterns that remain undeciphered (Weiss, 2001; Baud et al., 2004; Carpinteri
and Ferro, 1994; Renard et al., 2013). The observation of a failure behavior
common to a large range of quasi-brittle materials motivates this work that
aims at (i) identifying the physical ingredients underlying it and (ii) propose
a unified theoretical description that captures it.

To describe the damage spreading preceding the failure of quasi-brittle mate-
rials, two distinct approaches have been proposed. From a continuum mechan-
ics perspective, failure processes are described at a coarse scale and described
through a continuous damage field. This field provides the amount of damage
accumulated in a material point of the specimen that describes an elemen-
tary volume including a large number of microcracks. Microcracking affects
the local mechanical behavior of the material through the degradation of its
elastic properties, leading to a local softening of the material (Castaneda and
Willis, 1995; Heap et al., 2009). Within this so-called damage mechanics the-
ory, the evolution of the damage field can be inferred from a damage driving
force, often defined as the rate of elastic energy released as damage increases.
The material damages when this quantity reaches a critical value that char-
acterizes the material resistance. This approach has been shown to capture
various aspects of the failure behavior of quasi-brittle solids, like damage lo-
calization (Pijaudier-Cabot and Bazant, 1987; Lasry and Belytschko, 1988;
Lemaitre, 1992; Aifantis, 1992; Peerlings et al., 1996). However, it relies on
the introduction by hand of non-local effects through e.g. the dependance of
the damage driving force to the damage level in an extended region of the ma-
terial or a gradient of the damage field in the expression of the damage driving
force (Frémond and Nedjar, 1996; Pham et al., 2011). This amounts to intro-
duce an internal length that controls damage spreading, the physical origin of
which is however poorly understood. In addition, these approaches are limited
to homogeneous materials so, among many aspects of quasi-brittle failure, the
intermittent evolution of the damage field and the scale-free failure patterns
cannot be captured. Here, we will not address the origin of non-local effects
and the emergence of a length scale characterizing the damage growth pro-
cess that will be treated in subsequent articles (Berthier and Ponson; Démery
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et al.). Instead, we will focus on the combined effect of the material hetero-
geneities and the non-local interactions that will be shown to play a centrale
role on damage localization and failure.

To capture the effect of material heterogeneities on damage spreading, alterna-
tive approaches based on a discrete description of failure processes have been
proposed. In these models, solids are described by an array of elements with
randomly distributed properties, as e.g. their failure thresholds. An element
is broken when the load applied to it reaches a critical value. The load is then
redistributed in the network either to satisfy equilibrium conditions or accord-
ing to a redistribution law imposed by the model (Herrmann and Roux, 1990;
Zapperi et al., 1997; Alava et al., 2006). One of the most successfull model is
the fiber bundle model that allows for the exploration of the interplay between
disorder and elastic interactions as the bundle is progressively loaded up to
catastrophic failure (Pradhan et al., 2006). These models predict not only the
macroscopic failure behavior of the network and how microstructural param-
eters may affect it (Pradhan et al., 2002; Manzato et al., 2012), but they also
provide a detailed description of the damage spatio-temporal evolution and its
fluctuations (Delaplace et al., 1999; Lennartz-Sassinek et al., 2013; Manzato
et al., 2014). Their main drawback however is that they are not derived from
thermodynamical principles so they do not ensure energy conservation during
damage growth. As a result, they only provides a qualitative description of
quasi-brittle failure.

A major challenge is to conciliate these both antagonist approaches and de-
scribe the transfer of mechanical energy into fracture energy during the dam-
age of solids as described in continuous damage mechanics, but taking into
account the effect of material heterogeneities and microcracks interactions
that are succesfully captured by discrete models. Delaplace et al. (1996) have
used lattice models to provide insights on continuous damage theory. They
showed that a length scale characterizing damage spreading emerges from the
interaction between microcracks, paving the way for non-local models with
an internal length that may evolve with time (Pijaudier-Cabot and Grégoire,
2014). van Mier et al. (2002) and Rinaldi (2009) have taken lattice models to
the next level, by applying them to simulate damage spreading within realis-
tic microstructures. More recently, the new generation of discrete approaches
in quasi-brittle failure, the so-called discrete element models, have opened
many perspectives for the simulation of quasi-brittle failure (Kun et al., 2013;
Scholtès and Donzé, 2013). Another successfull numerical approach is the one
proposed by Tang (1997) and Amitrano et al. (1999), as it takes into ac-
count material microstructural disorder while describing damage processes at
a continuous scale. Their approach relies on the finite element computation of
the stress field after each damage event, allowing for an incremental predic-
tion of the damage spreading process even beyond localization. These works
have greatly improved our ability to describe accurately failure of quasi-brittle
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solids in numerical simulations.

However, a deep understanding of the basic mechanisms underlying damage
spreading, localization and failure is still missing, as well as a unified theoret-
ical framework built on them. We believe that it can be found at the interface
between discrete and continuous models, taking advantage of the strength of
both approaches. Here, we narrow the gap between these two points of view by
proposing a novel model that rigorously derives from energy conservation, but
takes into account material heterogeneities. In our approach, heterogeneities
represent a mesoscopic volume that contains a large number of microcracks so
that a damage variable that goes continuously from zero for an intact element
to unity for a fully broken one can be used. The local stiffness of the material is
affected by the damage field through a weighted integral made over the whole
specimen. We will show that the introduction of such nonlocal behavior al-
lows the description of the load redistributions mechanism taking place after
failure events while ensuring an energetically consistent model formulation.
Finally, material evolution is inferred from energy conservation through the
introduction of a thermodynamic driving force for damage that describes the
transfer of elastic energy stored in the loaded specimen into fracture energy.
A similar approach was proposed by Lyakhovsky et al. (1997), even though
the elastic energy released is instead absorbed into entropy generation. Our
description is sufficiently general so that two important ingredients can be var-
ied and hence studied: (i) The strength of the microstructural disorder that is
introduced at the mesoscale through a statistical distribution of the damage
energy; (ii) the load redistribution mechanism, controlled through the nonlocal
interactions. In the following, we focus on non-local interactions with internal
length, resulting in a finite-range redistribution process. This differs from the
redistribution function underlying damage processes in 3D elasto-damageable
that shows power law behavior (Démery et al.). In addition, the redistribution
computed from 3D elasticity displays a quadrupolar symmetry that ressembles
to the Eshelby solution for the mechanical fields around a soft inclusion em-
bedded in an infinite elastic medium (Eshelby, 1957) while in our model, the
sign of the redistribution varies with the distance to the event. Despite these
differences, our approach captures qualitatively well the main features of the
redistribution process, namely the decay of the reloading with the distance to
the fracture event and the variations of the sign of the redistribution implying
that some regions of the material are reloaded while other one are unloaded.

Practically speaking, finite-range redistribution regularizes the localization
process that will be shown to be characterized by a single localization mode.
As a result, localization and catastrophic failure can be predicted analytically
from a linear stability analysis of the homogeneously damaged state. We show
that our predictions capture well the material behavior computed numerically,
even for a sigificant level of material disorder. This theoretical analysis is com-
plemented by an independant procedure based on global energy minimization
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that refines the previous predictions and sheds light on the nature of these
instabilities. Overall, our study reveals the central role of the damage driving
force redistribution in the mechanical behavior of quasi-brittle materials and
the importance of considering material heterogeneities to describe their evo-
lution towards localization and failure. A description of quasi-brittle failure
as a four steps process also emerges: An initial elastic regime is followed by
a progressive increase of damage with a rather homogeneous spatial distribu-
tion. Beyond some localization threshold, the damage grows heterogeneously
to accumulate in some regions of the material only. This localization process
ultimately leads to catastrophic failure of the whole specimen at some critical
loading. Interestingly, some redistribution functions lead to unstable failure
without prior localization. Our extensive numerical study shows not only the
good agreement with the analytical predictions but also that our approach
captures most generic features observed during quasi-brittle fracture experi-
ments, namely localization and catastrophic failure, but also intermittency of
the microcracking process and scale-free fracture pattern – the characteriza-
tion of the precursors to failure and the spatial structure of the damage field
will be described in a companion paper (Berthier and Ponson). Our approach
is here applied to one and two dimensional systems for some specific types
of interaction. However, the methodology proposed is amenable to the explo-
ration of more complex situations with other interaction functions. Hence, we
believe that this work paves the way towards the development of a thermo-
dynamically consistent description of quasi-brittle failure that captures the
co-action of microcrack interactions and material heterogeneities.

The paper is organized as follows: Section 2 introduces the assumptions of
the model, defines the loading conditions and the material properties, and
describes how damage evolution is derived from it. The section 3 is devoted to
the failure behavior of homogeneous materials while heterogeneous materials
are investigated numerically in section 4. Our approach brings out two major
steps as the material is driven towards failure, namely damage localisation and
catastrophic failure. In section 5.1, these transitions are explored analytically
through a linear perturbation analysis of the homogeneous material problem,
and the predictions are used to interpret the simulation results. Finally, we
propose in section 5.1 an alternative approach to the stability analysis based
on a global energy minimization that sheds light on the nature of damage
localization and failure in quasi-brittle heterogeneous materials.

2 An energy-based damage model for heterogeneous materials with
tunable interactions

Our approach relies on the description of the material at a mesoscopic scale,
intermediary between the microscale at which microfracturing processes take
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place and the macroscale at which the material is homogeneous. As a result,
it allows for the introduction of material heterogeneities which will be shown
to play a central role in the damage evolution, while describing the mechan-
ical quantities like stress, strain but also damage through continuous fields.
The interactions within the materials are introduced through an interaction
function that describes how the driving force for damage is redistributed after
a damage event.

2.1 Evolution law of the damage field

In the following, we consider a material constituted of ND heterogeneities that
are distributed equidistantly in space and indexed by their position ~x in the
specimen Σ of dimensionD and of size LD, whereD equals 1 or 2, with periodic
boundary conditions. The size of the heterogeneities is noted ξ, so that the
specimen size is effectively NDξD. The material is clamped between two rigid
plates, as schematically represented in Fig. 1. The bottom plate is maintained
fixed whereas a uniform macroscopic displacement ∆, perpendicular to the
x-axis in 1D and to the (x, y)-plane in 2D, is applied to the upper plate. Due
to the clamping conditions used in our model, the microscopic displacement is
homogeneous, equal to the macroscopic one, such that the macroscopic force
writes as

F =
∫

Σ
σ(~x)d~x = ∆

∫
Σ
k[d(~x)]d~x (1)

where σ is the stress field and k[d(~x)] = σ(~x)/∆ the local stiffness which
depends on the level of damage of the heterogeneity. However, k does not
depend directly on the local damage parameter d(~x) that goes from zero when
the element is intact to unity when it is fully broken. Instead, we introduce a
dependency on the nonlocal parameter d defined as

d(~x) = (α ∗ d)(~x) =
∫

Σ
α(~x− ~x′)d(~x′)d~x′ (2)

where α is a weight function that will be specified below, that is used in the
expression of the stiffness

k[d(~x)] = k
(
d(~x)

)
. (3)

The introduction of a non-local variable allows to introduce interactions in
the material, as originally proposed by Pijaudier-Cabot and Bazant (1987).
However, contrary to this work and various studies inspired from it, the inter-
actions are introduced in our model at the level of the damage field, and not
on the driving force. In other words, the stiffness in ~x depends on the damage
level in an extended region defined by the range of the weight function. This
description was chosen to ensure a proper energy balance during the transfer
of mechanical energy into fracture energy, as shown in Appendix A. What are
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the physical implications of this non-local approach? As shown subsequently
in Sec. 5.1, using a non-local damage variable produces a redistribution of
the damage driving force after failure that is fully controlled by the shape
of the weight function. A typical example of redistribution function is shown
schematically in Fig. 1(a). For elements close to the heterogeneity located at
the center that has just damaged, the driving force will increase (red areas)
while elements located further away might be unloaded (blue areas), depend-
ing on the actual shape and sign of the weight function. The introduction of
such a non-local failure behavior results in a complex temporal and spatial
organization of damage illustrated on the damage spatio-temporal evolution
of Fig. 1(b) that resembles qualitatively to the experimental observations. It
also leads to a non-monotonic macroscopic failure response that will be the
central point of this study. To predict damage evolution, the total energy Etot
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Figure 1. (a) Schematic representation of the loading conditions and the interactions
through the material in 1D. The individual elements are represented here as springs.
The damage driving force that applies on the central element results from a spatial
average of the driving force that applies on the other elements weighted by the
interaction function α represented here. This interaction function also interprets as
the spatial structure of the load redistribution that takes place in the material after
the central heterogeneity is damaged. (b) Spatio-temporal evolution of the damage
field for a 1D specimen of N = 2000 elements. Initially, damage is zero everywhere
(d = 0 for a driving ∆ = 0, upper line), until catastrophic failure of the specimen
for ∆ = ∆c (d = 1, lower line).

of the system that comprises the elasto-damageable material and the loading
device is expressed, under some imposed loading ∆, as the sum of the elastic
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energy Eel, the fracture energy Ed and the work of the external force W

Etot = Eel + Ed −W

=
∫

Σ

1

2
∆2k

(
d(~x)

)
d~x+

∫
Σ

∫ d(~x)

0
Yc(~x, d̃)dd̃ d~x−

∫ ∆

0
F (∆̃)d∆̃.

(4)

where Yc(~x, d) refers to the damage energy of the medium in ~x at a damage
level d. It is defined so that an increase δd of damage in a region δ~x of the
material results in an energy dissipation δEd = Yc(~x, d) δd δ~x.
Focusing on the quasi-static response of the material, we introduce the ther-
modynamic driving force for damage as

F(~x) = −δE
tot

δd
= Y (~x)− Yc(~x). (5)

Under quasi-static loading conditions, i.e. assuming that damage mechanisms
take place at a much faster rate than the external driving, the damage increases
in the material under fixed applied displacement ∆. This implies that the work
of the external force does not contribute to the damage energy release rate Y
which writes as

Y (~x) = −δE
el

δd
= (α ∗ Y )(~x). (6)

Interestingly, with the introduction of the non-local damage parameter in the
expression (4) of the elastic energy, the energy release rate Y takes a non-
local form and writes as the convolution of the weight function α with the
local energy release rate defined as

Y (~x) = −∆2

2

dk

dd
. (7)

The mechanical equilibrium that derives from the condition
δEtot

δd
= 0 during

damage growth is thus reached when

Y (~x) = −δE
el

δd
=
δEd

δd
= Yc(~x). (8)

In Appendix A, we show that this damage evolution law can be derived equiv-
alently from the variation of the total energy of the system with respect to
the external driving ∆.
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2.2 Material parameters

2.2.1 Fracture energy and material heterogeneity

To account for the heterogeneities of the material, we introduce a damage
energy field dependent on the position ~x in the medium through a random
quenched noise gc drawn from a constant distribution of zero average value
and variance σ. In addition, the material resistance is chosen to depend on
the damage level at a points ~x as

Yc(~x, d) = Yc0[1 + gc(~x, d) + ηd(~x)] (9)

where η > 0 is a hardening parameter. The increase of the average damage en-
ergy 〈Yc(~x)〉~x = Yc0 + η〈d(~x)〉~x with d is often assumed in damage models (see
e.g. Pham et al. (2011)). It qualitatively reflects microscopic toughening mech-
anisms taking place during material failure like friction at crack faces (Lawn
and Marshall, 1998; Poon et al., 2011), wing cracks (Ashby and Sammis, 1990;
Ravichandran and Subhash, 1995) or crack bridging (Bower and Ortiz, 1991).
It also allows to explore material behaviors with an extended post-peak re-
sponse and a softening. Indeed, without hardening (η = 0), the load redis-
tribution as described in Fig. 1(a) induces systematically an increase of the
driving force of the damaging elements even at constant applied load, resulting
in an unstable failure of this element, and subsequently of the whole material
right after the linear elastic regime. 1 This is indication that hardening is a
relevant physical mechanism involved in quasi-brittle materials displaying an
extended softening regime.

2.2.2 Material stiffness

To account for the degradation of the elastic properties of the material during
damage, we describe the stiffness decay of a single element with the damage
parameter through a polynomial law

k(d) = k0[ad3 − (a+ 1)d+ 1]. (10)

k0 is the stiffness of the intact material, taken homogeneous in the material,
and a is a constant verifying −1 < a < 1/2 to ensure that the stiffness is a de-
caying function of d. This polynomial law allows for the exploration of a large
range of damage behaviors for a single elements, as illustrated in Fig. 2(a)

1 Catastrophic failure for non-hardening (η = 0) materials takes place right
after the elastic regime only for weakly heterogeneous materials. For strong
heterogeneities, abrupt failure is delayed and takes place at a higher applied
load (Shekhawat et al., 2013).
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where the stiffness variations with d are shown for three values of a. Indeed,
the sign of a gives the curvature of k(d), and so the stability of the individual

elements since
∂Y

∂d

∣∣∣∣∣
∆

= −∆2

2

d2k

dd2
= −3∆2ad as derived from Eq. (7). For

negative values of a and no hardening, a point that starts to damage experi-
ences a growing driving force under fixed displacement condition, resulting in
an abrupt failure. On the contrary, positive values of a lead to a stable dam-
age process, so that the external displacement has to be increased to damage
further the fiber.

The case a = 0 corresponds to the largely used damage law k(d) = k0(1 −
d) (Lemaitre, 1992) and leads to a damage-independent driving force. Since
interactions are mediated through the non-local damage variable d̄, this would
amount to consider a local damage model: Heterogeneities would evolve inde-
pendently from each other, and the material behavior would follow that of a
single element. 2 The order of the polynomial, if too low, migh also result in a
singular behavior. If the stiffness evolves linearly with d, we recover the partic-
ular case a = 0 that prevents interactions between elements. If a second-order
polynomial is chosen, the element stability remains constant during damage,
so that the acceleration of the damage growth observed experimentally is not
captured (Guarino et al., 1998; Fortin et al., 2006; Baro et al., 2013). The gen-
eral case is obtained for polynomials of order three or higher. Damage spread-
ing is then an unstationnary process, and the macroscopic material response is
characterized by common failure behaviors, namely damage localization and
sudden failure.

Note that the choice of a polynomial variation of the stiffness with d does not
limit the generality of our model. In the following, we will keep the function
k(d) and its derivatives in the theoretical expressions so that they can be
specified to other behaviors. As evidenced here for a single element, the failure
behavior of the material will be shown to depend on the sign of the second
derivative k′′(d), but not on the actual function k(d) used to describe the
stiffness degradation.

2 This remains only true in absence of heterogeneities. For heterogeneous materi-
als, different elements would break at different loadings, resulting in a progressive
increase of the damage level in the material and softening without involving any
elastic interactions.
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3 Failure behavior prediction for homogeneous materials without
interactions

Before investigating the failure response of heterogeneous materials, we first
explore the homogeneous situation. To impose constant failure properties
through the material, the noise gc(x, d) introduced in the expression Eq. (9)
of the damage energy is set to zero, leading to

Yc(~x, d) = Yc0[1 + ηd(~x)]. (11)

Starting from homogeneous initial conditions with an intact material d(~x) = 0,
the damage field remains uniform all along the failure process with d(~x) =
d0. Indeed, the driving force F(d0) remains homogeneous, so that damage
evolution is identical in each fiber. This has several important consequences:

• Considering an homogeneous material amounts to consider a local and interaction-
free model of damage where the evolution of a heterogeneity is independent
of the response of the other ones.
• Each material point evolves identically. Therefore, the problem of damage

evolution in the specimen is reduced to a single element problem easily
tractable analytically.
• The damage evolution is independent of the dimension D of the specimen,

so that the predicted force-displacement response is valid for any dimension.

Using the previous remarks, the damage evolution law (8) reduces to its local
form

Y (d0) = Yc(d0). (12)

Combining the above equation with the expressions (7) and (11) of the energy
release rate and the damage energy, the macroscopic displacement and force
as a function of the level of damage follow

∆ =

√
−2Yc0(1 + ηd0)

k′(d0)

F = ∆LDk(d0)

(13)

where the force evolution has been derived from its general expression given
in Eq. (1). The force-displacement response of the homogeneously damaged
material is here a parametric curve where the damage variable plays the role
of the parameter increasing from d = 0 until the first fiber starts to damage
up to d = 1 at full failure when the material cannot sustain any loading. The
normalized macroscopic mechanical response is represented in Fig. 2(b) for
non-hardening (η = 0) materials for the three values of a also used in Fig. 2(a).
Normalization is here achieved by dividing the displacement by ∆br

0 and force
by F br

0 which correspond, respectively, to the force and displacement at the
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end of the elastic regime for a brittle material (a = 0), hence ∆br
0 =

√
2Yc0/k0

and F br
0 =

√
2k0Yc0. As shown previously, the parameter a controls the fiber

stability so that a > 0 results in an extended softening regime characterized
by a slowdown of the damage dynamics as complete fracture is approached.
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Figure 2. Effect of the stiffness parameter a introduced in Eq. (10): (a) Variations of
the stiffness with the level of damage; (b) Normalized Force-Displacement responses
of the homogeneous non-hardening (η = 0) material. The normalization constants
∆br

0 and F br
0 correspond, respectively, to the displacement and force at the end of

the elastic regime when a = 0.

In presence of hardening, the final failure can be delayed, as shown in Fig. 3
where the curves are normalized by the load and displacements at the end

of the elastic regime, ∆0 =

√
2Yc0

k0(a+ 1)
and F0 = LD

√
2k0Yc0
(a+ 1)

. The snap-

back, which position is indicated by a dot, is observable for all the values of
η explored here, even though less discernible as the hardening parameter is
large. By tuning the value of η, its position can be shifted towards higher
critical displacements and pushed away from the peak position. For simulat-
ing damage evolution in heterogeneous materials, we will specify our model to
a = −0.3 and η = 8 so that extensive damage takes place before this critical
displacement is reached. This will allow us to explore the transition towards
catastrophic failure through progressive damage. Note that the type of me-
chanical response observed in Fig. 3 is comparable with the one observed for
an array of brittle fibers loaded at the interface between two rigid blocks (De-
laplace et al., 1999). This is consistent with our approach that considers that
each elasto-damageable element represents a mesoscopic volume that contains
an ensemble of smaller brittle elements.

For a homogeneous material, the snap-back position observed in Fig. 3 can be
determined from the variations of the driving force with damage. If, at constant
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Figure 3. Effect of the hardening parameter η on the normalized mechanical response
of the homogeneous material with a = −0.3. The normalization constants ∆0 and
F0 correspond, respectively, to the displacement and force at the end of the elastic
regime. The snap-back instability along the force-displacement curve is indicated
by a dot.

displacement, the difference Y −Yc between the damage driving force and the
damage resistance increases with d, the failure process is unstable. For the
criterion (12) to be satisfied, the macroscopic displacement must be decreased,
leading to the characteristic snap-back behavior shown in Fig. 3. Hence, the
snap-back condition writes as

∂(Y − Yc)
∂d

∣∣∣∣∣
∆

= 0 (14)

which gives
k′′(dsb)

k′(dsb)
=

η

1 + ηdsb

(15)

This equality provides the critical level of damage at which snap-back occurs.
For example, considering our chosen stiffness expression (10) with exponent
γ = 3, it writes as

dsb =
1

η

√1− η2
1 + a

3a
− 1

 for a < 0 (16)

from which one can obtain the snap-back displacement using Eq. (13). As
expected, when a > 0, the condition (15) required for snap-back instability is
never reached. From the condition dsb ≤ 1, one can also discuss the existence of
the snap-back instability for a ≤ 0. For −1 ≤ a ≤ −1/4, the force-displacement
response of the homogeneous material always display a snap-back, irrespective
of the value of the hardening parameter η. On the contrary, when −1/4 < a ≤
0, this instability takes place only for sufficiently low hardening parameter
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η ≤ −6a

1 + 4a
.

Interestingly, even though the mechanical response of the material depends
on the value of a and in particular on its sign as illustrated in Fig. 2(b),
the total mechanical energy required for breaking the specimen, which can be
inferred from the area under the force-displacement curve, is constant. Indeed,
the total energy stored in the material prior to the application of the loading
and available for dissipation during damage growth is independent of a and
follows Ed

tot = (1 + η/2)Yc0 as derived from the expression (11) of the damage
energy. This is a remarkable property of the non-local damage model proposed
here that allows to compare peak load and more generally macroscopic failure
response of materials with different microscopic failure behavior for a constant
total fracture energy. For example, we see in Fig. 2(b) that a non-hardening
homogeneous material made of stable elements (a > 0) will resist to a larger
force than if it was made of unstable elements (a < 0). However, the latter
will sustain larger deformations.

4 Damage spreading and failure of heterogeneous materials: Nu-
merical study

4.1 Interaction between elasto-damageable elements

We now explore the influence of heterogeneous properties of materials on their
quasi-brittle failure behavior. For a homogeneous material, our approach re-
duces to a local damage model that results in a smooth evolution of the ho-
mogeneous damage field up to the snack-back instability taking place at the
critical damage level given in Eq. (16). The introduction of material hetero-
geneities drastically alters this behavior as it allows interactions controlled by
the function α to take place. Indeed, a heterogeneous distribution of damage
is required to get d 6= d, and so Y 6= Y (see Eqs. (6) and (7)). We will see
in Section 5.1 that the presence of a non-local damage driving force allows
for the description of the load redistribution that takes place in the material
after a damage event. This redistribution mechanism may result in cascades
of failure events that build spatial and temporal correlations in the damage
spatio-temporal structure, as the ones evidenced in Fig. 1(b)).

The interaction function α controls the load redistribution and, as shown in
the following, controls the material failure behavior too. Its effect is explored
by choosing the form

α(~x) = α0 exp
(
− 1

2`
‖~x‖

)
cos

(
κ

2`
‖~x‖

)
(17)
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where ‖~x‖ represents the distance between elements. α0 is a normalization

constant fixed by the condition
∫

Σ
α(~x)d~x = 1 that ensures energy balance

during damage growth. The parameters ` and κ can be tuned to vary the
spatial structure of the driving force redistribution after failure events. ` is
an internal length that controls the range of the interactions. We consider
situations where ` is larger than the heterogeneity size ξ. κ, defined as a
positive constant, controls the shape of the redistribution function (see Fig. 4).
Note the change of sign of the interaction functions with κ > 0. In the two-
dimensionnal version of the model, the interaction function solely depends
on the distance between elements, irrespective of their orientation within the
(x, y)-plane.

|~x|/ℓ
20 10 0 10 20

α
/α

0

-0.4

-0.2

0
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0.4

0.6

0.8

1

κ = 0

κ = 2κc

κ = 4κc

Figure 4. Interaction function α for three different values of the shape parameter κ
(see Eq. (17)). For practical pruposes, one introduces the parameter κc = 0.58.

4.2 Numerical implementation

Similarly to crack propagation problems, damage growth requires the equality
Y = Yc between the rate of energy released and the rate of energy dissipation.
There are several ways to deal with this type of criterion in order to predict
material evolution. One of them is to regularize this criterion by assuming an

over-damped dynamics
∂d

∂t
(~x, t) = µF(~x) and use a very large mobility µ (Gao

and Rice, 1989; Bonamy et al., 2008). An alternative is to introduce a weakly
rate-dependent critical energy release rate so that the damage evolution law

takes the form of a kinetic relation Y (~x) = Yc

(
~x,
∂d

∂t

)
that can be solved

assuming the irreversibility condition
∂d

∂t
> 0 (Xia et al., 2015). Here, we take
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advantage of the quasi-static loading conditions, and adopt a discrete dynam-
ics inspired by Schmittbuhl et al. (1995) based on the following procedure: The
imposed displacement is increased until the failure criterion (8) is reached by
one element. The damage level of this element is then increased by δd � 1
and the spatial distribution of driving forces in the material is recalculated
using Eqs. (6) and (7). The redistribution of driving force results in additional
damage and subsequently additional driving force redistribution until this cas-
cade process stops when the driving force is below its critical value everywhere
in the material. Those three approaches result in the same avalanche-like dy-
namics of the damage growth illustrated in Fig. 1(b): Damage increases by
bursts that are localized both in space and time, characterized by power law
statistics but that are characteristic of fracture processes in disordered mate-
rials (Herrmann and Roux, 1990; Alava et al., 2006; Bonamy, 2009). Despite
the presence of strong fluctuations during the growth of damage, we will see
that main features of the macroscopic failure response of the material can be
understood without taking into account this intermittency.

To simulate damage growth, we discretize a solid of size [0, L]D by considering
discrete elements corresponding to individual heterogenities, so that the total
number of elements is N = L/ξ. As shown later, a finer mesh, corresponding
to more elements into a single heterogeneities, does not affect significantly
the calculated material response, even in the softening section of the stress-
strain curve. The following numerical algorithm is used: Starting from an
initially intact material (i) the displacement ∆ is increased until one element
satisfies to the condition Y (~x) = Yc(~x); (ii) the damage level at this point
is increased by δd0; (iii) the distribution of non-local damage driving force
and fracture energy are recalculated; (iv) The step (ii) is repeated for all the
elements verifying F(~x,∆) ≥ 0; (v) the steps (iii) and (iv) are repeated until
no more elements verify the damage criterion; (v) We go back to step (i) and
increase the external driving ∆ again until new damage events take place.
The simulation stops when the damage variable is equal to one everywhere.
This discrete dynamics allows the exploration of large specimens, typically
N = 104heterogeneities in 1D and N × N = 2.102 × 2.102 heterogeneities in
2D for a rather low computational time. As a result, several speciments with
the same material properties, but different realizations of the disorder can be
runned to achieve accurate average material response. We did not observe any
significant effect of the value of N as long as the internal length ` is small with
respect to the specimen size L. Note also that to remove edge effects, we use
periodic boundary conditions.

To calculate the damage driving force defined by Eqs. (6) and (7), we use
Fourier transforms since convolution product becomes simple products. First,
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the non-local damage parameter is obtained from

d(~x) = F−1
(
α̃(~q)× d̃(~q)

)
(18)

where F−1 denotes the inverse Fourier transform and α̃ is the Fourier transform
of the function α. The non-local damage parameter is then used to compute
the stiffness and the driving force is obtained from the expression

Y (~x) = −1

2
F−1

(
α̃(~q)× k̃′(d)

)
. (19)

The variations of the damage energy are also discretized by introducing a
small but finite damage increment δd0 that characterizes the amplitude of a
single damage event taking place when the condition Y = Yc is reached. After
each damage event, the fracture energy of the element is redrawn using the
following expression

Yc(~x, n0) = Yc0[1 + gc(~x, n0) + n0η] (20)

where n0 = d/δd0 is the total number of damage events experienced by the
element since the beginning of the test, η = ηδd0 is the modified hardening
parameter and gc(~x, n0) is a random number drawn in a uniform distribution
within the interval −

√
3σ < gc <

√
3σ. In the following, we use δd0 = 0.005

for the damage increment. This value is observed to have a minor effect on
the simulation results as long as taken small with respect to unity.

4.3 Numerical results

We focus first on 1D specimens while 2D specimens, which display quali-
tatively similar behaviors, are left for Section 5.3. The normalized macro-
scopic response of weakly heterogeneous materials (σ = 0.001) is presented in
Fig. 5(a) for different values of the shape parameter κ and compared with the
response of the homogeneous material, reminiscent of a local damage evolution
law. The force and displacement are normalized by their values at the end of
the elastic regime. In order to smooth out the fluctuations observed from one
material to another, the response of the heterogeneous material is shown after
averaging over twenty different realizations of the disorder.

For small imposed displacements ∆ � ∆c, where ∆c indicates the displace-
ment at failure, the response of the heterogeneous material is identical to the
one of the homogeneous material. As ∆ gets close to ∆c, its behavior deviates
slightly from the homogeneous response, as illustrated in the inset of Fig. 5(a)
for κ = 2κc. Finally, for ∆ = ∆c indicated by the dots in Fig. 5(a), we observe

18



a sudden drop of the force that reveals a sudden failure of all the material
elements. For κ = 0, no deviation is observed until the catastrophic failure
takes place at the snap-back instability. Hence, varying the value of κ shifts
the failure instability that lies (i) at the snap-back point for κ = 0, (ii) be-
tween the peak force and the snap-back point for κ = 2κc, and (iii) in the
pre-peak region for κ = 4κc. Therefore, at low disorder level, the shape of
the interaction function controls the occurrence of the failure instability while
maintaining a global behavior close to the one of a material with a local failure
response.

∆/∆0

0 0.5 1 1.5 2 2.5

F
/F

0

0

0.5

1

1.5
κ = 0

κ = 2κc

κ = 4κc

Homogeneous

1.9 2

1.2

1.3

(a)
〈d〉

0 0.1 0.2 0.3

σ
d

0

0.01

0.02

0.03

0.04

0.05

dcdh

(b)

Figure 5. (a) Normalized Force-Displacement response of a weakly heterogeneous
material (σ = 0.001) for ` = 5 ξ and η = 8 and three different values of κ after
averaging over twenty realizations of the disorder, and comparison with the response
of the material with local failure behavior (homogeneous material). Catastrophic
failure is indicated by dots. The inset is a zoom of the response with κ = 2κc that
shows the deviation from the local behavior close to failure; (b) Methodology used
to determine the onset dh of the deviation to the homogeneous response: The typical
fluctuations of the damage field characterized by its standard deviation σd shows a
sudden increase indicated by the black dot for the damage level dh. The catastrophic
failure is indicated here by the blue dot and correspond to dc.

To determine the onset dh (resp. ∆h) of the deviation to the homogenous
response, we introduce the intensity of the damage spatial fluctuations

σd =
√

(〈d(x)2〉 − 〈d(x)〉2)2 (21)

that we represent as a function of the average damage level 〈d〉 =
1

L

∫
Σ
d(x)dx

in Fig. 5(b) for κ = 3κc. After a short transient regime, the level of the
fluctuations in the damage field remains rather constant before showing a rapid
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increase from which the onset dh (resp. ∆h) is defined: We fit this increase
by a linear behavior (green dashed line) and define dh (resp. ∆h) from the
intersection with the average damage fluctuations (red thick line) far away
from failure d � dh. The onsets dc and ∆c of failure are more obvious and
they are defined as the average damage level in the material (resp. loading)
prior to the final catastrophic failure event. Note that the full failure of one
single element is systematically accompanied by the full failure of the whole
material, so ∆c is reached when the first element fully fails.

The variations of the onsets dh and dc with κ are shown on Figs. 6(a) and (b)
for different disorder levels σ and for an internal length ` = 5 ξ. The results
obtained for ` = 10 ξ and for a disorder σ = 0.001 are represented with square
symbols. The values plotted in Figs. 6 correspond to an average obtained over
the different realizations of the disorder, leading to an error bar smaller than
the symbol size. For comparison, the damage levels dp and dsb corresponding
to the average damage at the force peak and the snap-back instability are
represented by horizontal dotted lines. Note that similar graphs showing the
variations of the critical loadings ∆h and ∆c with the parameters κ and σ can
be drawn.

A first observation made from Fig. 6 is that the thresholds vary weakly with
the material disorder: Low variations of the values of dh and dc are observed
while the fluctuation amplitude σ of damage energy is varied from 0.1 % to
20 % of its average value. Another interesting observation is that the critical
damage levels are rather independent of the internal length. As a result, the
material response is essentially governed by the value of κ and two distinct
regimes emerge:

• For κ ≤ κc, catastrophic failure takes place at the snack-back instability
(dc ' dsb), and is not preceded by a phase where the response of the material
deviates from the homogeneous material behavior.
• For κ > κc, the thresholds strongly depend on the shape of the redistribu-

tion function. A carefull comparison between Fig. 6(a) and (b) reveals that
the deviation to the homogeneous response takes place close, but prior to
complete failure (dh . dc < dsb). In this regime, failure occurs earlier when
the value of κ is increased, taking place even before peak load for κ & 3κc

To emphasize the negligible influence of the spatial discretization on the cal-
culated material response, we study the variations of the critical loading at
failure as a function of the number N of heterogeneities in the material and the
number of points Nξ used to discretize one single heterogeneity. In the latter
case, the value of damage energy is drawn in a uniform distribution of vari-
ance σ at the center of each heterogeneity, and then interpolated in between so
Yc(~x) is a smoothly varying function of the position. In both cases, we obtain
rapid convergence as shown in Fig. 7 for κ = 0, ` = 2 ξ and σ = 0.001. Here,
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Figure 6. Effect of the interaction function on localization and failure: (a) Varia-
tions of the localization threshold dh for deviation from the homogeneous material
response with the interaction parameter κ; (b) Variations of the failure threshold
dc with κ. Dots and squares correspond to internal lengths ` = 5 ξ and ` = 10 ξ,
respectively, for different disorder levels σ. The position of the snap-back dsb and
peak force dp for the interaction free material are indicated by horizontal dashed
lines. The solid and dotted lines correspond to the analytical predictions made from
the stability analysis of Sec. 5.1 and the energy minimization of Sec. 5.4, respec-
tively.

∆conv denotes the failure loading obtained for the finest mesh corresponding
to N = 10000 and Nξ = 10.
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Figure 7. Effect of the spatial discretization on the calculated failure response: Com-
parison of the converged value of the critical loading at failure with the one obtained
when varying the number N of heterogeneities in the specimen while keeping Nξ = 1
(main panel) and the number of points Nξ used to discretize a single heterogeneity
while keeping the heterogeneity number equal to N = 1000 (inset). The material
parameters used for this convergence study are κ = 0, ` = 2 ξ and σ = 0.001.

To further characterize the behavior of the heterogeneous materials, we explore
the spatial structure of the damage field close to failure. It is convenient to
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introduce the distance to failure

δ =
dc − 〈d〉
dc

. (22)

This parameter δ ranges from unity at the end of the elastic regime to zero at
catastrophic failure. The power spectrum

Pδ(q) =
|d̃δ(q)|2

N
(23)

is computed at different distance δ from failure. Here, d̃δ(q) is the Fourier
transform of the damage field and q is the Fourier mode corresponding to the
wavenumber λ = 2π/q. The power spectrum is used to characterize the spatial
structure of the damage field and its evolution. If the damage fluctuations are
random, all wavenumbers contribute equally and the power spectrum is flat.
On the contrary, if the damage spreads favoring a certain mode, the spectrum
shows a peak. A typical power spectrum evolution is shown in Fig. 8(a) for
κ = 2κc and ` = 5 ξ. As highlighted in the inset, far from failure (δ ≥ 0.55),
the power spectrum is fairly flat which indicates random fluctuations of the
damage field. On the contrary, as the specimen gets closer to failure ( δ ≤ 0.3),
a peak emerges in the Fourier spectrum, indicating that damage spatially or-
ganizes and develops over the mode qc. Its amplification when δ → 0 suggests
that a characteristic length scale 2π/qc emerges from the damage spatial struc-
ture. This observation is consistent with the deviation from the homogeneous
material response brought out in Fig. 6 close to failure.

Figure 8(b) shows the effect of κ on qc for two values of the internal length,
` = 5 ξ and ` = 10 ξ, and for a large range of disorder strength 0.001 ≤ σ ≤ 0.2.
The two regimes identified from the variations of the thresholds dh and dc with
κ are also revealed by the value of the characteristic mode as for κ ≤ κc, the
power spectrum does not reveal any characteristic length scale whereas for
κ > κc, a peak emerges and its position qc increases with κ. Furthermore,
for κ � κc the characteristic mode qc increases linearly with κ, following the
variations of the mode qα = κ/2` introduced through the interaction function
α (see Eq. (17)).

In summary, the numerical investigation of the damage evolution in hetero-
geneous materials with interacting elements shows that their response can be
captured by the homogeneous interaction-free material behavior up to some
critical loading where the two responses deviate from each other, quickly fol-
lowed by an abrupt failure. Both onsets can take a broad range of values, from
the snap-back position to the pre-peak regime, depending on the value of the
shape parameter κ of the interaction function. Two distinct regimes can be
evidenced:
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Figure 8. (a) Power spectrum of the damage field plotted as a function of the
normalized wavelength λ/ξ = 2π/(qξ) at different distances δ to failure for an
interaction function with κ = 2κc and ` = 5 ξ. It shows the emergence of a peak
for the mode qc. The inset shows a zoom highlighting the far from failure regime
δ ≥ 0.55, for which all modes contribute about equally; (b) Variations of this mode
qc with the interaction parameter κ for different disorder levels σ and comparison
with the analytical predictions (see Sec. 5.1). The mode qα = κ/2` introduced
through the interaction function is also shown for both values of `.

• For κ < κc, the damage field does not display a characteristic mode until
unstable failure takes place close to the snap-back instability without any
deviation to the homogeneous material response.
• For κ > κc, we evidence a deviation to the homogeneous response, quickly

followed by an abrupt failure. Evolution towards failure is characterized in
this regime by the rapid growth of a characteristic mode in the damage field.

These observations call for the following questions: Can we explain deviation
from the homogeneous response and failure and predict their onset? Where
does the characteristic length scale of the damage field close to failure emerge
from? What is the origin of the two regimes displaying distinct failure behav-
iors as the interaction function is varied?
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5 Damage spreading and failure in heterogeneous materials: The-
oretical study

5.1 Stability analysis of the homogeneous damage states

To address the questions raised by the numerical study, we carry out a sta-
bility analysis of the states reached by the homogeneous material during its
evolution. Here, we do not restrict our analysis to 1D specimens, and explore
the stability of the solutions obtained in Sec. 3 for any dimension. We as-
sume small variations of the damage field around a homogeneous value and
decompose it into two contributions: A uniform contribution d0 solution of the
homogeneous problem and a heterogeneous contribution δd(~x)

d(~x,∆) = d0 + δd(~x) (24)

where δd is assumed to be very small with respect to d0. To determine the
evolution of the perturbation δd, the total damage driving force F = Ȳ − Yc

is also decomposed into two contributions

F [d(~x,∆)] = F (0)(d0) + F (1)[δd(~x)] (25)

where the constant term F (0) is the contribution of the homogeneous part
of the damage field while the heterogeneous part of the driving force F (1)

results from the perturbation δd. The expression of each of these terms is
determined by linearizing the expressions (6) and (11) of the nonlocal energy
release rate and the fracture energy, respectively. The first step is to decompose
the nonlocal damage parameter into two terms

d(~x,∆) = d0 + (α ∗ δd)(~x) (26)

which leads to the following expansion of the stiffness derivative

k′[d(~x)] = k′(d0) + k′′(d0)δd(~x). (27)

In this expression where only first order terms in δd have been kept, we have
introduced the non-local perturbation parameter δd(~x) = (α ∗ δd)(~x). Using
Eq. (27) into Eq. (6), one obtains the first order expansion of the non-local
energy release rate at a given applied displacement ∆

Y (~x) = Y (d0)− ∆2

2
k′′(d0)(α ∗ δd)(~x). (28)

Since the fracture energy also decomposes into two contributions

Yc(~x, d) = Yc(d0) + Yc0ηδd(~x), (29)
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one gets the zeroth and first order contributions of the total driving force
F (0)(d0) = Y (d0)− Yc(d0)

F (1)[δd(~x)] = −∆2

2
k′′(d0)(α ∗ δd)(~x)− Yc0ηδd(~x).

(30)

The zeroth order provides the equilibrium condition

F (0) = 0 ⇒ Y (d0) = Yc(d0). (31)

It corresponds to the evolution equation of the homogeneous material obtained
in Sec. 3 and provides the typical damage level d0(∆) in the material as a
function of the external loading as given in Eq. (13).

We now focus on the perturbative term F (1) of the driving force. Its expres-
sion provides physical insights on the interaction function α introduced in the
model definition. Consider a perturbation δd(~x) ∼ δ(~x − ~x0) of the damage
field resulting from a damage event located in ~x0, δ(~x) being the Dirac func-
tion. The resulting perturbation on the field of damage driving force can be
deduced from Eq. (30) and follows F (1)(r) ∼ (α∗α)(r) where r = ‖~x−~x0‖ > 0
is the distance from the damaged element. For κ = 0, this term is positive,
meaning that a damage event in the material is followed by an increase of the
driving force everywhere else. On the contrary, for κ > 0, α and so F (1) change
of sign with r, indicating that some elements will be unloaded while some oth-
ers will be loaded further. The spatial structure of the load redistribution is
actually set by the convolution of α with itself which behaves qualitatively
as the function α represented in Fig. 4. Therefore, the interaction function α
involved in the definition of the non-local damage parameter d plays a central
role in our model by describing how the driving force is redistributed in the
material after a failure event. Note that the damaging element itself is always
unloaded, irrespective of the value of κ. Indeed, the sign of the load redistri-
bution in ~x0 is provided by F (1)(0) = ∆2|k′′(〈∆〉)|/2 − Yc0η which remains
negative before the snap-back instability, as shown by combining Eqs. (13)
with (15). This illustrates the central role played by the hardening behavior of
the material that prevents unstable failure of individual elements before the
snap-back point.

We now use the expression of the driving force perturbation F (1)[δd(~x] to
determine the material stability. We consider harmonic perturbations

δd(~x) = δd0(1 + cos(~q0 · ~x)) (32)

of mode ~q0 and small positive amplitude δd0. This expression ensures the
irreversibility condition δd ≥ 0 imposed to the damage evolution. Inserting
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this expression in Eq. (30) provides the driving force redistribution

F (1)[δd(~x)] = δd0 cos(~q0 · ~x) ∗
(
−∆2

2
k′′(d0)α(~x) ∗ α(~x)− Yc0ηδ(~x)

)

+δd0 ×
(
−∆2

2
k′′(d0)− Yc0η

) (33)

as the damage increases of δd(~x). As the former expression comprises convo-
lution products, it is more convenient to express it in Fourier’s space

F̃ (1)[δ̃d(~q)] =δd0δ(~q − ~q0)×
(
−∆2

2
k′′(d0)α̃2(~q)− Yc0η

)

+ δd0δ(~q)×
(
−∆2

2
k′′(d0)− Yc0η

)
.

(34)

Introducing the function

G̃(~q, d0) = −1

2
∆2k′′(d0)α̃2(~q)− Yc0η, (35)

the driving force perturbation takes the simple form

F̃ (1)[δ̃d(~q)] = δd0

(
G̃(~q, d0)δ(~q − ~q0) + G̃(~0, d0)δ(~q)

)
. (36)

where the normalization condition α̃(~0) = 1 imposed to the interaction func-
tion have been used together with Eq. (13) relating ∆ to d0. Taking the inverse
Fourier transform of the former expression provides the driving force pertur-
bation

F (1)[δd(~x)] = δd0

(
G̃(~q0, d0) cos(~q0 · ~x) + G̃(~0, d0)

)
. (37)

This expression provides the condition for a homogeneous damage growth: If
F (1)(~x) is higher at the most damaged zones, i.e. for ~x·~q0 = 0,±2π,±4π..., the
perturbation will grow and hence deviation from the homogeneous response
will occur. On the contrary, if the driving force is higher on the elements with
smaller damage levels, i.e. for ~x · ~q0 = ±π,±3π..., these elements will damage
first and perturbation to the homogeneous damage field will be smoothed out.
Noticing that only the first term of F (1) in Eq. (37) varies with ~x and using
the above considerations, we conclude that

G̃(~q0, d0) > 0 ⇒ Damage localization. (38)

In the following, we refer to this process as damage localization, since it results
into a concentration of the failure processes in some regions of the material.
This condition is satisfied above a critical value of the imposed displacement,
or equivalently, above some critical level of damage, for the most unstable
mode ~qc that maximizes α̃. Indeed, according to Eq. (35), the position ~qc
of the maximum of G̃(~q0, d0) is also the one of α̃, irrespective of the typical
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damage level d0. At some critical damage dh (resp. some critical loading ∆h),
the function G̃ that increases with d0 (resp. ∆) hits zero. The perturbation then
grows and leads to an heterogeneous damage field with a characteristic mode
~qc. On the force-displacement response, one expects this damage localization
to produce a departure from the homogeneous material behavior of Eq. (13).

The condition (38) predicts the emergence of a heterogeneous mode of damage
growth, but does not provide any clue on the abrupt failure observed in the
simulations. Indeed, an unstable behavior requires an increase of the damage
somewhere in the material to be accompanied by an increase of the driving
force too at the same position. Considering again the positive damage incre-
ment δd = δd0(1 + cos(~q0 · ~x)), catastrophic failure takes place if F (1)(~x) is
positive in at least one position. Using Eq. (37), this condition is first satisfied
in ~x · ~q0 = 0,±2π..., leading to the criterion

G̃(~q0, d0) + G̃(0, d0) > 0 ⇒ Unstable failure. (39)

Predicting the onset dc of unstable failure requires at first the determination
of the most unstable mode qc. As for localization, it is given by the position
of the maximum of G̃(~q0, d0), so the localized mode ~qc is the failure mode too.
Note that the inequality G̃(0, d0) < 0 derived from the expression (15) of the
snap-back point ensures that localization always takes place prior to abrupt
failure. Indeed, it implies that the localization threshold G̃(~qc, d0) > 0 has to
be reached so that the failure condition G̃(~qc, d0)+G̃(0, d0) > 0 can be fullfilled.

An important point is that, contrary to the localization prediction, the onset of
failure determined from Eq. (39) predicts only approximately the actual failure
threshold, even in the limit of weakly heterogeneous materials. Indeed, this
criterion is derived from a perturbation of the homogeneous material response,
hence assuming a homogeneous distribution of damage in the material. Since
localization might take place prior to final failure, damage might be distributed
heterogeneously when unstable failure takes place. We will see however that
the predictions made following this approach describes rather well the numer-
ical observations, especially if κ is not too large with respect to κc, i.e. that
localization does not occur much earlier than failure so that the assumption
of a relatively homogeneous damage field at failure is not violated.

From criteria (38) and (39), one can now predict the specimen evolution. Two
cases need to be distinguished:

• The most unstable mode corresponds to the homogeneous perturbation
~qc = ~0. Damage localization is here simultaneously accompanied by unsta-
ble failure since both criteria simplify to G̃(0, d0) > 0 that is the snap-back
instability condition. As a result, the material response is the one of the
homogeneous material where catastrophic failure takes place without any
prior localization phase at the snap-back point dsb = dh = dc.

27



• The mode ~qc that maximizes α̃(~q) is different from the homogeneous mode.
This implies α̃(~qc) > α̃(~0), or equivalently, G̃(~qc,∆) > G̃(0,∆) using the
expression (35) of G̃. This inequality implies that localization is strictly
anterior to failure and that both occur before the snap-back instability of the
homogeneous material, leading to dh < dc < dsb. Interestingly, this regime is
characterized by the growth of localized damage modes that precede abrupt
failure.

The prediction of the onsets of localization and failure are now compared with
the simulation results.

5.2 Application to 1D specimens

The predictions of the linear stability analysis are first compared with the
numerical results for 1D specimens for which all calculations can be performed
analytically. The first step is the determination of the critical mode qc that
maximizes the redistribution function G̃(q, d0). According to Eq. (35), this
amounts to determine the maximum of α̃(q). The Fourier transform α̃(q) =∫ +∞

−∞
e−iqrα(x)dx of the interaction function α given in Eq. (17) reads

α̃(q) =
(1 + κ2)(1 + κ2 + (2`q)2)

(κ2 + 1)2 + 2(2`q)2(1− κ2) + (2`q)4
. (40)

from which G̃(q, d0) can be deduced. Figure 9 represents its variations as a
function of q/qc for different damage levels for the parameter values κ = 2κc,
` = 5 ξ and η = 8. The position of the maximum, qc ' 0.55/` for these
parameters, does not vary with the loading. On the contrary, the maximum
value G̃(qc, d0) of the redistribution function does increase and eventually hits
zeros at the damage level dh ' 0.466.

The analysis of the function α̃ defines the critical value κc = 1/
√

3 that dis-
tinguishes two different behaviors:

• For κ ≤ κc, the Fourier transform of the interaction function is maximum
for qc = 0. Failure is expected to take place at the snap-back point, without
any prior damage localization.
• For κ > κc, the maximum is reached for qc > 0 that follows

qc =
1

2`

√
2κ
√

1 + κ2 − (1 + κ2). (41)
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Figure 9. Prediction of the localization for a 1D specimen with κ = 2κc, ` = 5 ξ
and η = 8. This graph shows the amplitude of the driving force perturbation for a
sinusoidal perturbation of mode q of the damage field (Eq. (35)). Growing modes
correspond to positive amplitude, so localization takes place at the damage level
d0 ' 0.466 for the mode qc given in Eq. (41).

The criterion G̃(qc, dh) = 0 of Eq. (38) provides the damage level at localization

dh =
1

η

α̃2(qc)

2α̃2(qc)− 1


√√√√1− η2

2α̃2(qc)− 1

α̃4(qc)

1 + a

3a
− 1

 (42)

with


α̃(qc) =

(1 + κ2)3/2

4κ(1 + κ2 − κ
√

1 + κ2)
for κ > κc

α̃(qc) = α̃(0) = 1 for κ ≤ κc.

(43)

For κ ≤ κc, the onset dh becomes independent of the redistribution function
and is equal to the position of the snap back instability (Eq. (16)): We recover
the behavior of the homogeneous material studied in Sec. 5.1. On the contrary,
when κ > κc, the most unstable mode qc > 0 is not homogeneous, so the
shape of the redistribution function does affect the onset dh of localization
through the parameter κ. The internal length introduced in the interaction
function sets the wavelength of the unstable mode 1/qc ∼ `, but does not
affect the localization threshold. The introduction of an internal length in
the redistribution function reflects on the characteristic wavevector of the
instability and hence sets the width of the ’localization bands’ emerging close
to failure. The scaling 1/qc ∼ ` was expected as the internal length ` is the only
relevant length scale – the system size L can be taken infinitely large while
the heterogeneity size ξ does not affect the stability analysis that considers a
homogeneous solid.
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These predictions are now compared to the numerical results. Figure 6(a)
shows the variations of the localization threshold dh with κ (solid line). The
theory captures nicely its decay in the regime κ > κc, irrespective of the
disorder amplitude. 3 . In Fig. 8(b), the comparison made on the wavenumber
qc of the localization mode for two values of internal length ` and several
disorder levels is also successful, confirming especially the scaling qc ∼ 1/`.
The thresholds are also compared to the mode qα = κ/(2`) introduced in the
interaction function expression. Interestingly, the localization mode qc is not
equal to the characeristic mode: qc is indeed smaller than qα for the shape
parameters κ & κc, and tends asymptotically towards qα for κ� κc.

We now tunr to the prediction of catastrophic failure. To determine dc, the
failure criterion G̃(qc, dc) + G̃(0, dc) = 0 of Eq. (39) is applied using the critical
mode qc determined previously. This gives

dc =
1 + α̃2(qc)

2ηα̃2(qc)


√√√√1− 1 + a

3a

(
2ηα̃(qc)

1 + α̃2(qc)

)2

− 1

 (44)

where the expression of α̃(qc) is provided in Eq. (43). If κ ≤ κc, we verify that
dc = dh = dsb. In that case, perturbation growth and unstable failure occur
simultaneously at the instability point of the interaction-free material. In the
other regime, when κ > κc, we obtain dh < dc < dsb, in agreement with the
analysis performed for any dimension in Sec. 5.1.

The predicted failure thresholds are shown in solid line in Fig. 6(b). The equa-
tion (44) slightly overestimates the onset of failure found in the simulations, in
particular for κ � κc. This was expected since the theory relies on a pertur-
bation analysis of the homogeneous damage state, while localization already
took place when the failure threshold is reached. Nevertheless, we note that
this approach captures qualitatively well the behavior observed in the simu-
lations, and in particular the decrease of dc with the interaction parameter
κ. An improved prediction of the onset of failure based on a global energy
minimization will be provided in Sec. 5.4.

5.3 Application to 2D specimens

We now apply the stability analysis of Sec. 5.1 in the context of 2D specimens.
In order to apply the criteria derived in Eqs. (38) and (39) for localization and

3 For κ ≤ κc, we could not identify the localization threshold in the simulaions
using the definition given in Fig. 5(b), as expected since catastrophic failure occurs
without prior deviation to the homogeneous material response

30



failure that involve α̃(q), we notice that the interaction function α(~x) = α(r) is
a function of the distance r = ‖~x‖ only, so its Fourier transform α̃(~q) = α̃(q)
is a function of the norm q = ‖~q‖ of the wavenumber. Hence, the stability
analysis of a 2D specimen reduces to a 1D problem where all the perturbation
modes δd(~x) = δd0(1 + cos(~q0.~x)) of same norm q0 share the same behavior,
irrespective of their direction. The localization and failure thresholds are then
determined following the following two steps procedure:

(i) The norm qc of the most unstable modes is determined from the maximum of
G̃(q0, d0). According to Eq. (35), this amounts to determine the maximum of

the Fourier transform of the interaction function α̃(~q) =
∫∫ +∞

−∞
α(~x)e−i~q.~xd~x.

Using the isotropy α(~x) = α(r) of the interaction function, the Ankel trans-

form gives α̃(q) = 2π
∫ +∞

0
α(r)J0(qr)rdr where J0 is the Bessel function

of the first kind of order zero. This integral is computed numerically to
determine its maximum α̃(qc) and the norm qc of the unstable modes.

(ii) From the values of qc and α̃(qc) calculated numerically, the critical damage
levels for localization and failure are determined from the criteria G̃(qc, dh) =
0 and G̃(qc, dc) + G̃(0, dc) = 0, respectively. Since the function G̃ introduced
in Eq. (35) depends on the dimension of the specimen only through α̃(q),
the expressions (42) and (44) of both thresholds remain unchanged.

This procedure is applied for different values of κ. For 2D geometries, the
normalization constant α0 of Eq. (6) is non-negative only for κ < 1. Above
this value, the redistributions defined by the model are non-physical and hence
we limit our analysis to the range 0 ≤ κ < 1. The obtained variations of
the critical wavenumber qc with the shape parameter κ of the redistribution
function is represented in Fig. 10(a). 4 As for a 1D geometry, one obtains
two regimes: For κ ≤ κ2D

c , where κ2D
c ' 0.42, the most unstable mode is the

homogeneous perturbation qc = 0 while for κ > κ2D
c , the norm qc of the most

unstable wavevectors increases continuously with the parameter κ.

The critical damage values for localization (solid line) and failure (dashed line)
deduced from Eqs.(42) and (44) and the value of α̃(qc) are represented as a
function of κ in Fig. 10(b) for a toughening parameter η = 8 and a = −0.3.
Similarly to 1D specimens, we observe a transition from a response similar
to the one of a homogeneous interaction-free material for low values of κ, to
another regime where the deviation to the homogeneous material response is
observed prior to catastrophic failure. The later intervenes prior to the snap-
back instability observed in the homogeneous material response, resulting in
dh < dc < dsb ' 0.78.

4 Since the interaction function writes as α(r/`), its Fourier transform writes as
α̃(` q), so the normalized quantity ` qc is naturally used in Fig. 10(a) as in Fig. 8(b).
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Figure 10. Failure behavior of a 2D specimen: (a) Evolution of the norm qc of the
critical wavevector as a function of the shape parameter κ of the interaction function;
(b) Variations of the thresholds for heterogeneous damage growth dh (circle) and
failure dc (cross) as a function of κ for η = 8 and different disorder levels σ.

These theoretical predictions are now compared with direct numerical simu-
lations of the damage spreading in 2D specimens with η = 8 following the
procedure described in Sec. 4.2. Irrespective of the value of the disorder level
σ, the theory captures well the decrease of the localization threshold dh with
κ, shown by dot symbols in Fig. 10. The decrease of the failure threshold dc

(cross symbols) is also described, but only qualitatively for the same reasons
invoked in the former section in the context of 1D geometries.

Even though failure behaviors are qualitatively similar in one and two dimen-
sions, we would like however to emphasize some quantitative differences. First,
the threshold value κ2D

c ' 0.43 in 2D is significantly smaller than its value in
1D for which κc = 1/

√
3 ' 0.58. Second, the critical damage values for both

localization and failure go to zero for κ → 1, whereas in 1D these quantities
go to zero for κ → +∞. This latter case where dh = dc = 0 corresponds
to a failure taking place right after the elastic regime while, on the contrary,
κ = 0 ensures the existence of an extended softening regime until abrupt
failure takes place at the snap-back point with dh = dc = dsb. This observa-
tion illustrates the centrale role played by the spatial structure of the stress
redistribution on the emergent failure behavior of the material, as changing
the shape parameter of the interaction function from zero to one shifts the
response of the material from elasto-damageable to purely brittle. This also
highlights the collective nature of the damage growth process in quasi-brittle
solids: Although the properties of its constitutive elements are kept simple,
the material displays a wide range of failure behaviors that emerge from the
their interactions controlled through the load redistribution process.
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5.4 Prediction of damage localization and failure from a global energy mini-
mization

We now explore an alternative approach for predicting the failure behavior
of elasto-damageable materials. In the previous section, we investigated the
stability of the damage growth process through the analysis of the distribution
of damage driving force at the local scale in the material. It allowed us to
determine the mode qc over which the damage field builds up and subsequently,
the critical load at localization for which this mode starts to grow. Despite the
assumption of a slightly heterogeneous damage state, we applied this approach
to predict the onset of failure that takes place after damage has localized,
and showed that it provides nevertheless a reasonable estimate of the failure
threshold measured numerically.

However, in an attempt to provide a better estimate of the failure thresh-
old, we propose here a complementary approach based on the minimization
of the global energy of the damaged material. The other motivation is to gain
physical insights on the transitions revealed by the stability analysis, as an
energetic approach might shed light on their nature. Here, we take advantage
of the formulation of our damage model that has been derived from energy
conservation, and determine, at each imposed loading conditions, the opti-
mal distribution of damage in order to minimize the global specimen energy
comprising the stored elastic energy and the damage energy.

For the sake of simplicity, this analysis is applied to 1D materials only. To
resolve the onset of localization, we determine whether or not a small per-
turbation of the damage field is energetically favorable, i.e. results in a lower
system energy than a homogeneous state. We assume at some prescribed dis-
placement ∆ that the homogeneous damage field is perturbed by an harmonic
mode q0: d(x) = d0 + δd0 cos(q0x) and determine the couple (d0, δd0) that
minimizes the total energy, calculated as

E∆(d0, δd0)

L
=

1

2
∆2k(d0)+Yc0

(
d0 +

1

2
ηd2

0

)
+δd2

0

(
1

8
∆2k′′(d0)α̃2(q0) +

1

4
Yc0η

)
.

(45)
This equation derives directly from the expression (4) of the total energy lin-
earized to the second order in δd0 where the work of the external force is not
taken into consideration as we seek to determine the damage distribution at a
fixed displacement. Noticing that the first two terms are positive and that the
prefactor of δd2

0 equals to −G̃(q0, d0)/4, we conclude that δd0 > 0 results in
an increase of energy as long as the redistribution function G̃(q0, d0) is nega-
tive. In that regime, the energy is hence minimized for δd0 = 0 and d0 verifies
∂E∆/∂d0|(d0,0) = 0 that corresponds to the equilibrium equation Y (d0) = Yc(d0)
derived for a homogeneous material. We therefore retrieve the localization con-
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dition (38) obtained from the stability analysis that the damage field remains
homogeneous as long as G̃(q0, d0) < 0. This conditions provides the loading ∆h

at localization at which the energy is no longer minimized by a homogeneous
damage field, but also the localization mode qc that maximizes G̃.

We now consider loadings ∆ > ∆h for which a localized damage field develops.
In that case, we must ensure the irreversibility of the damage perturbation that
can be done by considering a perturbation d(x) = d0 +δd0(1+cos(q0x)). Since
the localized mode has been previously determined, we consider q0 = qc. The
total energy follows

E∆(d0, δd0) = A(d0)−B(d0)δd0 + C(d0)δd2
0 −D(d0)δd3

0 (46)

where the coefficients A, B, C and D are provided in appendix B. The extrema
of E∆ can be determined from the following system of equations

∂E∆

∂d0

∣∣∣∣∣
δd0

= 0

∂E∆

∂δd0

∣∣∣∣∣
d0

= 0.

(47)

For ∆ > ∆h, the homogeneous solution (d0, 0) is no longer a minimum of E∆.
Instead, a heterogeneous damaged state with a positive perturbation ampli-
tude

δd0 =
C(d0)

3D(d0)

1−

√√√√1− 3D(d0)B(d0)

C2(d0)

 . (48)

is solution of Eq. (47b). To go further, we must consider loadings close to
the localization threshold ∆ = ∆h + δ∆ and consequently, damage levels
d0 = dh + δd close to dh. For δd� dh, we show that 3D(d0)B(d0)/C2(d0)� 1
that gives a simplified expression of the perturbation amplitude

δd0 '
B(d0)

2C(d0)
. (49)

Introducing this expression into Equation (47a) provides a relation between
the damage increment δd and the loading increment δ∆ since localization
through the linear relation

δd = T × δ∆ (50)

where T is a positive constant given in Appendix B. Finally, the loading
at failure is obtained by determining the maximum loading increment δ∆c

that can be applied while ensuring the existence of δd0. This condition writes
C2(d0) ≥ 3D(d0)B(d0) and, after linearization close to localization, provides
the expression of δ∆c given in Appendix B. The onset of catastrophic failure
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follows 
∆c = ∆h + δ∆c

dc = dh + Tδ∆c + δd0(δ∆c).

(51)
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Figure 11. Energetical interpretation of localization and failure in presence of a sta-
ble post-localization regime (κ > κc): (a) Energy landscape as a function of the
perturbation amplitude δd0 for different loading increments δ∆ = ∆ − ∆h from
the localization threshold. For each loading level, the damage is fixed to the value
d0 = dmin

0 determine theoretically to minimizes E∆. The position of the minima
determined theoretically are indicated by dots; (b) Evolution of the critical dis-
placements ∆h at localization and ∆c at failure for η = 8, κ = 2κc and σ = 0.001.
The theoretical values at localization are shown by the solid line, at failure in black
dashed for the predictions from the linear stability analysis (referred to as Meth. #1)
and red dashed for the predictions from the global energy minimization (referred to
as Meth. #2). The horizontal dotted lines indicate the loadings at the peak force
and at the snap-back instability.

We first test the accuracy of our calculation. Figure 11(a) shows the energy
landscape caculated from its expression (46) as a function of δd0 at different
loading increments, from δ∆ = 0 at localization to δ∆c = 0.088 at failure,
using the parameters η = 8 and κ = 2κc. The level of damage dmin

0 = dh +
Tδ∆ has been fixed for each loading to the value minimizing E∆(d0, δd0),
as determined from the procedure described previously. The position of the
minimum predicted from Eq. (48) is indicated by dots. Due to the linearization
performed around the localization threshold in our calculation, the failure
loading is slightly overestimated, as it can be noticed that the energy has
actually no local minimum for δ∆ > 0.08. However, the agreement with the
numerical determination of the minimum of E∆(d0, δd0) that corresponds to
the equilibrium configuration of the damage field remains excellent.

35



Figure 6(a) compares the predicted values of the damage level at failure for dif-
ferent values of κ (dotted line) with the results of the simulations performed
in Sec. 4 while Fig. 11(b) compares the failure loads. Failure prediction is
significantly improved. This can be explained by the difference between both
methods: The energy minimization procedure allows the determination of both
d0(∆) and δd0(∆) in the post-localization regime while the homogeneous so-
lution d0(∆) = dh

0(∆) stricly valid for ∆ < ∆h only is assumed to hold after
localization in the stability analysis. But overall, both approaches provide re-
liable estimates of the failure properties of the elasto-damageable materials,
demonstrating that a linear stability analysis and a procedure based on global
energy minization are both appropriate to predict localization and failure from
damage models derived from thermodynamic principles.

Furthermore, the energy minimization procedure sheds light on the nature
of the transitions. The case κ > κc when a stable post-localization regime
does exist is considered in Fig. 12(a) that schematically represents the posi-
tion of the energy extrema in the (d0, δ0) plane. At the localization threshold,
the equilibrium position bifurcates from a homogeneous to a heterogeneous
damage state. When d0 increases further, the amplitude of the localized mode
increases also, starting from δd0 = 0 at ∆ = ∆h, revealing that the localization
is a continuous transition, as also observed in the context of gradient damage
models (Pham et al., 2011; Pham and Marigo, 2013). An unstable equilibrium
position, represented by the dotted branch Fig. 6(a), co-exists with the stable
one for d0 < dc. Both branches merge together at d = dc and subsequently
vanish: The material abruptly fails as it does not admit any equilibrium posi-
tion.

The case κ ≤ κc of Fig 12(b) shows a different behavior as the stable and
unstable branches merge before the bifuraction to a heterogeneous equilibrium
stage could take place. The material therefore fails as the damage field is still
homogeneous. However, the transition to failure is of the same nature in both
cases as it results from the loss of equilibrium position.

6 Discussion

We proposed a damage model based on a few, well identified and tunable sets
of physical ingredients (disorder, interaction, hardening) that was shown to
capture the main features of quasi-brittle fracture, namely localization and
unstable failure. Sufficiently simple to be tractable analytically, it provides
several insights on these transitions.

At the element scale, the critical load at failure emerges from the competition
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Figure 12. Equilibrium states of the material during damage growth in the (d0 , δd0)
plane (see Eq. (32)): (a) For a load redistribution with strong unloading (κ > κc),
the homogeneous damage state bifurcates continuously to a localized damage stage
for d = dh. This stable branch vanishes when it merges with an unstable branch
at d = dc, leading to catastrophic failure. (b) For a load redistribution dominated
by reloading (κ ≤ κc), the stable branch vanishes before any bifuraction to another
stable branch took place: The material fails as the damage field is still homogeneous.

between the degradation of the elastic properties that promotes catastrophic
failure with the toughening process that delays it. In our model, the stability
of a single element is set by the parameter a that describes the variation of
the stiffness with damage (a negative value a < 0 ensures an unstable damage
growth) while the toughening is controlled by the parameter η. Therefore, the
critical failure load is a decreasing function of |a| and an increasing function
of η. An interesting observation is that hardening is required in our model
to achieve an extended regime of stable damage growth. First, it should be
noticed that this property does not result from the specific conditions chosen
in our work, as elements arranged in series or loaded under force imposed con-
ditions would both lead to a similar behavior. This observation is compatible
with Girard et al. (2010)’s findings who did not include hardening in their
model and who observed that localization takes place after, but close to the
first damage event – they do observe a small regime of stable damage growth,
but we expect it to disapear in the homogeneous material limit, as in our
model too, disorder tends to delay catastrophic failure. In the model proposed
by Zapperi et al. (1997), the situation is different, as they do observe an ex-
tended stable post-peak regime. This can be explained from a different choice
of damage criterion. In their simulations, they consider that an element starts
to damage when the local tensile stress exceeds some critical threshold remi-
niscent of the material resistance. In our model, this would amount to consider
a damage criterion of the type F = k(d)∆ > Fc instead of an energy-based
failure criterion. Using their criterion in our model would drastically increase
stability, as it would result in the stability condition ∂F/∂d|∆ = k′(d)∆ = 0
that is always satisfied.
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At the sample scale, the competition between stiffness degradation and hard-
ening is more complex as it involves the interaction between the constitutive
elements. As a result, macroscopic failure emerges from the collective response
of these constitutive elements. Note that this point of view is different the one
adopted by Rudnicki and Rice (1975) who derived a localization criterion from
the response of a single element. The mechanism at the origin of these inter-
actions is the load redistribution process. It plays a central role by selecting
the macroscopic failure behavior from the material characteristics at the small
scale. It can be described by the function G that provides the damage driving
force redistribution δF(~x) = (G ∗ δd) (~x) resulting from a damage increment
δd(~x). In our model, the function G was chosen to decay exponentially fast
with the distance to the damage event, as it was set by the function α involved
in the definition of the nonlocal damage variable.

But what is the mechanism at the origin of the load redistribution process? Re-
cently, Démery et al. calculated explicitely the redistribution of damage driv-
ing force in a 3D elasto-damageable material governed by 3D elasticity and a
damage criterion similar to the one employed in this study. It is shown that the
redistribution kernel G resembles to the Eshelby solution for the mechanical
fields around a soft inclusion embedded in an infinite elastic medium (Es-
helby, 1957) and displays a quadrupole symmetry G(‖~x‖, θ) ∼ cos(4θ‖~x‖).
Note that based on numerical simulations (Falk and Langer, 1998; Maloney
and Lemâıtre, 2006), a similar function had been proposed to describe the
stress redistribution following a plastic event in amorphous materials (Van-
dembroucq and Roux, 2011; Lin et al., 2014; Bouil et al., 2014).

The differences and similarities between the redistribution function chosen
in our model and the one calculated in the context of 3D elasto-damageable
solids are the following:

• Both redistribution funtions are strongly heterogeneous in space. In partic-
ular, the smaller the distance is from the damage event, the stronger the
reloading is. However, our model considers a finite range of interactions con-
trolled by the internal length `, while the kernel derived from 3D elasticity
follows a power law decay.
• Both redistribution funtions show variations in the sign of the reloading that

depends on the position in the damaged solid with respect to the damage
event. This property is a key feature as it allows the unloading of some
regions of the material while other ones are reloaded. However, our model
considers redistribution kernels the sign of which changes with the distance
to the damage event, while the quadrupolar symmetry of the Eshelby-like
redistribution function results in a variation of the sign with the direction
with respect to the main loading axis.

Due to these differences, our work captures only qualitatively the mechanisms
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at play during the progressive damage of quasi-brittle solids. However, it pro-
vides rich insights on the effect of the shape of the redistribution function on
the quasi-brittle behavior of solids as α(~x), and so G(~x), can be varied system-
atically. In particular, our work shows that the resistance to failure decreases
with the shape parameter κ. This behavior might be counter-intuitive as large
κ means an extended unloaded region after failure events (see Fig. 4). However,
this unloading is also accompanied by a stronger reloading of some specific re-
gions that favors the growth of a localized damage mode, and ultimately, the
failure of the material along these weakened parts of the material. Indeed, the
redistribution function of periodicity λα = 2π/qα structures the damage field
over some material regions where damage accumulates. The change of failure
behavior observed at κ = κc reveals a transition from a reloading mechanism
dominated by the positive exponential part of G to another reloading mode
dominated by the sign-changing sinusoidal part of G resulting in a structura-
tion of the damage field. As a result, the most unstable mode for κ < κc

corresponds to the homogeneous perturbation qc = 0, so macroscopic failure
takes place at the failure point of the individual elements without prior local-
ization regime, as expected for an interaction free material. On the contrary,
for κ > κc, failure takes place earlier because of the collective effects generated
by the interactions within the material. Indeed, the sinusoidal load redistri-
bution favors a damage accumulation over some elements only, threatening
the integrity of the whole material instead of sharing the applied load over all
the elements. Once damage localizes, the load redistribution is more intense
on the elements already damaged, resulting in an early overall failure. In our
model, the interactions have a clear detrimental incidence on the resistance of
the material. This observation reflects a general feature of the failure behavior
of heterogeneous materials as the actual resistance of solids is generally lower
than the one of their constitutive elements due to the emergence of cracks or
localization bands.

7 Conclusions

In this study, we have explored the path towards failure in damageable hetero-
geneous solids. Our analysis is based on the description of damage spreading
through a continuum medium with a spatially varying resistance to failure.
The introduction of a non-local damage variable enables to capture the mech-
anism of load redistribution following individual damage events. In our de-
scription, the transfer of mechanical energy into fracture energy takes place
through cascades of damage events resulting from this redistribution process
and the presence of material heterogeneities. However, the level of disorder is
shown to have a weak influence on the overall failure behavior of the material.
In addition, it can be well captured analytically by exploring the material
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response close to the homogeneous material solution.

In particular, we have shown that both localization and failure observed dur-
ing damage growth emerges from the interaction between the constitutive
elements of the material. As a result, changing the shape of the redistribution
function changes the failure properties of the material. Two distinct behaviors
are indeed observed: For mainly positive reloadings, the damage field grows
rather homogeneously until abrupt failure takes place. This failure mode is
similar to the one of a homogeneous medium without interaction and the crit-
ical load coincides with the snap-back instability of the individual elements.
On the contrary, when the redistribution mechanism results in a sufficiently
strong unloading of some regions of the material, catastrophic failure is pre-
ceded by a stable localization regime where the damage field structures around
a particular mode set by the shape of the redistribution function. In that case,
the onsets of damage localization and failure strongly depend on the nature
of the interaction, and may take place either in the pre-peak or the post-peak
regime.

This study sheds light on the failure behavior of quasi-brittle solids, by showing
how damage localization and catastrophic failure emerge from the interaction
between the constitutive elements of the material. But it can also guide the
design of stronger solids throug the control of their collective behavior. The
fabrication of increasingly complex architectures opens new perspectives for
the control of interactions in solids, and we hope that our approach that
bridges material microscopic features to their macroscopic failure properties
can be used as a guideline for the design of materials with improved failure
properties.

A Derivation of the evolution law of the damage field

This Appendix details the calculations of the damage evolution law of Eq. (8).
We first show that it can be obtained from the conservation of energy when
the loading is varied,

∂E

∂∆
= 0. (A.1)

We then show that it can alternatively be obtained when considering energy
conservation for damage variations at constant applied displacement

δE

δd
= 0 (A.2)

where a fonctional derivative is used for the computations. We start with the
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derivation with respect to displacement. In Eq. (A.1), we replace the total
energy E by its expression given in Eq. (4)

∂

∂∆

∫
Σ

1

2
∆2k[d(~x,∆)]d~x+

∫ ∆

0

∫
Σ

∂d

∂∆

∣∣∣∣∣
~x,∆̃

Yc(~x, d)d~xd∆̃−
∫ ∆

0
F (∆̃)d∆̃

 = 0

(A.3)

⇒
∫

Σ
∆k[d(~x,∆)]d~x+

∫
Σ

1

2
∆2∂k[d(~x,∆)]

∂∆
d~x+

∫
Σ

∂d

∂∆

∣∣∣∣∣
~x,∆̃

Yc(~x, d)d~x−F (∆) = 0

(A.4)

⇒
∫

Σ

1

2
∆2∂k[d(~x,∆)]

∂d

∂d

∂∆

∣∣∣∣∣
~x,∆̃

d~x+
∫

Σ

∂d

∂∆

∣∣∣∣∣
~x,∆̃

Yc(~x, d)d~x = 0 (A.5)

⇒
∫

Σ

1

2
∆2k′[d(~x,∆)]

∂d

∂∆

∣∣∣∣∣
~x,∆̃

d~x+
∫

Σ

∂d

∂∆

∣∣∣∣∣
~x,∆̃

Yc(~x, d)d~x = 0 (A.6)

⇒ −
∫

Σ
Y (~x,∆)

∂

∂∆

∫
Σ
α(~x− ~ξ)d(~ξ)d~ξd~x+

∫
Σ

∂d

∂∆

∣∣∣∣∣
~x,∆̃

Yc(~x, d)d~x = 0 (A.7)

⇒ −
∫

Σ

∂d

∂∆

∣∣∣∣∣
~ξ,∆̃

∫
Σ
α(~x− ~ξ)Y (~x,∆)d~xd~ξ +

∫
Σ

∂d

∂∆

∣∣∣∣∣
~x,∆̃

Yc(~x, d)d~x = 0 (A.8)

⇒ −
∫

Σ

∂d

∂∆

∣∣∣∣∣
~ξ,∆̃

Y (~ξ,∆)d~ξ +
∫

Σ

∂d

∂∆

∣∣∣∣∣
~x,∆̃

Yc(~x, d)d~x = 0 (A.9)

⇒
∫

Σ

∂d

∂∆

∣∣∣∣∣
~x,∆̃

(
Y (~x,∆)− Yc(~x, d)

)
d~x = 0 (A.10)

Therefore, the equilibrium condition writes as

Y (~x,∆) = Yc(~x, d). (A.11)

This condition is now derived through another approach using a functional
derivative of the total energy with respect to damage. Let d0(~x) be the damage
field at a given displacement ∆. We consider a variation δd0δ(~x− ~x0) located
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in ~x0 where δd0 is a small parameter. The damage field hence writes as

d(~x) = d0(~x) + δd0δ(~x− ~x0) (A.12)

which results in a non-local damage field of the form

d(~x) = d0(~x) + α(~x− ~x0)δd0. (A.13)

Expanding the stiffness and fracture energy fields k[d(~x] = k[d0(~x)] + k′[d0(~x)]δd0α(~x− ~x0)

Yc[~x, d] = Yc[~x, d0] + Y ′c [~x, d0]δd0δ(~x− ~x0)
(A.14)

at first order in δ0, we obtain the functional derivative of the elastic energy

lim
δd0→0

Eel[∆, d0(~x) + δd0δ(~x− ~x0)]− Eel[∆, d0(~x)]

δd0

=
∫

Σ

1

2
∆2k′[d0(~x)]α(~x− ~x0)d~x

= −
∫

Σ
Y (~x,∆)α(~x− ~x0)d~x

= −`nY ( ~x0,∆).

(A.15)

We obtain similarly the rate of dissipated energy by damage as

lim
δd0→0

Ed[∆, d0(~x) + δd0δ(~x− ~x0)]− Ed[∆, d0(~x)]

δd0

= lim
δd0→0

1

δd0

∫
Σ

∫ ∆

0

∂d

∂∆

∣∣∣∣∣
~x,∆̃

(Yc[~x, d0] + Y ′c [~x, d0]δd0δ(~x− ~x0)) d~x−
∫

Σ

∫ ∆

0

∂d

∂∆

∣∣∣∣∣
~x,∆̃

Yc[~x, d0]d~x


= lim

δd0→0

1

δd0

(`nδd0 (Yc[ ~x0, d0] + δd0Y
′
c [ ~x0, d0]))

= `nYc( ~x0, d0)

(A.16)

We obtain from both previous equations the equilibrium condition

δEt

δd
= 0⇒ Y (~x0,∆) = Yc(~x0, d0). (A.17)
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B Expression of the coefficients used for the global energy mini-
mization

The coefficients involved in the expression (46) of the total energy are given
by

A(d0) =
1

2
∆2k(d0) + Yc0(d0 +

1

2
ηd2

0) (B.1a)

B(d0) = −1

2
∆2k′(d0)− Yc0(1 + ηd0) (B.1b)

C(d0) =
1

4
∆2k′′(d0)

(
1 +

α̃2(qc)

2

)
+

3

4
Yc0η (B.1c)

D(d0) = −1

4
∆2k′′′(d0)

(
1

3
+
α̃2(qc)

2

)
. (B.1d)

The coefficient T that relates the loading increment δ∆ and the damage in-
crement δd since localization (see Eq. (50)) writes as

T = −
∆2
hk
′(dh)k

′′′(dh)

(
1 +

α̃2(qc)

2

)
+ 2Yc0ηk

′′(dh)(α̃
2(qc)− 1)

Yc0η∆hk′′′(dh)

(
1− 1

α̃2(qc)

)(
1 +

3α̃2(qc)

2

) . (B.2)

Finally, the loading increment at failure follows

δ∆c =− Y 2
c0η

2

(
1− 1

α̃2(qc)

)2

/[
2Yc0η∆h

(
1− 1

α̃2(qc)

)(
1 +

α̃2(qc)

2

)(
1

2
T∆hk

′′′(dh) + k′′(dh)
)

−3∆2
hk
′′′(dh)

(
1

3
+
α̃2(qc)

2

)(
TYc0η

(
1− 1

α̃2(qc)

)
+ ∆hk

′(dh)

)]
.

(B.3)
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