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Abstract—Human body communications require energy-
efficient transceivers to connect diverse devices on the human
body for wellness and medical applications. This paper presents
a fully digital pulse-based transmitter (TX) for capacitive body-
coupled communications (c-BCC) in 28 nm FD-SOI CMOS.
The transmitter is operating at 450 MHz where surface wave
(SW) propagation is the dominant mechanism of capacitive body
coupled communication (c-BCC), offering a larger bandwidth
with a more stable channel. The heavily duty-cycled transmitter
uses a 90 MHz free-running oscillator and edge combiners
to generate OOK Gaussian-shaped pulses through a switched-
capacitor PA. Wide range forward body-biasing (FBB), specific
to FD-SOI technology, allows frequency tuning and adaptive
efficiency optimization as a function of data rate. The proposed
transmitter consumes 17 to 76 µW for flexible data rates from
0.1 to 27 Mb/s (170 pJ/b down to 2.8 pJ/b) with up to 14 %
system efficiency under 0.5 V supply voltage.

Index Terms—Body Area Network (BAN), Ultra-Low Power
Transmitter, Ultra-Low Voltage (ULV), Transmitter, Forward
Body Biasing (FBB), Body-Coupled Communication (BCC),
28 nm FD-SOI CMOS

I. INTRODUCTION

THE Human Intranet (HI) aims to interconnect various
kinds of sensors and actuators on the human body [1].

Such a network is finding applications in wearables and
implantable devices for wellness and health purposes such as
hearing-aid, continuous glucose monitoring (CGM), electro-
cardiogram (ECG), oximeter, electromyogram (EMG), brain-
machine interface (BMI), among others. In a more long-term
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d’Electronique de Microélectronique et de Nanotechnologie, F-59000 Lille
(antoine.frappe, andreas.kaiser@junia.com)

J. Rabaey is with Berkeley Wireless Research Center, UC Berkeley, CA,
USA (jan rabaey@berkeley.edu)

Color versions of one or more of the figures in this letter are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier XXXXXXXXX

view, such a network could possibly become a way to augment
ourselves to cope with a quick-changing environment [2].

Today’s wearables such as smartwatches and earbuds are
usually connected to a smartphone with Bluetooth Low Energy
(BLE) technology. This implies a centralized network almost-
fully relying on the smartphone which is not robust enough
and sensibly limits the battery lifetime to a couple of days.
Moreover, BLE technology limits the number of linked devices
(up to 7 devices in the latest Bluetooth 5.0 version) and under-
goes a limited maximum data rate of 1 or 2 Mb/s. Such data
rates are fairly enough for audio and sensor applications (ECG,
EMG, etc.) but are too low for more complex applications such
as BMI and prosthesis control.

The purpose of the Human Intranet is to create a decentral-
ized network where all types of on-body devices with diverse
data rates can interact with each other. For a ”user-friendly”
experience, the devices need to have a small form-factor for
comfortable wearability. To avoid battery replacement or allow
battery-less devices, the power consumption has to be as low
as possible for a long-term operating life. It is also required
to reach ”long-range” (at the human body scale) communi-
cation to avoid the use of repeaters that would degrade the
wearability and power consumption of the network. Finally,
the network requires a robust communication scheme when
undergoing changing environments and motions. We can then
identify 5 main requirements for the design of Human Intranet
transceivers :

• Flexible data rate
• Wearability/Form factor
• Power consumption/Energy efficiency
• Range/Body coverage
• Robustness
On a higher level, it is important to note that privacy,

security, and safety cannot be neglected at any cost [3].
In [4] a decentralized network topology was proposed. It

presents a ”mesh-of-star” topology where Hubs are intercon-
nected with each other in a mesh topology and the Leaves are
connected in a star topology with a Hub as the local central
node (Fig. 1). Hubs are defined as the nodes generating an
important amount of data (e.g. BMI, prosthesis control, etc.),
with low latency and more computing capability, embedded
intelligence, and available energy. On the other hand, Leaves
are defined as nodes generating a lower amount of data,
such as temperature and chemical sensors, ECG, etc., and are

©IEEE Version submitted for final publication in IEEE Journal of Solid-State Circuits
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Fig. 1. The Human Intranet network [4].

much more energy-constrained. Hence, Hubs require a high
communication data rate (tens of Mb/s) where Leaves require
lower data rates (hundreds of kb/s) to save power.

This work presents an ultra-low power transmitter suitable
for both Hubs and Leaves with a flexible data rate for the
Human Intranet. This paper presents an extended version of
[5]. The paper is structured as follows : Section II presents
the state of the art in Body Area Network (BAN) and how the
different existing solutions cope with the requirements stated
in the introduction. Section III presents the system principles
of the proposed transmitter. Section IV describes the circuit
implementation. Section V presents the measurement results
and compares this work with the state of the art. Section VI
presents the on-body demonstration of the propagation mech-
anism with the transmitter. Finally, Section VII concludes this
work.

II. STATE OF THE ART IN BODY AREA NETWORK

A. Free-space RF communication

As stated in the introduction, BLE is a very widely used
standard making the devices easily compatible one with an-
other, but suffers from limited data rates and most of the
time with important power consumption [6], [7]. Another
extensively studied solution using RF propagation for BAN
is Ultra-Wideband (UWB). The principle of UWB lies in a
pulse-based communication in the 3.1−10.6 GHz band. Each
bit is transmitted by a short-time pulse allowing bit-level duty
cycling for reduced power consumption, especially at low data
rates. Simple modulations are usually used such as OOK,
PPM, and BPSK. OOK and PPM allow using non-coherent
receivers reducing the constraints and power consumption by
using a PLL-free architecture. This communication technology
has demonstrated its ability to reach high data rates and its
energy efficiency [8]–[13].

However, communicating over the air around the human
body is challenging because of the body shadowing effect.
When communicating on-body or around-body, the human
body absorbs the radio signal when the transmitter and
the receiver are non-line-of-sight (e.g. for a torso to back
communication). This degrades the path loss and makes the

channel unstable with motion and varying environments. To
compensate for the body shadowing effect, it would require
increasing the output power of the transmitter, improving the
sensitivity of the receiver, using larger gain antennas, and/or
using repeaters. Such solutions would inevitably increase the
power consumption and/or downgrade the wearability of the
nodes.

B. In-Body Ultrasound

As the human body is mostly composed of water ul-
trasounds propagate easily in the human body. Hence this
communication technique has been recently studied for human
body communication. However, the channel suffers from mul-
tipath caused by the reflections of the heterogeneous medium
composed of muscle, bone, and skin material [14]. Fur-
thermore, similarly to electromagnetic communication, losses
increase with the frequency which limits the central frequency
of the transducers to ∼10 MHz. This frequency limitation
inherently restrains the bandwidth and hence the communica-
tion data rate [14]. Ultrasound remains a good communication
option for short-range implant (under-skin) to on-body (on-
skin) communication with a low data rate.

C. Body Coupled Communication

To overcome the body shadowing effect, a recently studied
alternative solution is body coupled communication (BCC).
This solution proposes to use the human body as the com-
munication channel instead of free-space. Three different
mechanisms have been mainly studied so far in BCC [15] :

1) Magnetic BCC (m-BCC): This mechanism is using reso-
nant coils wrapped around body limbs to communicate through
magnetic fields. Magnetic fields travel with low loss through
biological tissue, as the human body is magnetically inert [16].
Hence, if the magnetic resonance is kept constant, magnetic
coupling reaches low path loss with all body coverage. This
allows reaching ultra-low power transceivers with low output
power at the TX side and relaxed sensitivity at the RX
side [17]. However, coils wrapped around the body are not
easily wearable. For example, having a coil around the head or
the torso is not convenient. Furthermore maintaining magnetic
resonance is easily sensitive to motion artifacts. It remains a
good communication option if both the receiver and transmitter
are on the same limb with light coils.

2) Galvanic BCC (g-BCC): This communication scheme
uses two electrodes on both the transmitter and the receiver.
The principle is based on a differential signal creating a
galvanic current propagating thru the skin. Galvanic coupling
has the advantage to be very robust to environment changes
due to a very stable channel. However, it suffers from strong
path loss beyond a few centimeters [18]. Furthermore, the low
frequency of operation limits the usable bandwidth and hence
the data rate. Thus, this makes g-BCC a good candidate for
an implant (under-skin) to on-body (on-skin) communication,
but makes full-body coverage communication unachievable.
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Fig. 2. Contribution of each mechanism as a proportion of the total electric
field for 21 MHz (dotted lines) and 450 MHz (solid lines).

3) Capacitive BCC (c-BCC): the principle is based on one
electrode in contact with the skin at the TX and RX side, with
a floating electrode on each side acting as ground electrodes.
The signal propagates along the body as an electric field.
The return path is formed by the ground and air environ-
ment creating a capacitive coupling between the transmitter
and the receiver [19]. The dominant propagation mechanism
in capacitive body coupled communication depends on two
parameters : frequency and distance (Fig. 2). For a higher
frequency and/or longer distance the dominant propagation
mechanism is the surface wave (SW) propagation. On the other
hand, at a lower frequency or very short distances, electro
quasi-static (EQS) coupling will be the dominant mechanism.
c-BCC with a frequency of operation below 100 MHz offers
low path loss for a distance up to 1.5 m [19]. However, because
of the important influence of the return path on the channel, the
communication can be sensitive to changing environment and
motion when EQS is the dominant propagation mechanism.

Capacitive body-coupled communication in the
400−500 MHz band has been studied in [20], [21],
with the main idea to increase the carrier frequency and the
available bandwidth and hence the data rate. At 450 MHz
the path loss can be approximated with EQS near-field
propagation for up to 15 cm. At a further distance, surface
wave propagation becomes predominant and the path loss
is approximated by far-field propagation (Fig. 2). [21]
demonstrated with numerical simulation and measurements
that far-field losses have a slope of −0.37 dB/cm at 450 MHz
which is approximately the same slope value of a near-field
EQS propagation at 80 MHz found in [19]. The two models:
EQS propagation at 80 MHz and surface wave model at
450 MHz are compared in Figure 3. These two models
are also compared to a UWB around-body model [22] to
emphasize how UWB, and more generally over-the-air radio
transmissions, suffers from the body shadowing effect, causing
important path loss compared to c-BCC. The path loss models
are normalized at 5 cm distance from the antenna/electrode
as the insertion loss (loss at 5 cm distance) depends on
the antenna/electrode impedance matching. Furthermore,
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Fig. 3. Channel model of c-BCC SW [21] compared to c-BCC EQS [19]
and around-body UWB [22] (Note: The path loss models are normalized at
5 cm distance from the antenna/electrode as the insertion loss depends on the
antenna/electrode impedance matching).

[21] highlighted a minimum available bandwidth of 100
MHz at 450 MHz over which the attenuation is almost to
be constant. Ultimately, since the propagation mechanism
is dominated by surface waves phenomena at 450 MHz, a
system implementation at this frequency of operation enables
a communication less sensitive to environment changes since
the return path has almost no impact at this frequency of
operation [21].

Several transceiver implementations have been proposed in
the state of the art using capacitive body coupled communica-
tion [23]–[29]. All of them use frequencies below 150 MHz
where the EQS propagation mechanism is predominant. [23],
[24] proposed transceivers with direct-baseband communica-
tion with up to 30 Mb/s and 150 Mb/s, respectively. Such
solutions allow using simple driving buffers at the transmitter
side and defer the complexity to the receiver. Although both
solutions report good energy efficiency below 20 pJ/b, the
reported power consumption does not take into account the
clock generation power consumption which would be the
most power-consuming part. [27], [28] proposed transceivers
compliant with the IEEE 802.15.6 BAN standard section
dedicated to human body communication [30]. In this standard
section, the frequency of operation is defined at 21 MHz
with a 3 dB bandwidth of 5.25 MHz with a constrained
mask-shaping requiring a sharp rejection below 2 MHz [28].
Such low frequency of operation and bandwidth limits the
maximum achievable data rate to a few Mb/s. [29] proposed a
dual-transceiver being able to communicate efficiently at both
high (80 Mb/s) and low data rate (100 kb/s). The high data
rate transceiver uses a dual-band communication with BPSK
modulation in the 20−60 MHz and 140−180 MHz bands to
avoid FM-band interference (80−100 MHz).

III. SYSTEM CONSIDERATIONS OF THE PROPOSED
TRANSMITTER

According to the channel studies in the 400−500 MHz
band [20], [21], this allows for wide bandwidth >100 MHz
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and more channel stability under motion and changing envi-
ronment. Taking advantage of the wide available bandwidth,
the TX is inspired by UWB principles with the use of pulse-
based communication with simple OOK modulation. Pulse-
based communication can handle aggressive duty-cycling
transmitters allowing for low power consumption and the
ability to reach high data rates. From the analysis in [31], the
trade-off between bandwidth (BW) and maximum data rate is
defined. The temporal expression of a pulse centered at the
frequency fc with a Gaussian envelope can be written as:

p(t) = A exp

(
− t2

2σ2

)
cos(2πfct) (1)

where A is the maximum amplitude of the pulse and σ the
standard deviation of the Gaussian envelop. In the frequency
domain the single side-band Fourier transform of (1) gives:

P+(f) = A
√
πσ exp

(
− (2πσ(f − fc))

2

2

)
(2)

The trade-off between the pulse width (Tp =∼ 6σ), and hence
the maximum pulse repetition frequency (PRF =∼ 1/6σ),
and the bandwidth (BW) at −10 dBc is given by solving :

10 log10

(
|P+(f)|2

|P+(fc)|2

)∣∣∣∣
f=fc±BW/2

= −10 dB (3)

This gives the following relationship between BW and PRF:

BW (PRF ) =

√
− ln(0.1) · PRF

π
(4)

This function is plotted in Figure 4. As a compromise between
available bandwidth and maximum achievable data rate, the
chosen bandwidth is 150 MHz, which corresponds to a ∼20 ns
pulse. For a 1 bit per pulse modulation like OOK, this is
corresponding to a maximum theoretically achievable data rate
of ∼50 Mb/s. A shorter pulse would require more bandwidth,
while a longer pulse would limit the maximum achievable
data rate. Furthermore, as OOK modulation does not require
specific phase noise requirements as it is an amplitude modu-
lation, short pulses with this simple modulation enable the use
of an unlocked free-running oscillator, avoiding the use of a
PLL which is a power-consuming part in RF circuits.

Gaussian
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Fig. 5. Proposed architecture of the c-BCC SW TX.

The chosen frequency is not covered by the IEEE 802.15.6
standard for c-BCC communication, hence there is no specific
spectrum mask to fulfill. However, as the fractional bandwidth
is more than 20 % we can consider the signal as a UWB
signal, which should respect FCC regulation [32]. Although
the emitted signal would be mainly confined to the body,
the signal will partially radiate because of the body antenna
effect, where the human body acts as an antenna radiating
the signal power into the air [33]. The impact of the body
antenna effect has not been measured yet for frequencies
higher than 150 MHz, but this effect is expected to increase
with frequency. Hence, it is desirable to limit out-of-band
emissions, for example in the GPS band (960−1610 MHz)
[32].

The transmitter has been designed for a 50 Ω load for mea-
surements purposes. In a complete solution, specific electrodes
matched to the desired impedance should be designed. Re-
garding the receiver requirements, these have been addressed
in [4]. From the system analysis with classical RF models, it
is estimated that a receiver with a sensitivity of −104 dBm
and −77 dBm, at low and high data rates respectively, would
allow for communication up to 50 cm on-body.

IV. TRANSMITTER IMPLEMENTATION

The proposed TX circuit (Fig. 5) is composed of a free-
running pseudo-differential ring oscillator (PD-RO) at 90 MHz
feeding a switched-capacitor power amplifier (SCPA) with em-
bedded edge-combiners (EC), in order to reach the 450 MHz
central frequency. The overall TX is data-enabled (OOK
modulation), which means it only runs during the pulse
duration, saving power at low data rates. Short pulses com-
bined with non-coherent OOK modulation accept the use of
an unlocked frequency reference and enable instant startup
time and aggressive duty-cycling. A low-frequency oscillator
with frequency multiplication in the power amplifier allows
for reduced dynamic power consumption as the circuit is
massively low-frequency operated. Digital pulse-shaping is
also introduced for spectral efficiency limiting out-of-band
emissions. The 28 nm FD-SOI technology allows for threshold
voltage tuning through wide range body-biasing. As depicted
in Figure 6, in the 28 nm FD-SOI technology, the body factor
is ∼85 mV/V for the thin oxide LVT devices and the body
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voltage variation can range up to +/- 3 V [34]. This feature is
used in three folds in the proposed circuit. First, it enables
low threshold voltage allowing ultra-low voltage operation
down to 0.5 V for ultra-low power consumption. Secondly, it
allows for frequency calibration and process compensation on
the oscillator, by tuning the threshold voltage of the inverters
in the ring oscillator. Thirdly, it enables power amplifier
efficiency optimization by reducing the ON-resistance of the
transistors. The oscillator’s and SCPA’s output inverters are
custom designed with a gate length increased to Lmin + 16 nm
as well. This relaxed gate length limits the impact of leakage
and offers manufacturing robustness while operating at 0.5 V.

The one-time calibration, through body-biasing, of the PD-
RO and the EC-SCPA is made externally. In future work, a
complete SoC implementation with integrated body-bias gen-
erator [35] and periodic calibration with an on-chip reference
should be designed. Such additional parts will certainly add
power consumption overhead to the transmitter. However, an
integrated body-bias generator would allow to duty-cycle the
body-biasing by the input data like the rest of the transmitter.
Hence, it will decrease the static power consumption due to
leakage currents. Similarly to the body-bias generator, voltage
regulation shall be included in a complete SoC implementa-
tion.

A. Pseudo-Differential Ring Oscillator

A ring oscillator requires at least two periods to oscillate.
Hence, the 90 MHz frequency is chosen as two periods
correspond to 22.22 ns which is the specified pulse width.
A pseudo-differential architecture is composed of two single-
ended ring oscillator loops mounted in a pseudo-differential
topology using inverter-based latch locking between each
stage. The PD-RO circuit is represented in Figure 7. The os-
cillator is based on 45 stages pseudo-differential architecture.
5 phases are taken every 9 stages from both the negative and
positive loops to perform frequency multiplication. The PD-
RO is designed with an important number of stages to reach
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low-frequency of oscillation and to enable symmetric duty-
cycling for proper edge-combining. The positive feedback
enables fast current transitions with sharp edges as required
for the edge combination [36]. A NAND gate inside each loop
duty-cycles the oscillator according to the input data.

The PD-RO low-frequency reduces the power consumption
of the frequency reference down to 11 µW when running at
90 MHz. As presented in Figure 8.a, the oscillator frequency
fine-tuning is obtained via body-biasing through a one-time
calibration (around VBBRO = 0.5 V), and to compensate
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process variations between different devices. As the PD-RO is
turned-off between each pulse by the introduced NAND gates,
there is no long-term drift of the oscillator. According to jitter
theory in free-running ring oscillator, for a short runtime, white
noise is the dominant noise source in free-running oscillators,
and jitter increases as the square root of the run-time [37].
Hence by measuring the phase noise of the oscillator in the
−20 dB/decade slope the equivalent accumulated jitter can
be calculated. In Figure 8.b we present the measured PD-RO
phase noise. The PD-RO achieves a measured accumulated
jitter of 74 ps when running for a 22.22 ns duration.

B. Edge-Combiners Switched-Capacitor Power Amplifier
As presented in Figure 9.a and 8.c the edge-combiners (EC)

are performing frequency multiplication by 5 to reach the
450 MHz central emission frequency. In each SCPA slice, an
edge combiner multiplies the PD-RO frequency by using the
5 phases of the 90 MHz oscillator. Having the edge combiner
distributed in each of the 16 slices allows having the 450 MHz
frequency only at the very final inverter of each slice allowing
a massively low-frequency operated circuit. It also relaxes
the constraints on buffers and ‘clock’ tree distribution, with
the multiplication performed only in the activated slices. In
practice, the conceptual AND and OR gates represented in
Figure 9.a are implemented in NAND logic for fast switch-
ing, limiting the introduced jitter by the edge-combiners. As
observable in Figure 11, the edge-combiners provide robust
frequency-multiplication thanks to body-biasing. Applying a
2.2 V body biasing on the edge-combiners reduces by 40X
the standard deviation of process and mismatch variations
compared to a nominally body-biased edge-combiner. This
effect is explained by the threshold voltage reduction offered
by FBB, making the switching of the NAND gates sharper
and hence reducing timing errors.

The edge combiner drives an output inverter in series
with a 135 fF capacitance acting as a switched capacitor
power amplifier. CMOS inverter-based SCPA allows for high
integrability, digital configuration, and high efficiency [38].
The energy-efficiency of an SCPA strongly depends upon the
ON-resistance (ron) of the switches in the output inverters.
The usual technique to reduce ron is to increase the width of
the transistors. However, this leads to an increase of the para-
sitic capacitance, increasing the dynamic power consumption
and hence degrading the efficiency of the power amplifier.
The forward body-biasing (FBB) knob, specific to FD-SOI
technologies, is used to lower the threshold voltage of the
transistors, reducing ron at the low 0.5 V supply voltage,
limiting their size and parasitic capacitance which improves
the efficiency of the power amplifier as well as saving area.
By using the simulation-validated model proposed in [39]
it is shown in Figure 10 that a forward body-biased SCPA
improves by 6 % the peak system efficiency (SEpeak) of the
power amplifier while reducing by 45 % the switches area at
450 MHz. For further area saving the unit capacitances Cu

in each slice are MOM capacitances stacked on top of the
inverters.

From SCPA theory [38], for an ideal peak output power of
0 dBm and a supply voltage of 0.5 V, the optimal load is equal
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to 50 Ω which avoids the use of a lossy matching network.
An external inductance is used in a 0402 package to form a
wideband LC bandpass filter centered at 450 MHz.

C. Digital Pulse Shaping

As observable in Figure 12, the pulse shape has an important
impact on the frequency response of the transmitter. With a
rectangular pulse shaping (i.e. no pulse shaping) important
sidelobe emissions are observable which cause interferences
and degrade spectral efficiency. Gaussian pulse shaping has
already been demonstrated to be very efficient to limit out-
of-band spectral emissions [8], [31]. Similarly to [8], Fig-
ure 12 compares ideal Gaussian pulse shaping with sampling
frequencies equal to fc and 2fc. It is shown that an ideal
Gaussian pulse shaping at 2fc sampling frequency removes
the sidelobes emissions at 2fc, limiting out-of-band emis-
sions. Hence, a near-Gaussian pulse shaping, as shown in
Figure 9.d, with a sampling frequency of 2fc is implemented.
In Figure 9.b the schematic of the implemented pulse-shaper
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is presented. A dual 5-bit Johnson ring counter driven by
complementary clocks provides the enable (ENx) signals.
The complementary 450 MHz clocks are generated by two
identical edge combiners from respectively the positive and
negative phases of the 90 MHz PD-RO (ϕ1−5n, ϕ1−5p).
The 2fc frequency is then easily generated without power
consumption overhead by using the complementary clocks,
thanks to the pseudo-differential architecture of the oscillator.
The frequency response of the near-Gaussian pulse shaping
implemented is observable in Figure 12, and shows that it
limits out-of-band emissions at 2fc frequency and improves
spectral efficiency. The pulse shaper and edge combiners are
designed using standard cells with a poly-biasing (i.e. gate
length extension) of 16 nm. The digital pulse-shaper, edge-
combiners, and associated logic are body-biased with the same
voltage as the power amplifier (VBBPA) for fast-switching at
low operating voltage.

V. MEASUREMENTS RESULTS

The presented chip has been implemented in the 28 nm FD-
SOI CMOS technology from STMicroelectronics, as presented
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TABLE I
STATE OF THE ART COMPARISON FOR BAN TX

This Work
H. Cho

[29]
JSSC’15

J. Lee
[24]

VLSI’ 17

W. Saadeh
[25]

JSSC’ 17

J. Jang
[26]

JSSC’ 19

S. Maity
[23]

JSSC’19

B. Chatterjee
[27]

RFIC’ 20

J. Park
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JSSC’19

G. De Streel
[8]

JSSC’17

X. Chen
[6]

JSSC’ 19

Y. Shi
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ISSCC’ 19

Radio
Technology

C-BCC
(SW)

C-BCC
(EQS)

C-BCC
(EQS)

C-BCC
(EQS)

C-BCC
(EQS)

C-BCC
(EQS)

C-BCC
(EQS)

IEEE 802.15.6
M-BCC UWB

IEEE 802.15.4a BLE BLE

Process
Technology

28nm
FD-SOI 65nm 65nm 65nm 65nm 65nm 65nm 65nm 28nm

FD-SOI 40nm 65nm

Carrier
Frequency [MHz] 350 - 550 13.56 20 - 60

140 - 180
Baseband
<100MHz 20 - 120 20 - 60

100 - 180
Baseband
<100MHz 22.27 40 3500 - 4500 2400 2400

Supply
Voltage [V] 0.5 1.2 1 Not

Reported 1.1 1 1 0.7 0.6 0.55 0.6 1.2

Data rate
[Mb/s] 0.1 27 0.1 80 100 2 80 30 1 10 5 0.11 27 1 1

Modulation OOK OOK BPSK
Decision
Feedback

Equalization

P-OFDM
BPSK

QPSK
BPSK NRZ OOK OOK BPM/BPSK GFSK GFSK

TX Power
Consumption [µW] 17 76 21 2600 350* 870 1700 93* 20.6 22.4 37 100 380 490 610

TX Energy
per bit [pJ/b] 170 2.8 210 32.5 3.5 435 22 3.1 20.6 2.24 7.2 950 14 490 610

Output
Power [dBm] −33.8♯ −19.7♯ Not

Reported
Not

Reported
Not

Reported
Not

Reported
Not

Reported
Not

Reported −24.8 −20 −19 −8.4

TX System
Efficiency [%] 2.44 14 Not

Reported
Not

Reported
Not

Reported
Not

Reported
Not

Reported
Not

Reported 17.8 2.6 2.6 23.6

Area [mm²] 0.0418 0.1672 5.76 0.00348 0.54 1.3 0.02 0.117 0.0204 0.095 0.0166 0.494
♯ Note: For a 50 Ω load * Note: Not including frequency synthesis power consumption
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in Figure 13. For measurements, LDOs are placed on PCB
for voltage regulation at 0.5 V. The proposed transmitter
reaches a maximum achievable data rate of 27 Mb/s. The
output power and system efficiency of the TX is measured
on several devices at the maximum data rate (for Hub-to-Hub
communication) and at a low data rate of 100 kb/s (for Leaves
to Hub communication). In Figure 14.a the output power and
system efficiency (at low and high data rates) is plotted versus
the applied body-biasing voltages on the power amplifier. It
shows that for a measured −19.7 dBm output power at the
maximum data rate of 27 Mb/s, the EC-SCPA reaches an
optimal operating point at VBBPA = 2.2 V where the system
efficiency is maximum reaching 14 %. An optimal body
biasing point exists as FBB decreases the ON-resistance, while
on the other hand, it increases the current leakage. Hence, the
optimal bias corresponds to the point where the leakage power
consumption becomes predominant. The body-biasing voltage
can be adapted to reach the best system efficiency for a given
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oscillator at 100 kb/s.

data rate, or to compensate process variations, through one-
time calibration. The TX consumes 76 µW at 27 Mb/s, which
corresponds to an energy efficiency of 2.8 pJ/b, for an overall
14 % system efficiency at −19.7 dBm average output power.
For the lowest data rate (100 kb/s), the TX consumes 17 µW
with 2.44 % system efficiency, translating into an energy
efficiency of 170 pJ/b for a −33.8 dBm average output power.
The output power is measured for a 50 Ω load, impedance
of the measurement equipment. The power breakdown of the
transmitter is plotted versus the data rate in Figure 14.b. The
PD-RO is the dominating power consumer for a data rate up to
2 Mb/s because of its static power dissipation. At higher data
rates the EC-SCPA becomes the largest power-consuming part
of the TX. Figure 15 shows the OOK modulated output signal
in the time and frequency domains for the low and high data
rates (100 kb/s and 27 Mb/s) and highlights the large signal
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Fig. 16. Power consumption versus data rate compared with TX state of the
art.

bandwidth and the effect of the pulse shaping. We can notice
in Figure 15.b spurs spaced by 27 MHz which corresponds to
the pulse repetition rate. However, the frequency response is
better at fc ≈ 350 MHz (VBBRO = 0.4 V) as observable in
Figure 15.b. This is due to a slight mismatch of the LC filter
at the output, because of parasitics. A slight change of the
LC bandpass could result in a performance improvement in
terms of output power and efficiency at 450 MHz and remove
the spurs in the 300−400 MHz band. The pulses reach a
peak-to-peak amplitude of ∼150 mV. The pulses amplitude
remains constant at any data rate, which automatically scales
the average output power with data rate. The active area of
the TX occupies 0.0418 mm² (Fig. 13).

The TX performances are summarized in Table I and
compared with state of the art transmitters for BAN. For a
visual comparison of the TX performances, the total power
consumption is plotted versus the data rate and compared with
state of the art TXs in Figure 16. The power consumption of
the surface-wave transmitter is at par or better than the state-
of-the-art over the full range of data rates. When compared
to UWB TX, this work shows a ∼5X improvement in energy
efficiency at both high and low data rates for similar output
power [8] without suffering from the body shadowing effect.
Compared to m-BCC [17] the TX achieves a 20% reduction in
power consumption at an equal data rate (5 Mb/s) with similar
output power. With respect to a c-BCC (EQS) TX [29], this
SW solution improves the energy efficiency by 11X and 1.2X,
for the high and low data rates, respectively over the state-of-
the-art. In comparison with [27], this work offers a wider range
of operating data rate and a higher maximum achievable data
rate with equivalent energy efficiency order. [23] also reports
a 30 Mb/s transmitter with similar energy efficiency (∼3pJ/b)
but does not take into account the power consumption of the
clock generation, which can easily be predominant in such
low power circuits. Similarly, [24] reaches a very high data
rate up to 150 Mb/s with 3.5 pJ/b energy efficiency but does
not take into account the power consumption of the frequency
synthesis. Finally, [26] also reports a very high data rate up to
80 Mb/s but at the cost of a 22X higher power consumption.
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The key techniques to reach state-of-the-art energy effi-
ciency are: 1) ultra-low voltage operation enabled by body-
biasing 2) pulse-based communication for high duty-cycling
3) massively low-frequency operated architecture to reduce
dynamic power consumption.

VI. ON-BODY DEMONSTRATION

Finally, as a proof of concept, a demonstration of the
signal propagation on the human body is shown in Figure 17.
On-body measurements are challenging for c-BCC because
the ground planes must be considered carefully [33]. The
transmitter is battery powered to avoid earth-grounded supply
but the PCB-ground remains large and the amplifier at the RX
side has a earth-grounded power supply. Although using SW
as the dominant propagation mechanism limits the impact of
the return path by nature, it should still be noted that such a
setup is not fully representative of a communication between
on-battery wearable devices with small ground planes. The
signal propagation is demonstrated in two scenarios. The first
scenario (in red in Figure 17) demonstrates a communication
along the arm where the two electrodes are in line-of-sight
with a distance up to 50 cm. In the second scenario (in
blue in Figure 17), one electrode is placed on the pectoral
while the second is placed on the shoulder blade. In this
scenario, the electrodes are non-line-of-sight and spaced from
each other at a distance of 30 cm (following the path along
the body). This second scenario helps to demonstrate the
capabilities of body coupled communication when undergoing
the body shadowing effect. A 4 cm² electrode (similar to
the one used in [21]) is wired to the output of the battery-
powered TX and attached to the body. As a receiver, a
TRF37D73EVM amplifier from Texas Instruments, offering
a 20 dB gain, is attached to a second electrode with the
same dimensions. The signal is then observed and recorded
on a digital oscilloscope from Keysight (DSO91204A). In
Figure 18 post-measurement signal processing is applied on



IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. XX, NO. XX, XXX XXXX 10

-14 -12 -10 -8 -6 -4 -2 0 2 4 6
Time [s] x 10-7

-0.2

0

0.2

Am
pl

itu
de

 [V
]

-14 -12 -10 -8 -6 -4 -2 0 2 4 6
Time [s] x 10-7

-0.01

0

0.01

Am
pl

itu
de

 [V
]

-14 -12 -10 -8 -6 -4 -2 0 2 4 6
Time [s] x 10-7

-5

0

5

Am
pl

itu
de

 [V
]

# 10-3

-14 -12 -10 -8 -6 -4 -2 0 2 4 6
Time [s] x 10-7

0

1

2

3

Am
pl

itu
de

 [V
]

# 10-3

1010010110

TX input data

Received signal 
after amplifier

Received signal 
after digital 

bandpass filter

Envelop detection 
on filtered signal 

1010010110101001011010100101101010010110101

10100101101010010110101001011010100101101010010110101
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to shoulder scenario (blue in Figure 17).

the measured received signal. After applying a digital band-
pass filter and envelope detection, the data can be easily
retrieved. Furthermore, it is notable that when the electrodes
are not attached to the body (air propagation) the signal is
merely observable over a few centimeters. This demonstrates
that the mechanism of propagation is truly body-coupled and
not because of the electrodes acting as antennas with over-the-
air propagation. A video of the full demonstration is available
at [40].

VII. CONCLUSION

A 0.5 V 28 nm FD-SOI CMOS ultra-low voltage transmitter
with flexible data rate (100 kb/s to 27 Mb/s) and using
capacitive body-coupled communication with surface wave
propagation is presented. The highly duty-cycled transmitter
with pulse-based communication uses a low frequency, body-
bias controlled oscillator and a switched-mode power amplifier
with embedded frequency multiplier, Gaussian pulse shap-
ing, and body-bias efficiency optimization. When compared
to body-coupled transmitter state of the art, the proposed
TX solution shows better flexibility as addressing a wider
operation data rate, while staying at par or better in terms
of energy efficiency. Moreover, the surface wave body-coupled
link has been successfully demonstrated on-body using an off-
the-shelf receiver. Future work will focus on the design of 1)
a fully integrated solution with on-chip body-bias generation
and periodic calibration, 2) the design of a receiver to demon-
strate a full data transfer on-body, 3) electrode design with
emerging flexible electronics and proper impedance matching,
4) and implementation of the MAC protocol [4] for a full
demonstration of the HI network [41].
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