Polymer Flow Through Porous Media: Numerical Prediction of the Contribution of Slip to the Apparent Viscosity. - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Transport in Porous Media Année : 2017

Polymer Flow Through Porous Media: Numerical Prediction of the Contribution of Slip to the Apparent Viscosity.

Résumé

The flow of polymer solutions in porous media is often described using Darcy’s law with an apparent viscosity capturing the observed thinning or thickening effects. While the macroscale form is well accepted, the fundamentals of the pore-scale mechanisms, their link with the apparent viscosity, and their relative influence are still a matter of debate. Besides the complex effects associated with the rheology of the bulk fluid, the flow is also deeply influenced by the mechanisms occurring close to the solid/liquid interface, where polymer molecules can arrange and interact in a complex manner. In this paper, we focus on a repulsive mechanism, where polymer molecules are pushed away from the interface, yielding a so-called depletion layer in the vicinity of the wall. This depletion layer acts as a lubricating film that may be represented by an effective slip boundary condition. Here, our goal is to provide a simple mean to evaluate the contribution of this slip effect to the apparent viscosity. To do so, we solve the pore-scale flow numerically in idealized porous media with a slip length evaluated analytically in a tube. Besides its simplicity, the advantage of our approach is also that it captures relatively well the apparent viscosity obtained from core-flood experiments, using only a limited number of inputs. Therefore, it may be useful in many applications to rapidly estimate the influence of the depletion layer effect over the macroscale flow and its relative contribution compared to other phenomena, such as non-Newtonian effects.
Fichier principal
Vignette du fichier
zami-pierre_18221.pdf (292.19 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03514358 , version 1 (06-01-2022)

Identifiants

Citer

Frédéric Zami-Pierre, Romain De Loubens, Michel Quintard, Yohan Davit. Polymer Flow Through Porous Media: Numerical Prediction of the Contribution of Slip to the Apparent Viscosity.. Transport in Porous Media, 2017, 119 (3), pp.521-538. ⟨10.1007/s11242-017-0896-y⟩. ⟨hal-03514358⟩
6 Consultations
5 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More