Initial results from the Oman Drilling Project Multi-Borehole Observatory: Petrogenesis and ongoing alteration of mantle peridotite in the weathering horizon

Peter B Kelemen, James A Leong, Juan Carlos de Obeso, Jürg M Matter, Eric T Ellison, Alexis Templeton, Daniel B Nothaft, Alireza Eslami, Katy Evans, Marguerite Godard, et al.

To cite this version:
Peter B Kelemen, James A Leong, Juan Carlos de Obeso, Jürg M Matter, Eric T Ellison, et al.. Initial results from the Oman Drilling Project Multi-Borehole Observatory: Petrogenesis and ongoing alteration of mantle peridotite in the weathering horizon. Journal of Geophysical Research: Solid Earth, American Geophysical Union, 2021, 126 (12), pp.e2021JB022729. 10.1029/2021JB022729. hal-03513332

HAL Id: hal-03513332
https://hal.archives-ouvertes.fr/hal-03513332
Submitted on 5 Jan 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Initial results from the Oman Drilling Project Multi-Borehole Observatory: Petrogenesis and ongoing alteration of mantle peridotite in the weathering horizon

Peter B. Kelemen, James A. Leong, Juan Carlos de Obeso, Jürg M. Matter, Eric T. Ellison, Alexis Templeton, Daniel B. Nothaft, Alireza Eslami, Katy Evans, Marguerite Godard, Benjamin Malvoisin, Jude A. Coggon, Nehal H. Warsi, Philippe Pèzard, Saebyl Choe, Damon A.H. Teagle, Katsuyoshi Michibayashi, Eiichi Takazawa, Zaher Al Sulaimani and the Oman Drilling Project Science Team

Abstract

The Oman Drilling Project “Multi-Borehole Observatory” (MBO) samples an area of active weathering of tectonically exposed peridotite. This paper reviews the geology of the MBO region, summarizes recent research, and provides new data constraining ongoing alteration. Host rocks are partially to completely serpentinized, residual mantle harzburgites and replacive. Dunites show evidence for “reactive fractionation”, in which cooling, crystallizing magmas reacted with older residues of melting. Harzburgites and dunites are 65-100% hydrated. Ferric to total iron ratios vary from 50 to 90%. In Hole BA1B, alteration extent decreases with depth. Gradients in water and core composition are correlated. Serpentine veins are intergrown with, and cut, carbonate veins with measurable 14C. Ongoing hydration is accompanied by SiO2 addition. Sulfur enrichment in Hole BA1B may result from oxidative leaching of sulfur from the upper 30 m, coupled with sulfate reduction and sulfide precipitation at 30-150 m. Oxygen fugacity deep in Holes BA3A, NSHQ14 and BA2A is fixed by the reaction 2H2O = 2H2 + O2 combined with oxidation of ferrous iron in serpentine, brucite and olivine. fO2 deep in Holes BA1A, BA1D and BA4A is 3-4 log units above the H2O-H2 limit, controlled by equilibria involving serpentine and brucite. Variations in alteration are correlated with texture, with reduced, low SiO2 assemblages in mesh cores recording very low water/rock ratios, juxtaposed with adjacent veins recording much higher ratios. The proportion of reduced mesh cores vs oxidized veins increases with depth, and the difference in fO2 recorded in cores and veins decreases with depth.

Plain Language Summary

The Oman Drilling Project developed a “Multi-Borehole Observatory” (MBO) in an area of active weathering of tectonically exposed peridotite, to study the geochemistry, mechanics and hydrology of peridotite alteration, which modifies the mineralogy, composition, density and rheology of mantle lithologies, creates and sustains plate boundaries, and forms dramatic redox gradients. In turn, these redox conditions support a unique subsurface microbial ecosystem, form free H2 gas, facilitate methane generation, and potentially play a role in the origin of life on this and other planets. This paper provides an overview of the geochemistry of the area within and surrounding the MBO, a summary of recent research on core and fluids from three new cored boreholes and four new rotary boreholes in the MBO, together with older Omani water monitoring well NSHQ14, and new data and calculations constraining ongoing peridotite alteration in this area. We constrain the igneous history of the mantle rocks, the extent to which they have been hydrated, carbonated and oxidized. Highlights include new hypotheses on mechanisms of shallow sulfur depletion and deeper enrichment, and new insights into the interaction of water and minerals that controls the partial pressures of oxygen and hydrogen in this important geochemical environment.
1. Introduction

The Oman Drilling Project (OmanDP) Multi-Borehole Observatory (MBO) lies in the area bounded by latitudes 22.84 to 22.98°N, and 58.58° to 58.76°E (Figures 1, 2 and 3), northeast of the city of Ibra in the Sultanate of Oman, and close to the town of Batin. This area was chosen for drilling to investigate ongoing hydration, carbonation and oxidation of exposed mantle peridotite during near-surface weathering, the associated hydrological system, and the subsurface, chemosynthetic biosphere fostered by weathering of mantle peridotite. Cores collected in the MBO will also be relevant for understanding mantle melt transport, and quantifying the cooling history of the shallow mantle near a spreading ridge. Conversely, cores from the crust-mantle transition zone (MTZ) drill sites CM1A and CM2B in the Wadi Tayin massif, obtained mainly to study near-spreading-ridge igneous, alteration and cooling processes, will shed further light on weathering and the subsurface biosphere in tectonically exposed peridotite.

Initially, we hoped to conduct drilling of actively altering peridotite in Wadi Dima, west of the present sites, in an area without large faults. However, we were not able to find drill sites more than 3.5 km from the nearest registered “falaj” (irrigation system), as required for permitting. Alternatives were (a) Wadi Laywani, a broad, south-facing drainage about 20 km northeast Batin, and 4 km east of the road from Batin to the village of Dima, and (b) the headwaters of Wadi Mehlah, along the Batin-Dima road. Wadi Mehlah is a long, straight NNW trending valley NNW of Wadi Laywani, parallel to the Batin-Dima road, draining into Wadi Tayin east of Wadi Dima, near its intersection with Wadi Tayin.

Both of these alternative areas lie along a major NW-SE trending fault system that cuts the Samail ophiolite (Figure 4). An advantage of Wadi Laywani is that there had been prior sampling and analysis of water and rock chips from water monitoring wells NSHQ14, NSHQ04, WAB71 and WAB188 in and near that catchment [Miller et al., 2016; Paukert et al., 2012; Paukert Vankeuren et al., 2019; Rempfert et al., 2017]. (The water monitoring wells have been established and maintained by the Oman Ministry of Regional Municipalities and Water Resources, and its precursor and successor organizations).
OmanDP drilling in the MBO area began with reconnaissance, rotary boreholes in each of the two alternative areas in winter 2017. Hole BA1A is in Wadi Laywani. The water table was encountered at a depth of ~16 meters. Drill chips indicated that the bedrock was a mix of serpentinized dunite and harzburgite. Hole BA2A is in the headwaters of Wadi Mehlah. Surrounding outcrops and drill chips indicated that the Hole is almost entirely in dunite. Other than the drilling fluid, there was essentially no water in Hole BA2A within its full depth of 400 meters. As a result, in order to ensure the presence of water for lubrication during coring, we decided to drill all subsequent MBO holes in Wadi Laywani.

The MBO includes OmanDP Holes BA1A, BA1B, BA1C, BA1D, BA2A, BA3A and BA4A. (The two letter BA designation in the OmanDP Hole names referred to the location, near Batin, and the focus on Alteration). In addition, we have benefited from access to pre-existing Oman Water Ministry monitoring holes NSHQ04, NSHQ14, WAB71 and WAB188. Among these Holes, BA1B, BA3A and BA4A recovered core via wireline diamond drilling (~100% recovery), while cuttings from rotary boreholes BA1A and BA2A were examined by the OmanDP Science Team, and two groups have also studied cuttings and drilling logs from NSHQ14 [Miller et al., 2016; Paukert et al., 2012]. Core was shipped to Japan and loaded onto Drilling Vessel Chikyu, where the OmanDP Science Team performed analyses closely following protocols established by the various incarnations of the Ocean Drilling Program (formerly the Ocean Drilling Program, ODP, and the International Ocean Drilling Program, IODP; currently, the International Ocean Discovery Program,IODP). Detailed core descriptions, together with drilling history and some background information [Kelemen et al., 2021b; c; d; e; f; g; Kelemen et al., 2020g] are available online at http://publications.iop.org/other/Oman/VOLUME/CHAPTERS/113_BT1.PDF
Figure 3: Geologic maps and cross section of the MBO area, based on USGS mapping [Bailey, 1981] and our unpublished observations. Dashed grey lines in righthand map, elevation contours, interval 5 m, from 550 to 590 m asl.
1.1 Regional geology and structure of the MBO and vicinity

The MBO Holes are entirely within partially to completely serpentinized peridotite comprising the mantle section of Wadi Tayin massif of the Samail ophiolite. Peridotites in the Wadi Tayin and nearby Samail massif mantle sections record at least one phase of extensive melting and melt-extraction, producing residual harzburgites. The harzburgites record ~ 15 to 20% melt extraction, assuming the protolith had a fertile lherzolite composition and have major and trace element contents very similar to residual mantle peridotites dredged from mid-ocean ridges [M Godard et al., 2000; Hanghøj et al., 2010; Kelemen et al., 1997a; Kelemen et al., 1995a; Monnier et al., 2006].

In the northern massifs of the ophiolite, there are clear indications that two important stages of partial melting and melt transport affected the mantle section, one during upwelling and corner flow in the shallow mantle beneath an oceanic spreading ridge, and a later one producing cross-cutting features. Products of the second stage are relatively rare in the southern massifs of the ophiolite, including Wadi Tayin and the neighboring Samail massif. For example, one characteristic of peridotites strongly affected by the second stage is high Cr# (molar Cr/(Cr+Al)) in spinels, ranging from 0.7 to 0.9 [e.g., Arai et al., 2006; Tamura and Arai, 2006, and references therein]. Such high Cr# is generally taken to indicate the effects of arc magmatism. In contrast, spinels in the southern massifs of the Samail ophiolite show a broad range of more aluminous compositions, with Cr# from ~ 0.2 to 0.73 [e.g., M Godard et al., 2000; Hanghøj et al., 2010; Kelemen et al., 1997a; Kelemen et al., 1995a; Monnier et
The Wadi Tayin massif is one of the largest and most intact massifs in the ophiolite. A well-exposed crustal section in the “Ibra syncline”, about 7 km thick from seafloor pillow lavas to the mantle-crust transition zone (MTZ), has been the subject of many detailed studies [e.g., papers in Bleseler et al., 2018; Bosch et al., 2004; Boudier et al., 1996; Coleman and Hopson, 1981; Coogan et al., 2006; Curnin et al., 2018; France et al., 2009; Garrido et al., 2001; Kelemen and Aharonov, 1998; Kelemen et al., 1997b; Koga et al., 2001; Korenaga and Kelemen, 1997; Mock et al., 2021; Müller et al., 2017; Nicolas et al., 2003; Oesser et al., 2012; Peucker-Ehrenbrink et al., 2012; Rajendran and Nasir, 2019; Rioux et al., 2012; VanTongeren et al., 2015; VanTongeren et al., 2008; Zihlmann et al., 2018]. OmanDP Holes GT1A and GT2A, drilled in winter 2017, sampled lower crustal gabbros in this section, while Hole GT3A sampled the sheeted-dike to upper gabbro transition in a nearby part of the Samail massif [Kelemen et al., 2020b; d; e; f]. The MTZ of the Wadi Tayin massif is exposed in outcrop in several places, including Wadi Nassif and the smaller, adjacent Wadi Zeeb. The latter was the site of Holes CM1A,B, and CM2A,B in late fall 2017, which provided a complete core sample through the transition zone [Kelemen et al., 2021a; h; i]. The MTZ dips 20 to 30° SSW along the strike length of the Wadi Tayin massif [Bailey, 1981; Nicolas et al., 2000a].

If there has been no tectonic thinning or thickening, then the thickness of the mantle section – perpendicular to the MTZ and the paleo-seafloor – ranges from 10 to 20 km below the base of the crust [Boudier and Coleman, 1981], yielding a maximum thickness for the entire Wadi Tayin massif of ~25 km. At the base of the mantle section throughout the ophiolite is the trace-element-enriched “Banded Unit”, composed of 1 to 10 m scale bands of harzburgite, dunite and rare lherzolite, overlying a metamorphic sole composed mainly of amphibolites [M Godard et al., 2000; Khedr et al., 2013; Khedr et al., 2014; Takazawa et al., 2003; Yoshikawa et al., 2015]. Locally, the Wadi Tayin Banded Unit includes mylonitic shear zones, which formed at an inferred temperature of 700-1000°C [Boudier et al., 1988; Boudier and Coleman, 1981]. This sequence is characteristic of the base of the most complete, best-exposed sections throughout the Samail ophiolite, where the underlying metamorphic sole is preserved. The metamorphic sole in Wadi Tayin records peak metamorphism at ~700-900°C and ~1.2 GPa [e.g., Cowan et al., 2014; Hacker and Mosenfelder, 1996; M Searle and Cox, 2002; M P Searle and Malpas, 1980; Soret et al., 2017], roughly consistent with the thickness estimate and deformation temperature inferred for the base of the Wadi Tayin peridotite section.

The MTZ and surrounding crust and mantle are cut and displaced by several kilometers along a set of NNW trending, strike-slip faults [Bailey, 1981; Nicolas et al., 2000a]. In the MBO area, these have a right lateral sense of displacement. Perhaps related to these smaller features, a 10- to 50-km-scale NNW trending fault system evident in satellite imagery cuts all the way across the Wadi Tayin massif in Wadi Laywani (draining south) and Wadi Mehlah (draining north) (Figure 4). The sense of displacement along this larger fault system has not been determined, but it is possible that it too is a right-lateral, strike-slip fault.

Near the western end of the Wadi Tayin massif, a large strike-slip fault shows left lateral displacement of the MTZ along Wadi Khaffifah. This continues as a ductile shear zone extending several kilometers into the mantle section [Nicolas and Boudier, 2008]. Along this shear zone, deformation was localized in gabbroic dikes within the mantle [Homburg et al., 2010]. Strongly deformed gabbroic dikes are also observed in outcrop in the MBO region. Ductile deformation of the dikes may be related movement along the large fault system; if so, the faults became active while the mantle section of the Wadi Tayin massif was still at high temperature, though deformation has apparently continued into the low-temperature, brittle regime.

Normally, Samail ophiolite peridotites have a foliation that is approximately parallel to the MTZ and the paleo-seafloor [e.g., synoptic cross-sections in Lippard et al., 1986; Nicolas et al., 1988]. A
peculiar structural relationship has been observed – but rarely documented in publications – across central parts of the Wadi Tayin mantle section, in which peridotite foliation – marked by faint, pyroxene-rich banding – dips steeply with respect to the shallow dip of the MTZ [e.g., Boudier and Coleman, 1981, their Figure 2]. Despite this steep foliation, dunite-harzburgite contacts have a low dip, approximately parallel to that of the MTZ, and spinel lineation within the steeply dipping peridotite foliation has a low inclination.

Perhaps fortunately, indications from surface mapping and drill site observation of core are that peridotite foliation at the MBO sites has a shallow dip, approximately parallel to the MTZ exposed in east facing outcrops on ridges forming the west side of Wadi Laywani, SW of Site BA3, as illustrated in the widely used, synoptic cross-sections of the Samail ophiolite. Here, we simply mention the odd geometry of foliation and lineation further west in the Wadi Tayin massif, because it may be important in future syntheses of drilling results and surface observations.

1.2 Mantle dunites in the MBO and vicinity

Geological mapping in the late 1970’s identified two particularly large dunite bodies in the Wadi Tayin mantle section, within depleted, residual mantle harzburgite [Bailey, 1981]. The dunites dip 20 to 30° SSW, approximately parallel to the overlying MTZ. Kelemen et al. [2000, their Table 1] measured the thickness of the northeastern dunite body, perpendicular to top and bottom contacts with harzburgite, to be ~ 70 meters, in the range of other large mantle dunites in the Samail ophiolite. More extensive size-frequency data on mantle dunites are reported by Braun & Kelemen [2002].

Unpublished observations by Peter Kelemen, and later by Bob Miller (California State University, San Jose) confirmed the SSW dip of the southwestern dunite body at its thin, northwestern tip, where it is about 2 km below the MTZ. However, there have been no estimates of its thickness in its central region, at Site BA2 for example, due to faulting and irregular contacts.

Between the two large, SSW dipping dunites is a zone containing of thinner dunites, up to 20 m wide, with steep NNE dips (Figure 3). This NW striking zone is approximately coincident with the Batin – Dima road, and not more than 3 km wide. This zone may be the locus of steeply inclined spinel lineations reported by Nicolas et al. [Nicolas et al., 2000b], who interpreted such steep lineations as indicative of the presence of “mantle diapirs”.

One potential explanation for these relationships – with shallow dunites to the SW and NE, flanking a central zone of steeply dipping dunites, is that the central dunites represent a frozen zone of mantle upwelling beneath a spreading center, whereas the MTZ parallel dunites to the NE and SW have been transposed by corner flow on either side of the ridge. However, given that the Wadi Tayin massif, and overlying Late Cretaceous to Eocene limestones, are clearly faulted and tilted within the area of the left panel in Figure 3, it is not clear whether features within the mantle section retain their structural orientation, with respect to each other and to the crust-mantle transition zone (MTZ). Thus, the narrow zone of steep dunites could be a preserved relict of the upwelling zone in the mantle beneath a spreading center, or the result of post-emplacement, tectonic rotations within the Wadi Tayin massif.

As is evident from geologic mapping, Sites BA2 and BA4 lie within the outcrop of the southeastern tip of the large, shallowly SSW dipping dunite body, and most Holes in Site BA1 – in gravels within Wadi Laywani – also intersect that large dunite (Figure 5). On site observations of drill cuttings [Kelemen et al., 2021e] indicate that the entire 400 meter Hole BA2A is within massive dunite. Assuming a SW dip of 25 to 30 degrees parallel to the MTZ, this indicates that the dunite at Site BA2A is more than 350 meters thick, perpendicular to the MTZ. As such, it is more than three times thicker than the next thickest dunite in the mantle section of the Samail ophiolite, as measured by Kelemen et al. [2000, their Table 1].

Core from Hole BA4A, and surrounding outcrops, are composed of alternating bands of dunite and harzburgite [Kelemen et al., 2021g], rather than the more massive dunites in outcrop further to the NW. However, to the SE, Holes BA1A, B, C and D again intersected the large dunite body, where it is massive, containing only a few thin harzburgite lenses, ~ 100-200 m thick, and about 2 km structurally beneath the MTZ [Kelemen et al., 2021d]. The upper 150 meters of core from Hole BA1B was largely composed of dunite, with relatively few harzburgite bands. The large dunite may or may not extend
across Wadi Laywani. Approximate logs based on drill cuttings suggest that the top of Hole BA1C intersected ~ 100 m of dunite near the east side of the Wadi, and a few relatively thin, SSW dipping dunite lenses can be seen on WSW facing-outcrops flanking the Wadi to the east (Figure 3). If the overall, thick dunite unit does cross the Wadi, this places an upper bound of a few hundred meters on displacement along the fault zone(s) within Wadi Laywani.

![Image of lithologic columns](image)

Figure 5: Lithologic columns based on analysis of drill core from Holes BA1B, BA3A and BA4A, and drill cuttings from Holes BA1A, BA1C, BA1D and BA2A, from Kelemen et al. [2021d; e; f; g].

Dunites in the mantle section of ophiolites – and by inference in the mantle beneath oceanic spreading ridges – are generally understood to be the products of reaction between olivine-saturated melt – ascending by porous flow along crystal grain boundaries – and shallow mantle harzburgites. Orthopyroxene from the harzburgite dissolves in the ascending, decompressing melt, producing olivine + melt, and this leads to formation of dunites in channels of focused porous flow [e.g., Aharonov et al., 1995; J L Bodinier, 1988; Kelemen, 1990; Kelemen et al., 1995a; Kelemen et al., 1995b; Quick, 1982]. Typically, unless modified by subsolidus, low temperature Fe/Mg exchange with spinel, olivine in mantle dunites has about the same composition (Mg#, molar Mg/(Mg+Fe), ~ 0.91) as in the surrounding harzburgites [Kelemen, 1990], consistent with formation of dunite by reaction, rather than as the residue of extensive partial melting and melt extraction [e.g., as advocated by Benoit et al., 1999; Rospabé et al., 2017], or as newly crystallized magmatic rocks ["cumulate dunites", e.g., Rollinson, 2019].

As melt approaches the surface and begins to cool, it will begin to undergo crystallization and accompanying chemical fractionation, potentially producing olivine with a lower Mg#. If it continues to react with mantle peridotite, open system processes will buffer the composition of cooling melt to various degrees, in a process termed "reactive fractionation" [Abily and Ceuleneer, 2013; Collier and Kelemen, 2010]. This process can produce trends typical of reaction between fractionating melt and mantle peridotite with increasing incompatible element concentrations at nearly constant compatible element concentrations [e.g., Kelemen, 1986; 1990]. Using major elements alone, diagnostic characteristics of dunites and “troctolites” (plagioclase bearing dunites and impregnated peridotites) produced by reactive fractionation are nearly constant Ni content over a range of Mg#, together with a wide range of Ca# (molar Ca/(Ca+Na), also known as normative anorthite content), as emphasized in several studies of “impregnated dunites” and “troctolites” recovered via dredging and drilling along the mid-ocean ridges, and outcrop sampling in ophiolites [Arai and Matsukage, 1996; Basch et al., 2018; 2019; Brunelli et al., 2006; Collier and Kelemen, 2010; H J Dick and Natland, 1996; Drouin et al., 2009; Drouin et al., 2010; Ferrando et al., 2018; Gillis et al., 2014; M. Godard et al., 2009; Kelemen et
1.3 Mantle dikes in the MBO and vicinity

Cutting the dunite around the MBO sites are numerous, tabular gabbroic and pyroxenite dikes. It is qualitatively evident that the dikes are more numerous than is typical in the mantle section of the Samail ophiolite, though this has not yet been quantified. The dikes range from fine-grained to pegmatoidal, and may be an important source of calcium and, locally, aluminum during alteration and weathering of the peridotite. It is not clear why there is an unusual number of dikes in the vicinity of the MBO. However, the presence of dikes in the mantle section of the Samail ophiolite is common. A late set of gabbronorite and websterite dikes cutting mantle peridotite foliation and dunite contacts occurs throughout the ophiolite [Benoit et al., 1999; Benoit et al., 1996; Ceuleneer et al., 1996; Kelemen et al., 1997a; Python and Ceuleneer, 2003]. Geochemical characteristics of these dikes indicate that they are not related to the magmas that formed the overlying crust, and could be formed from small amounts of late, shallow melts of residual mantle harzburgite [Kelemen et al., 1997a]. They could be related to large websterite and gabbronorite intrusions into the mantle and crust in the northern massifs of the ophiolite [summary in Python and Ceuleneer, 2003; Smewing, 1981]. Less commonly (but not far away, in the Samail massif of the ophiolite), there are also olivine gabbro and troctolite dikes in the mantle, which could have crystallized from the same kind of magmas that formed most of the crust [Ceuleneer et al., 1996; Python and Ceuleneer, 2003]. Because almost all of the dikes in the MBO area have been substantially altered to calc-silicate, “rodingite” assemblages during serpentinization, it is not yet clear which kinds of lithologies predominate in the dike swarm around the BA sites.

1.4 Post-emplacement alteration of the MBO and vicinity

Emplacement of the ophiolite, and the underlying, allochthonous Hawasina Formation, onto the Arabian continental margin, followed by subaerial weathering of the ophiolite, was complete by about 74 Ma, based on the age of the oldest sediments overlying an erosional unconformity at the top of the ophiolite section [S Al Khirbash, 2015; Alsharan and Nasir, 1996; Bailey, 1981; Hansman et al., 2017; Nolan et al., 1990; Schlüter et al., 2008; Wyns et al., 1992]. Extensive erosion of the eastern part of the Wadi Tayin massif exposed mantle peridotite at the surface, locally forming laterites in a discontinuous band that extends to ~3 km E of Sites BA1, 3 and 4 [S Al Khirbash, 2015; S A Al Khirbash, 2016; 2020], and well exposed erosional surfaces overlain by peridotite conglomerates in erosional windows near the coast east and northeast of Wadi Tayin [de Obeso and Kelemen, 2018; 2020]. After marine transgression, Late Cretaceous and Tertiary shallow water sediments were deposited unconformably on the peridotites in this area [Alsharan and Nasir, 1996; Hansman et al., 2017; Nolan et al., 1990]. As a result of this history, without careful study, it is not immediately clear how much of the low temperature alteration of the peridotite in the MBO, and in the Wadi Tayin massif more generally, may have occurred in the Late Cretaceous, and how much is related to more recent, ongoing weathering. Noël et al. [Noël et al., 2018] propose that the stable isotope characteristics of some serpentinites record “high” alteration temperatures consistent with early alteration near the axis of the spreading ridge that formed the ophiolite crust, and/or during early stages of ophiolite emplacement. However, we regard this result as uncertain, because their inferred alteration temperatures (~115-10°C) are lower than the temperature in the shallow mantle beneath oceanic crust (~100°C at the Moho in ocean crust > 60 million years old, hotter in younger crust) and temperatures at the base of the crust during metamorphism of the metamorphic sole (800-900°C at ~40 km, so more than 140°C at 7 km).

Turning attention from the MBO region to the Samail ophiolite in general, studies of low temperature peridotite alteration in the mantle section of the Samail ophiolite have been more limited than studies of mantle melting and melt transport, and studies of oceanic crustal formation and alteration. Early work by Barnes et al. [1978] and Neal, Stanger and their colleagues [Neal and Stanger, 1983; 1984; 1985; Stanger and Neal, 1994] focused on the production of hyperalkaline spring water and H2-rich gas during peridotite weathering, further refining the insights of Barnes and O’Neil [1969] that were based on observations of similar systems in California. Stanger and colleagues also wrote papers about unusual minerals formed in low temperature weathering of peridotite in Oman [Stanger et al., 1988; Stanger and Neal, 1994; Taylor et al., 1991]. Boudier and colleagues investigated seismic anisotropy in partially serpentinized peridotites from Oman and other regions [Boudier et al., 2010;
Dewandel et al., 2003]. Clark and Fontes and co-workers investigated travertine deposits forming at peridotite-hosted, alkaline springs [1990].

Three relatively recent developments led to increased interest in specific aspects at low temperature alteration of peridotite, in the Samail ophiolite and worldwide. First, there has been widespread recognition that highly reducing environments and large redox gradients produced during serpentinitization [e.g., Frost, 1985] can stabilize hydrocarbons and provide energy for microbial chemosynthesis, leading to an explosion of hypotheses concerning the subsurface biosphere, abiogenic hydrocarbon genesis, and the origin of life on this and other planets [e.g., Berndt et al., 1996; Ehlmann et al., 2010; Ehlmann et al., 2009; Etope et al., 2013; Fisk and Giovannoni, 1999; Foustoukos and Seyfried, 2004; Frost and Beard, 2007; Horita and Berndt, 1999; Martin et al., 2008; Martin and Russell, 2007; McCollom, 1999; 2007; Russell et al., 2010; Schulte et al., 2006; Shock, 1997; Shock et al., 1995; Sleep et al., 2011; Sleep et al., 2004; Varmes et al., 2003]. There has been a substantial amount of work on the Samail ophiolite related to this topic [Boulart et al., 2013; Boyd et al., 2020; Canovas et al., 2017; de Obeso and Kelemen, 2018, 2020; Ellison et al., 2021; Fones et al., 2019; Fones et al., 2020; Glombitza et al., 2021; Kraus et al., 2021; J A Leong et al., 2021a; J A M Leong et al., 2021b; J A M Leong and Shock, 2020; L.E. Mayhew et al., 2018; Miller et al., 2016; Newman et al., 2020; Nothaft et al., 2021a; Nothaft et al., 2021b; Rempfert et al., 2017; Sano et al., 1993; A Templeton et al., 2021; Vacquand et al., 2018].

Second, it has been proposed that formation of carbonate minerals via reaction of surface waters with peridotite can produce a significant carbon reservoir on this and other planets [e.g., Kelemen and Matter, 2008]. There have been numerous, related studies of carbon mineralization during natural weathering of peridotite in the Samail ophiolite [Chavagnac et al., 2013a; Chavagnac et al., 2013b; Falk et al., 2016; Giampouras et al., 2020; Kelemen et al., 2011; Lacinska and Styles, 2013; Lacinska et al., 2014; Leleu et al., 2016; Mervine et al., 2014; Mervine et al., 2015; Noël et al., 2018; Paukert et al., 2012; Paukert Vankeuren et al., 2019; Rajendran and Nasir, 2019; Rajendran et al., 2014; Streit et al., 2012], elsewhere on Earth [e.g., Alt et al., 2013; Alt et al., 2012; Andrews et al., 2018; Arcilla et al., 2011; Beinlich et al., 2010; del Real et al., 2016; Gahlan et al., 2020; Manuela et al., 2019; Morrissey and Morrill, 2017; Oskierski et al., 2013a; Oskierski et al., 2013b; Picazo et al., 2020; Benoit Quesnel et al., 2016; Benoit Quesnel et al., 2013; Sánchez-Murillo et al., 2014; Schwarzenbach et al., 2016; Schwarzenbach et al., 2013; Ulrich et al., 2014], and on Mars [e.g., Edwards and Ehlmann, 2015; Ehlmann and Edwards, 2014; Ehlmann et al., 2008; Kelemen et al., 2020a; Salvatore et al., 2018; Taras et al., 2021; Tomkinson et al., 2013]. References listed here are in addition to studies of carbon mineralization - forming completely carbonated “listvenites” – at the base of the Samail ophiolite mantle section and elsewhere on Earth, summarized in a companion paper to this one [Kelemen et al., 2021j] on OmanDP Hole BT1B, which sampled Cretaceous listvenites at the “leading edge of the mantle wedge”, which formed just above the basal thrust of the ophiolite during subduction and obduction of carbon-bearing sediments

Third, there has been renewed focus on the volume changes associated with hydration, carbonation and oxidation of peridotite during weathering, as originally addressed by MacDonald and Fyfe [1985], O’Hanley [1992] and Evans [2004], and on the ways in which these volume changes may be accommodated [O Evans et al., 2018; 2020; Iyer et al., 2008; Jamtveit et al., 2009; Kelemen and Hirth, 2012; Klein and Le Roux, 2020; H Lisabeth et al., 2017a; H P Lisabeth et al., 2017b; Malvoisin et al., 2017; Rayne and Jamtveit, 2015; Rudge et al., 2010; Ulven et al., 2014a; Ulven et al., 2014b; Zheng et al., 2019; Zheng et al., 2018; Zhu et al., 2016]. Studies addressing this issue via study of low temperature peridotite weathering in the Samail ophiolite include Kelemen and Hirth [2012], Malvoisin et al. [Malvoisin et al., 2020] and Yoshida et al. [2020]. More generally, fracture-related frequency, porosity and permeability in serpentinitized peridotites has been studied in OmanDP drill core samples by Katayama et al. [2020; 2021].

In general, it has been noted that Samail ophiolite mantle peridotite compositions are slightly displaced toward lower Mg/Si compared to inferred and experimentally observed residues of partial melting, and the composition of residual peridotites dredged from mid-ocean ridges [e.g., Mornier et al., 2006, their Figure 5]. This is most evident where peridotites are strongly weathered, and could be due to magnesium extraction [Snow and Dick, 1995], silicon addition [e.g., de Obeso and Kelemen, 2018] or both. Similarly, Mg/Si in drill core from the MBO is low compared to the residues of partial melting and melt as illustrated and discussed in Section 4.3.
1.5 Past studies of groundwater composition and hydrology in the MBO and vicinity

Groundwater composition and hydrology in the mantle section of the Samail ophiolite has been a subject of fairly extensive research [Canovas et al., 2017; Chavagnac et al., 2013a; Chavagnac et al., 2013b; Dewandel et al., 2005; Dewandel et al., 2004; Falk et al., 2016; Leleu et al., 2016; J A M Leong et al., 2021b; J A M Leong and Shock, 2020; Lods et al., 2020; Mervine et al., 2014; Mervine et al., 2015; Miller et al., 2016; Monnin et al., 2014; Neal and Stanger, 1985; Noël et al., 2018; Nothaft et al., 2021a; Nothaft et al., 2021b; Paukert et al., 2012; Rempfert et al., 2017]. As described in a classic paper about peridotite-hosted springs in California [Barnes and O'Neil, 1969], groundwater in peridotite catchments in Oman can be divided into two types. MgHCO₃-rich “Type I” waters, with pH ~ 8.5 to 10, are common in pools and running water in wadis, and in most shallow wells. These waters are thought to be produced by near-surface weathering of the peridotite, dissolving Mg²⁺, together with uptake of CO₂ from the atmosphere to form bicarbonate.

End-member, Ca(OH)₂-rich, “Type II” waters have pH > 10, and are generally restricted to alkaline springs with associated travertine deposits, and some wells in peridotite. These waters are thought to form via more extensive, perhaps deeper interaction between ground water and peridotite. Mg and CO₂ are lost, due to precipitation of serpentine and carbonate minerals, while Ca²⁺ is dissolved along the flow path. The source of Ca²⁺ could be the peridotite [e.g., Barnes and O'Neil, 1969], gabbro and pyroxenite dikes [Streit et al., 2012], and/or calcium-carbonate minerals formed during earlier alteration [Noël et al., 2018].

Both Type I and Type II waters, and apparent mixtures of the two, are present in the aquifers of Wadi Laywani. Prior to OmanDP, the presence of Type II waters in monitoring well NSHQ14 was known. Water sampling and geophysical logging of Hole BA1A, drilled in 2017, established that Type 1 waters were also present, particularly at shallow depths, together with relatively fresh, pH 6-8 water at the top of the Hole, which probably represents less modified, recent rainwater. More substantial data on water composition in the MBO are provided in Section 3.5 and discussed in Section 4.4.

Based on a variety of different lines of reasoning, catchment-scale-, Hole-to-Hole scale-, single Hole scale- and core-sample scale-studies have found that permeability in peridotite hosted aquifers in the Samail ophiolite is > 10⁻¹⁴ m² near the surface, and ~ 10⁻¹⁵ to 10⁻¹⁶ below ~ 100 m, with considerable Hole to Hole variability in the depth of this transition within the MBO [Dewandel et al., 2005; Dewandel et al., 2004; Katayama et al., 2020; Katayama et al., 2021; Lods et al., 2020].

2. Methods

2.1 Core description

Cores were curated on the drill site and then described onboard Drilling Vessel (DV) Chikyu. In addition to visual core description, analysis onboard DV Chikyu included whole core measurements of magnetic susceptibility, sound wave speed, density, and natural gamma radiation. In addition, all cores were analyzed for X-Ray Computed Tomography, and the cut core face was photographed at high resolution. Dozens of thin sections of core samples from Holes BA1B, BA3A and BA4A were prepared, at the University of Southampton and onboard DV Chikyu. X-Ray Diffraction (XRD) measurements were made on powdered samples from core, and from drill cuttings from rotary boreholes BA1A, BA2A and NSHQ14. Full thin section photos, in both plane and cross-polarized light, were made onboard DV Chikyu. Petrographic descriptions of each thin section were completed by the shipboard science teams. All of these data are available at Texas A&M University by the International Ocean Discovery Program (IODP): [http://publications.iodp.org/other/Oman/OmanDP.html], and specifically in Kelemen et al. [Kelemen et al., 2021d; e; f; g].

Images of shipboard thin sections of core samples from Hole BA1B were obtained using a scanner onboard DV Chikyu [Kelemen et al., 2021d]. The color of these images was characterized at Lamont Doherty Earth Observatory. Red (R), green (G), and blue (B) values (range 0-255) of whole or part of thin section images were determined using ImageJ [Abramoff et al., 2004]. Redness, greenness, and blueness (range 0-1) was calculated from RGB values, normalized to 255, by subtracting the value of the color of interest with the average of those of the other two colors. Redness and greenness values used in Figure 11 were renormalized to values between 0 and 1 via (observed value – minimum value
for BA1B sections) (maximum – minimum value for BA1B sections. Total RGB (R+G+B) was calculated to quantify brightness. Another measure for lightness or brightness, luminosity (Y), was calculated using the SMPTE-C (Society of Motion Picture and Television Engineers) RGB luminance values Y = 0.21R + 0.72G + 0.07B).

2.2 Whole rock geochemistry

Major, minor and trace element analyses, including volatile species CO₂ (all C as CO₂), H₂O and total sulfur were made by the OmanDP Science Team onboard Drilling Vessel Chikyu, and during laboratory work at the Université de Montpellier generously done by Marguerite Godard and colleagues to check and complete the “shipboard” geochemical dataset. XRF major and minor element analyses of a subset of samples were also conducted at the University of St. Andrews, which allowed cross-calibration with shipboard whole rock data. Methods used to obtain these data are described in Kelemen et al. [2020c] and results are reported in Kelemen et al. [Kelemen et al., 2021d; f; g], hosted online at http://publications.iodp.org/other/Oman/OmanDP.html.

FeO contents of shipboard rock powders from core from Hole BA1A were measured at the Geoscience Laboratories of the Ontario Geological Survey, using methods described online at https://www.mndm.gov.on.ca/sites/default/files/2021_geo_labs_brochure.pdf. It is possible that some redox-sensitive minerals became oxidized prior to analysis (for example, brucite may become oxidized in air within a matter of days, Ellison et al. 2021). Fe₂O₃ contents of our samples were then estimated by subtraction of these FeO contents (recalculated as Fe₂O₃ from total iron measured as Fe₂O₃ onboard DV Chikyu. Supplementary Table S1 reports the shipboard geochemical information for Hole BA1B [Kelemen et al., 2021d], plus FeO contents.

Normative “igneous” mineralogy for gabbroic samples in core from Hole BA4A was calculated from the bulk compositions using a standard CIPW norm, assuming all Fe as FeO since magnetite was not reported to be abundant in these samples. Normative serpentinite mineralogy for dunite and harzburgite samples in core from Hole BA1A, in terms of Ca-Mg-Fe carbonates, Mg-Fell lizardite, Mg-Fe brucite, and either FeII cronstedtite or Fe(OH)₃, was calculated by mass balance, using measured SiO₂, CO₂, CaO, MgO, FeO, and Fe₂O₃ contents of our samples, “projected” from other elements. Mg and Fe²⁺ were treated identically, so that lizardite, brucite, magnesite and cronstedtite all had the same Mg/(Mg+Fe²⁺). All CaO was assigned to calcite. Remaining CO₂ was assigned to magnesite. All Fe³⁺ was assigned to either cronstedite or Fe(OH)₃. The normative proportions of these minerals were used to calculate a maximum weight percent H₂O, if all Mg and Fe in the rocks were in carbonates plus hydrous minerals, for comparison to observed H₂O contents in the samples. The resulting serpentinite norms are also included in Supplementary Table S1.

2.3 Electron microprobe analyses of minerals

Compositions of minerals in polished thin sections were quantitatively analyzed using a 5-spectrometer Cameca SX-100 electron microprobe (EMP) at the American Museum of Natural History (AMNH). Calibration was performed using in-house natural and synthetic standards. A grain of San Carlos olivine was measured multiple times as unknowns during the experimental run (n=9) with all major elements within error of the known composition. Semi-quantitative elemental maps of Ni and S were obtained by electron dispersive spectroscopy (EDS) using the new 5-spectrometer Cameca SX5-Tactis at AMNH, operating conditions were 15kV and 40nA. Images were post-processed using Apple Color-Sync Utility to increase exposure and sharpness. Atomic units of major elements in minerals were calculated from wavelength dispersive spectroscopy (WDS) data. Values for chlorite and serpentine were calculated assuming 14 and 7 oxygen atoms per formula unit, respectively. For chlorite minerals (including amesite), Fe³⁺ atoms per formula unit were calculated assuming no site vacancies. Electron microprobe WDS data used to calculate mineral compositions are provided in Supplementary Table S2.

2.4 Analysis of carbonate veins

Carbonate mineral identification by X-Ray diffraction (XRD) was performed at Lamont Doherty Earth Observatory (LDEO) using an Olympus BTX-II XRD analyzer. Diffractograms were analyzed using Match! Software.
For Sr isotope analysis of carbonate veins, carbonate powder was dissolved in glacial acetic acid. To remove any remaining acetic acid the solution was dried, dissolved in HNO₃ and redried. The residue was redissolved in 3N HNO₃ prior to column chemistry using the Eichrom® Sr resin. Purified Sr splits were analyzed for isotopic compositions with the standard bracketing method using the US National Institute of Standards and Technology (NIST) SRM 987 on a Thermo Scientific Neptune multi-collector ICP-MS at Lamont Doherty Earth Observatory (LDEO). In-run mass fractionations were normalized to $^{86}\text{Sr}/^{88}\text{Sr}=0.1194$. Unknowns were normalized to SRM 987 $^{87}\text{Sr}/^{86}\text{Sr}$ value of 0.701248. International standards BHVO-2 yielded $^{87}\text{Sr}/^{86}\text{Sr}$ value of 0.703474±20 (2s, n = 2) and BCR-2 yielded 0.705010±18 (2s), which agree with published values from Weis et al. [2006].

Radiocarbon analysis were performed at The National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) facility at Woods Hole Oceanographic Institution, using methods described online at https://www2.whoi.edu/site/nosams/. We sent clean but not etched, carbonate fragments to NOSAMS, where they performed a pre-etch in 10% hydrochloric acid at room temperature to remove modern atmospheric CO₂ adsorbed on mineral surfaces.

Additional analyses of δ¹³C, together with δ¹⁸O, in carbonate minerals, were performed at LDEO using a Thermo-Fisher Delta V+ mass spectrometer with dual-inlet and Kiel IV carbonate reaction device. Powdered carbonate samples were acidified in the Kiel IV device using ~105% H₃PO₄ at 70°C for 10 min before transferring the CO₂ to the Delta V+. The standard deviation of NBS-19 standards analyzed (n=6) was 0.03‰ for δ¹³C and 0.06‰ for δ¹⁸O.

Isotope ratio data on carbonate veins are reported in Supplementary Table S3.

2.5 Thermodynamic modeling of water/rock reaction

Simulations of water-rock interactions used the speciation and reaction-path code, EQ3/6 [T Wolery and Jarek, 2003; T.J. Wolery, 1992]. Reaction progress of the water-rock interaction process is quantified by decreasing the water-rock mass ratio (W/R), and simulates a given mass of fluid reacting with an increasing mass of rock as it infiltrates an aquifer. A global average rainwater composition compiled by Hao et al. [Hao et al., 2017] from Berner and Berner [Berner and Berner, 2012] was used in the models. The composition of average harzburgite used in the simulations was calculated from the data of Hanghoj et al. [Hanghøj et al., 2010], including average Cu (20 ppm) and Ni (2000 ppm). We used 300 ppm total sulfur in the reacting harzburgite, which is higher than the range of 6 to 100 ppm measured by Hanghoj et al., but in the 100-500 ppm range measured by Oeser et al. [Oeser et al., 2012] in Samail ophiolite peridotites. Compositions of reacting rainwater and harzburgites are shown in Supplementary Table S4.

The thermodynamic data used in the simulations are from Klein et al. [2013]. They include data for relevant oxides, sulfides, native metals, and alloys from Klein and Bach [2009], Klein et al. [2009], Helgeson et al. [1978], Leong and Shock [2020] and Wolery and Jove-Colon [2004], and aqueous fluid values from Shock and Helgeson [1988], Shock et al. [1977], and Sverjensky et al. [1997] calculated using the SUPCRT code [Johnson et al., 1992]. The database allows formation of serpentinitization-relevant minerals in ideal-site solid solutions and has been successfully used in previous works [de Obeso and Kelemen, 2020; Klein et al., 2009; Klein et al., 2013].

As with Bruni et al. [2002], Paukert et al. [2012] and Leong et al. [2021b], thermodynamic simulations were divided into two steps, both at 35°C. The first step involved reaction of rainwater with peridotites open to the atmosphere from water-rock ratios 10,000 to 10 (i.e., reaction of 1 kg of rock in 10 kg water). The second step involved reaction of fluids generated at the end of first step with the same peridotite, closed to atmospheric input. The first step simulated reactions close to the surface while the second step modeled reactions in deeper aquifers. In contrast to Paukert et al. [2012] and Leong et al. [2021b], first step simulations in this work were allowed to run to higher reaction progress (i.e., towards lower W/R ratio, down to ~10) until modeled dissolved sulfate concentrations approximate field constraints before proceeding to the second step. Results of calculations are shown in Figure 29, for the first and second steps, respectively, and in Supplementary Table S4. The first step produced fluids with composition similar to natural, Mg-HCO₃-rich “Type I” fluids from shallow peridotite aquifers, while the second step yielded fluids with compositions similar to Ca-OH-rich “Type II” fluids found at peridotite-hosted alkaline springs and deep boreholes, as originally outlined in the classic paper of Barnes and O’Neil [Barnes and O’Neil, 1969].
Using a comprehensive compilation of published data on fluids from peridotite-hosted springs and wells in the Samail ophiolite, the extent of disequilibrium (in kilojoules per mole) between these fluids and chrysotile and brucite was calculated using EQ3/6 with the same thermodynamic data as above, with oxygen fugacities calculated using the published Eh, pH and temperature data [Canovas et al., 2017; J A M Leong et al., 2021b; Nothaft et al., 2021a; Nothaft et al., 2021b; Paukert et al., 2012; Paukert Vankeuren et al., 2019; Rempfert et al., 2017]. Results are shown in Supplementary Figure 1. In addition, the extent of disequilibrium for the chrysotile-brucite reaction

\[
\text{Mg}_3\text{Si}_2\text{O}_5(\text{OH})_4(\text{chrysotile}) + \text{H}_2\text{O} = 3\text{Mg}(\text{OH})_2(\text{brucite}) + 2\text{SiO}_2(\text{aq}) \tag{1}
\]

and the cronstedtite-ferrous brucite (or ferrous hydroxide) reaction

\[
\text{Fe}^{2+}_2\text{Fe}^{3+}\text{SiFe}^{3+}\text{O}_5(\text{OH})_4(\text{cronstedtite}) + \text{H}_2\text{O} + \text{H}_2 = 4\text{Fe}(\text{OH})_2(\text{Fe-brucite}) + \text{SiO}_2 \tag{2}
\]

were also calculated for the compiled data on Samail ophiolite fluids, with results shown in Supplementary Figure 2. In Supplementary Figures 1 and 2, values with positive ΔG indicate that the reactant side of the reaction is favored, i.e., brucite is metastable with respect to serpentine in all of the peridotite-hosted fluids analyzed so far. Continuing in this theme, we calculated fO$_2$ for these fluids, using measured Eh, pH and temperature, as outlined in Section 2.6. While some of the most reduced fluids closely approach (on a log scale) the low fO$_2$ limit where water breaks down to form H$_2$, 2H$_2$O = 2H$_2$ + O$_2$, no fluids sampled so far are calculated to be saturated in H$_2$ gas (Supplementary Figure 3), consistent with the observation that to date, no gas tight samples from deep boreholes have been H$_2$ saturated, though a few have dissolved H$_2$ concentrations within a factor of 10 of the saturation value at a depth of sampling (Hoelher, pers. comm. 2021).

fO$_2$ and fS$_2$ values set by assemblages composed of oxides, sulfides, alloys and native metals were calculated using the same thermodynamic data as above. An fO$_2$ vs fS$_2$ diagram at 35 °C was created using Geochemist’s Workbench [Bethke, 1998]. While these minerals provide constraints on the redox conditions at which they precipitated, fO$_2$ is likely set by reactions involving major elements (i.e., Fe). Hence, fO$_2$ set by reactions involving Fe endmembers of brucite (Fe$^{2+}$(OH)$_2$) and serpentine were also calculated. Fe endmembers of serpentine used in calculations are Fe$^{2+}$-serpentinite (greenalite, Fe$^{2+}$_Si_2O_5(OH)$_4$), Fe$^{3+}$-serpentinite (hisingirite, Fe$^{3+}$_Si_2O_5(OH)$_4$), and mixed-valence serpentinite (cronstedtite, Fe$^{2+}$Fe$^{3+}$Si Fe$^{3+}$O$_5$(OH)$_4$). In addition, we calculated fO$_2$ set by reactions involving Mg-endmember cronstedtite (Mg$_{\text{Fe}^{3+}}$Fe$^{2+}$_SiFe^{3+}O$_5$(OH)$_4$) together with Mg-brucite (Mg(OH)$_2$), Mg-serpentine (chrysotile, Mg$_3$Si$_2$O$_5$(OH)$_4$), greenalite, and Fe-brucite. We found that calculations using Mg-cronstedtite can better account for the Fe$^{3+}$/ΣFe determined from the cores (up to 0.9) as it allows total oxidation of all reacting ferrous iron. In contrast, using Fe-cronstedtite only allows up to 50% oxidation of starting ferrous iron. Reaction stoichiometries involving these minerals in calculations of fO$_2$ are explicitly provided throughout the discussion.

Early theoretical work on redox conditions attained during serpentinitization focused on reactions that involved minor phases (sulfides, oxides, alloys, native metals) and reactions involving Fe$^{3+}$-serpentinite/talc [Frost, 1985; Frost and Beard, 2007]. Mineral analysis showed that serpentine can incorporate both ferrous and ferric iron into its crystal structure [Andreani et al., 2013; L. E. Mayhew and Ellison, 2020; D. S. O’Hanley and Dyar, 1993]. Thus, more recent studies often incorporate mixed-valence serpentine (i.e., Fe- and/or Mg-cronstedtite) into thermodynamic models [K A Evans et al., 2013; Klein et al., 2013; Lazar, 2020; J A M Leong and Shock, 2020; B. M. Tutolo et al., 2019; B. M. Tutolo et al., 2020; Zolotov, 2014] (Klein et al., 2013; Zolotov, 2014; Evans et al., 2013; Tutolo et al., 2019; 2020; Lazar, 2020; Leong and Shock, 2020). Oxidation of ferrous iron hosted in MgFe$^{3+}$-brucite and MgFe$^{2+}$-serpentinite into ferric iron in cronstedtite (± hisingirite) is dependent on the SiO$_2$ activity constrained by these mineral assemblages. In this work, calculations incorporating variable SiO$_2$ activities were used, ranging from a(SiO$_2$) dictated by Mg-serpentine (chrysotile) and Mg-brucite to higher a(SiO$_2$) dictated by Mg-serpentine and talc. These, encompass the range of a(SiO$_2$) in pH >9 fluids from the Samail ophiolite [J A M Leong et al., 2021b].

2.6 Downhole logging of borehole water Eh, pH, conductivity, temperature and pressure

Borehole water properties were measured via wireline logging using slimline QL40-Ocean, QL40-MUSEt and Robertson water quality probes as described in Kelemen et al. [Kelemen et al., 2020c].
The oxidation-reduction potential measured by the Ag/AgCl electrode (E_{measured} in volts) was converted to E_h (relative to the standard hydrogen electrode, in volts) using a temperature-dependent calibration based on data provided by the manufacturer:

$$E_h = E_{\text{measured}} + 0.22323 - 0.001046(T - 298.15)$$ \hspace{1cm} (3)

Where T is the measured temperature in Kelvin. For oxygen reduction the standard reduction potential E^0 (in volts) can be calculated:

$$E^0 = 1.2291 - 0.0008456(T - 298.15)$$ \hspace{1cm} (4)

[Bratsch, 1989]. Then oxygen fugacity was calculated by solving the Nernst Equation as a function of E_h, pH and temperature:

$$\log(fO_2) = \frac{4F}{RT\ln(10)}(E_h - E^0) + 4pH$$ \hspace{1cm} (5)

in which R is the universal gas constant, and F is Faraday's constant. It should be noted that a single system-wide E_h value cannot be defined or measured when this method is applied to fluids that contain significant concentrations of multiple, redox sensitive solutes (e.g., O_2, H_2, Fe^{2+}, Fe^{3+}, H_2S, SO_4^{2-}, NO_3^-, NH_3 subject to electron transfer via NH_3 to NO_3^-, H_2S to SO_4^{2-}, Fe^{2+} to Fe^{3+}, H_2 to H_2O or H^+, and so on), that are not in mutual equilibrium. Different species may record different redox potentials [e.g., Shock et al., 2010], and the reference electrode may not respond to the various dissolved redox-sensitive species equally [Anderson, 2017; Lindberg and Runnells, 1984]. However, among these, H_2 is the most abundant species in serpentinization-generated fluids at depth. For example, Supplementary Figure S4 illustrates that the concentration of dissolved H_2 in borehole water samples from the Samail ophiolite is greater than or equal to the combined concentration of all other redox sensitive solutes. As a result, the measured E_h and derived fO_2 are likely to correspond well (on a log scale) to dissolved H_2 concentrations.

We also calculated the oxygen fugacity of water in equilibrium with H_2 at the measured pressure. This represents the stability limit of water, at which no further decrease in oxygen fugacity could occur because H_2O would form H_2 which would exsolve from solution. This lower limit oxygen fugacity ($fO_2(\text{limit})$ in bars) was calculated as a function of temperature and pressure in the boreholes as:

$$\log(fO_2(\text{limit})) = -E^0 \frac{4F}{RT\ln(10)} - 2\log(P)$$ \hspace{1cm} (6)

where P is the measured pressure in bars.

We estimated the uncertainty on $\log(fO_2(\text{in_bars})$ and $\log(fO_2(\text{limit_in_bars})$ based on manufacturer reported uncertainties in the measured E_h (σ_{E_h}) of 1 mV, pH (σ_{pH}) of 0.01, temperature (σ_T) of 0.005°C, and pressure (σ_P) of 0.5 bars. Practical uncertainties of field-based measurements were determined by multiplying the manufacturer specifications for uncertainty of the instruments by a factor of 10. The uncertainty on $\log(fO_2)$, $\log(fO_2(\text{limit})$, and the difference $\Delta \log(fO_2) = \log(fO_2) - \log(fO_2(\text{limit})$ were calculated from the uncertainties on the individual measurements using standard error propagation (Supplementary text, Section 3). While the uncertainties vary slightly as functions of E_h, pH, T, and P, they are consistently less than 1 log unit, and therefore we have used ± 1 log unit as the estimated upper bound uncertainty for these measurements.

3. Results

3.1 Major elements

Figure 6 illustrates downhole variation of major elements in core from Hole BA1B [Kelemen et al., 2021d]. Similar plots for Holes BA3A and BA4A can be found in Kelemen et al. [2021f; g]. While the other two Holes do not show systematic variation in bulk composition with depth, Hole BA1B extends 400 meters below the surface, 100 meters deeper than the other two Holes, and this reveals trends that might not be apparent in the others.
As expected, there is a sharp break between harzburgite and dunite compositions in all three holes, with dunites having higher total iron (expressed as Fe$_2$O$_3$T) and MgO contents, and lower SiO$_2$ and CaO contents. Fe$_2$O$_3$T contents in dunites are ~30% higher than in harzburgites (~12 vs 8 wt%), whereas MgO is only ~7% richer in dunites compared to harzburgites (~47 vs 44 wt%). As a result, molar Mg# (molar MgO/(MgO + FeOT), where all Fe is expressed as FeO) is systematically lower in dunites compared to harzburgites, as illustrated and discussed in Section 4.1.

Calcic pyroxenes (cpx) and orthopyroxenes (opx) in Samail ophiolite mantle peridotites typically contain ~24 and 1 to 2 wt% CaO respectively [M Godard et al., 2000; Hanghøj et al., 2010; Monnier et al., 2006]. As a result, normative mineral compositions for these samples, in terms of olivine, cpx, opx and spinel, contain less than 5% cpx, and would commonly contain no cpx when opx contains several wt% CaO at high temperature. However, these samples have been substantially modified by later alteration, as discussed further in Section 4.3, and their high temperature CaO contents may have been obscured by this process.

3.2 Whole rock alteration

Peridotite core samples from Hole BA1B are pervasively altered, with typical mesh-textured serpentinites near the surface, containing some relict olivine and pyroxene grains at depth. This qualitative observation is quantified in Figures 7 to 16, illustrating systematic decreases in CO$_2$, H$_2$O and S contents with increasing depth. These trends are apparent for harzburgites and dunites together, and for harzburgites alone. This is important, because Samail ophiolite dunites are more serpentinized than other peridotites (e.g., [Kelemen et al., 2021d; e; f; g; h; i]) so that lithological variation alone – with dunites at the top of the hole and harzburgites at greater depth – could give rise to a downhole trend. However, the data from Hole BA1B illustrate a trend that is independent of lithology. These systematic trends are also evident in data on physical properties, from continuous, automated logs of the entire core and shipboard analyses of discrete samples (Figure 7). Downhole variation in the concentration of volatile components is less apparent in core from Hole BA3A and BA4A, as can be seen in plots similar to Figure 8 in Kelemen et al. [2021f; g].

Figure 9 illustrates normative proportions (in weight units) of Mg-Fe$^{2+}$-serpentine, Mg-Fe$^{2+}$-brucite and Fe(OH)$_3$ calculated from whole rock compositions, projected from calcite and magnesite. Harzburgites contain more SiO$_2$ than dunites, and thus generally have a higher serpentine/brucite ratio.

The normative mineral proportions can then be used to calculate how much H$_2$O a fully hydrated peridotite of a given bulk composition could contain. These H$_2$O contents can then be compared to measured bulk rock H$_2$O concentrations, to quantify the percent hydration of each sample, illustrated in the righthand panel of Figure 8. As expected, dunites are almost fully hydrated, whereas harzburgites record ~65 to 100% hydration. Less predictably, the extent of harzburgite hydration decreases downhole, as does the calculated proportion of brucite in harzburgite (not shown).
Figure 7: Shipboard measurements of physical properties of discrete samples of core from Hole BA1B [Kelemen et al., 2021d]. Symbols as for Figure 6, with symbols for additional lithologies given in the legend.
Figure 8: Volatile contents of core from Hole BA1B [Kelemen et al., 2021d]. Righthand panel illustrates the “percent of maximum hydration”, based on observed H_2O contents divided by water content of a completely hydrated rock, determined from normative proportions of calcite, magnesite, lizardite, brucite and ferrihydrite calculated from the major element and CO_2 contents of each sample. Only three harzburgites contain “negative brucite”. If fully hydrated, these three samples would contain some talc, rather than brucite). We also calculated mineral norms with all Fe^{3+} in Mg-Fe^{2+}-cronstedtite rather than Fe(OH)$_3$. This yields higher normative proportions of brucite in all samples. Symbols as in Figure 6.

Full thin section images of core samples from Hole BA1B reveal a pattern of color variation, with red, “rusty” sections predominant at the top, a zone of “black serpentinites” at ~ 50 to 150 meters depth, and green, partially serpentinized peridotites in cores from the deeper part of the hole. Figure 10 provides end-member examples of these three color zones. The red and green color variations are present, but less marked, in core from Holes BA3A and BA4A; the black zone was only prominent in core from Holes BA1B and BA4A. We used image analysis of thin sections to quantify these variations for all of the shipboard thin sections from Hole BA1B. High “redness and low “greenness” characterize the rusty colored sections, low luminance characterizes the black serpentinite sections, and high greenness-redness defines the green sections.

Figure 9: Normative proportions of lizardite, brucite and ferrihydrite, projected from calcite and magnesite, in core from Hole BA1B, calculated from the major elements and CO_2 contents of each sample. Symbols as in Figure 6.

Full resolution versions of all figures in this paper are provided in a separate file.
Intuitively, it is obvious that the red, rusty cores contain a higher proportion of ferric to ferrous iron, and indeed this is borne out by our quantitative data (compare Figures 11 and 12). What is less evident is that the black serpentinites – which, based on our extensive, ongoing electron microprobe investigations (e.g., Figure 14), lack significant proportions of opaque, iron oxide minerals – have relatively high sulfur concentrations, as documented in Figures 12 and 13. Similar sulfide enrichments are also present in black serpentinites in core from Hole BA4A [Kelemen et al., 2021d], which contain up to 0.4 wt% S (Supplementary Figure S5), though the color zoning in BA4A core is more patchy rather than restricted to a limited depth interval. In contrast, sulfur was below detection limit in all analyzed samples from Hole BA3A [Kelemen et al., 2021f].
Figure 14 provides X-Ray maps of both S and Ni contents of one black serpentinite sample; sulfur abundances are generally low, but it is clear that sulfur (and Ni) are present in one or more microscopic to sub-microscopic phases, within and rimming serpentine mesh cores. While we are not sure of the nature of these phases, we hypothesize that they include tochilinite, valleriite and/or haapalite, mixed sulfide-hydroxide ± carbonate minerals and amorphous materials reported in core from the MBO [Kelemen et al., 2021g; A Templeton et al., 2021; B. M. Tutolo and Evans, 2018] and in weathered serpentines from other localities [Alt and Shanks III, 2003; J. S. Beard, 2000; J. S. Beard and Hopkinson, 2000; Hopkinson et al., 2000; Schwarzenbach et al., 2012]. In some cases, these phases may be intergrown with serpentine at the nano-scale (Leong, pers. comm. 2021).

Figure 12: Sulfur concentration [Kelemen et al., 2021d], and ferric iron/total iron ratio, measured FeO concentration and molar Mg/(Mg+Fe²⁺) ratio in core from Hole BA1B (Supplementary Table S1). Sulfur concentrations below the detection limit of shipboard analyses were assigned a value of 0.01 wt% (100 ppm). Orange bar in left hand panel illustrates previously measured range of sulfur concentration in mantle harzburgites and dunites in the Samail ophiolite, from 5 to 500 ppm [Hanghøj et al., 2010; Oeser et al., 2012]. Symbols as in Figure 6.

Figure 13: Relationship of sulfur content with optical properties of thin sections (Figure 11) and ferric iron/total iron ratios. As discussed in the text, these relationships indicate that sulfur concentrations are highest in the "black serpentinite zone" extending from ~ 30 to 150 m depth, characterized by low Fe³⁺/FeT, and relatively low in the oxidized, red zone at depths less than 30 m. Symbols as in Figure 6.
The matrix alteration of peridotites in core from the MBO formed oxide, sulfide and metal phases that were identified in thin section via reflected light microscopy onboard DV Chikyu [Kelemen et al., 2021d; f; g], and later verified by electron microprobe analyses [Eslami et al., 2018]. Figure 15 illustrates examples of intergrown heazlewoodite, chalcopyrite, native copper, awaruite, pentlandite and magnetite. These can be used to constrain oxygen fugacity during pervasive matrix alteration, as discussed below and in Sections 4.4 to 4.6.

Figure 16 illustrates the stability of these minerals at 35°C as a function of oxygen and sulfur fugacity. Aside from the absence of bornite in our samples, and assuming that intergrown minerals formed in equilibrium with each other, assemblages juxtaposing (a) chalcopyrite, heazlewoodite and native copper, and (b) chalcopyrite, pentlandite, magnetite and native copper are indicative of fO_2 close to the low fO_2 limit where H_2O is reduced to form H_2.
3.3 Vein types and proportions

The Proceedings of the Oman Drilling Project include extensive information about the different types of veins cutting the mesh-textured serpentinites in the MBO, and their cross-cutting relationships. [Kelemen et al., 2021d; f; g]. It is beyond the scope of this paper to review all that material. However, we can make some important overall points.

First, systematically counting and measuring veins in mesh-textured serpentinite is difficult, because the mesh itself is defined by a grid of ~ 5 to 50 micron wide veins, ~ 50 to 200 microns apart, with “mesh cores” between them. The shipboard science teams tried not to include the frequency or volume of mesh veins in their logging, but this may have led to systematic errors that differed from observer to observer, and from day to day, particularly as the team became more familiar with subtle features of the core. Figure 17 provides an example of a black magnetite-serpentine vein cutting across the mesh texture. Depending on the level of scrutiny, the nature of the cut core face, and other factors, veins like this one could have been logged, or missed.
Second, as noted in Section 1.4, the veins could record a variety of different events and conditions, potentially ranging from early hydrothermal alteration near an oceanic spreading center, extending into the shallow mantle, through Cretaceous subaerial weathering and by a Late Cretaceous marine transgression, to present day weathering. While cross-cutting relationships provide an indication of relative age, they do not provide absolute age information.

Third, the two youngest vein types, based on consistent cross-cutting relationships, were “waxy veins” and carbonate veins. The first group has an aphanitic, glossy appearance on the cut core face. In thin section, these veins have isotropic to microcrystalline serpentine cores, often flanked by fibrous microcrystalline rims with elongate crystals perpendicular to vein contacts. At the thin section scale, the vein contacts are sharp, but curved and irregular rather than planar. Initially this vein type was named “waxy green veins”, but toward the bottom of Hole BA1B, and deep in the other two cored holes, the same textures were seen in white veins, so the color adjective was dropped.
The carbonate veins were typically logged as calcite veins, particularly early in the description of core from Hole BA1B, and in almost every instance when the vein material effervesced in dilute HCl. However, XRD analyses performed at Lamont Doherty Earth Observatory demonstrate that most of these veins contain dolomite, aragonite, magnesite, and huntite (a hydrous Mg-carbonate), instead of, or in addition to, calcite (Supplementary Table S3). 14C, 87Sr/86Sr and stable carbon and oxygen isotope data on a subset of the carbonate veins are presented in Section 3.4.

Carbonate veins and waxy veins are commonly intergrown, as shown in Figure 18, indicating approximately coeval formation, at least in some instances. Waxy veins, particularly in the deeper parts of BA1B and throughout BA4A, commonly cut contacts between gabbroic veins and surrounding serpentinites.

Figure 19: Typical textures of waxy serpentine veins in photographs of cut core face [Kelemen et al., 2021g], with field of view about 8 cm tall. Left: BA4A-88Z-3_8-18, 238 meters depth, “turtle-textured” grid of intersecting veins, right: BA4A-88Z-4_4-24, 240 m depth, veins cutting altered gabbro dikes, extending a few cm into serpentine surrounding the dike margins.

Figure 19: Typical textures of waxy serpentine veins in photographs of cut core face [Kelemen et al., 2021g], with field of view about 8 cm tall. Left: BA4A-88Z-3_8-18, 238 meters depth, “turtle-textured” grid of intersecting veins, right: BA4A-88Z-4_4-24, 240 m depth, veins cutting altered gabbro dikes, extending a few cm into serpentine surrounding the dike margins.

Serpentine in waxy veins from one sample of BA1B core contains relatively low SiO$_2$ contents, and several weight percent Al$_2$O$_3$, indicative of substitution towards the amesite mineral end member (Figure 20, data in Supplementary Table S2). Similarly, elsewhere in the Samail ophiolite and
probably in BA1B core, serpentines have relatively low SiO₂ and high Fe, interpreted to be due to appreciable amounts of the cronstedtite substitution \((\text{Mg,Fe}^{3+})_2\text{Fe}^{3+}\text{SiFe}^{3+}\text{O}_5(\text{OH})_4\). On the other hand, analyses of waxy serpentine veins in a sample of core from Hole BA3A have very low Al and Fe³⁺ contents, and approximately 2 Si per formula unit. It's likely that continued analyses of the cores will reveal gradients in serpentine contents with depth in BA1B, and generally lower Fe³⁺ in BA3A serpentines.

![Figure 20: Silicon and aluminum contents of waxy serpentine veins in core from BA1B 17-1 22-25.5, 33 meters depth (filled green circles), cutting an altered gabbroic dike and extending into mesh-textured serpentinite, and BA3A 43-3 24-27, 100 m depth (filled grey circles) cutting mesh-textured serpentinite without gabbroic dikes. These data are, compared to analyses of low temperature serpentine veins formed by young weathering (<50,000 years, open orange circles, Streit et al. [2012] and by weathering from just below an unconformity overlain by Late Cretaceous limestones (open brown circles, de Obeso and Kelemen [2018; 2020]. Filled diamonds are compositions of serpentine produced in experiments saturated in Al₂O₃; blue: Wang et al. [2020]; red: Pens [Pens et al., 2016]. All concentrations determined by electron microprobe as described in Section 2.3. Calculated Si and Al apfu values are based on 7 oxygen atoms. Dark green dashed line indicates mixtures of chrysotile/greenalite and amesite. Filled dark green circles are labeled with mole % amesite in these mixtures. Abbreviations for minerals: Ctl – chrysotile \((\text{Mg}_3\text{Si}_2\text{O}_5(\text{OH}))_4\), Gre – greenalite \((\text{Fe}^{2+}_2\text{Si}_2\text{O}_5(\text{OH}))_4\), Kln – kaolinite \((\text{Al}_2\text{Si}_2\text{O}_5(\text{OH}))_4\), Ctd – Mg-Fe³⁺-cronstedtite \((\text{Mg-Fe}^{2+}_3\text{Fe}^{3+}\text{SiFe}^{3+}\text{O}_5(\text{OH}))_4\), Brc – Mg-Fe³⁺-brucite \((\text{Mg-Fe}^{2+}_3\text{O}_3(\text{OH}))_2\), Ame – Mg-Fe³⁺-amesite \((\text{Mg-Fe}^{2+}_3)^2\text{AlSiO}_3(\text{OH}))_4\).

Together with relatively Al-rich serpentine, some waxy veins contain andradite-hydrogrossular garnet solid solutions, and microcrystalline chlorite (Figure 21, data in Supplementary Table S2). Combined with the common spatial association of waxy veins with gabbroic dikes, these observations suggest a role for Al in stabilizing serpentine minerals that grow at a geologically appreciable rate in the low temperature weathering environment (rates discussed in Section 4.7).

Fourth, the abundance of carbonate veins declines steeply from a few volume percent in the upper tens of meters (poorly sampled during drilling) to near zero in cores from more than 100 m below the surface (Figure 22). The frequency of waxy veins also shows a general decrease with depth in core from Hole BA1B, though no trend is evident in the other two cores. Older sets of black, white and composite serpentine veins do not show systematic variation in frequency with depth. Overall, all cored MBO Holes show decreasing area proportion of veins with increasing depth (Figure 23).
Figure 21: Silicon and aluminum contents of microcrystalline chlorite in waxy serpentine veins cutting an altered gabbroic dike and surrounding, mesh-textured serpentinite (filled green circles, BA1B 17-1 22-25.5, 33 meters depth) compared to chlorite in altered gabbros near OmanDP Site GT1 (orange circles, Zühlke et al. [2018]) and in altered oceanic crust (brown circles, Alt and Bach [2001]). Calculated Si and Al apfu values are based on 14 oxygen atoms. Endmember minerals are indicated by the blue squares and dashed blue lines. Analyses indicate that the natural chlorites are mixtures including clinoclore (Clc, Mg₂AlSi₃AlO₁₀(OH)₈), daphnite (Dph, Fe₆AlSi₃AlO₁₀(OH)₈), aka chamosite, sudoite (Sud, (Mg-Fe²⁺)₂Al₂Si₄AlO₁₀(OH)₈), Mg-Fe²⁺-chrysotile (Ctl, (Mg-Fe²⁺)₆Si₄O₁₀(OH)₈), Mg-Fe²⁺-amesite (Ame, (Mg-Fe²⁺)₄Al₂Si₂Al₂O₁₀(OH)₈), Mg-Fe²⁺-talc (Tlc, (Mg-Fe²⁺)₂Si₂Si₂O₁₀(OH)₈), pyrophylite (Pyp, Al₆Si₄O₁₀(OH)₂), beidellite (Bei, K₀.₃₃Al₂Si₃.₆₇Al₀.₃₃O₁₀(OH)₂), montmorillonite (Mnt, Ca₀.₁₇(Mg,Fe²⁺)₀.₃₃Al₁.₆₇Si₄O₁₀(OH)₂), and/or saponite (Sap, Ca₀.₁₇(Mg,Fe²⁺)₃Si₃.₆₇Al₀.₃₃O₁₀(OH)₂). Clinoclore, daphnite, and sudoite endmembers belong to the chlorite group of minerals. Chrysotile and amesite endmembers belong to the serpentine group while beidellite, montmorillonite, and saponite endmembers are clay minerals. The chrysotile and amesite endmembers used in this figure are two times the formula units used in Figure 20 to be consistent with chlorite stoichiometry (2x serpentine).

Figure 22: 25 meter running average vein frequency from shipboard visual core description. Left: Figure F30 from Kelemen et al. [Kelemen et al., 2021d]. Center: Figure F28 from Kelemen et al. [Kelemen et al., 2021f]. Right: Original plot from data in Kelemen et al. [Kelemen et al., 2021g].
Fifth, though vein volumes were not well constrained during core description onboard DV Chikyu, a combination of data on vein frequency and width allowed the shipboard science team to approximately quantify the overall volume fraction of veins in the core as a function of depth.

3.4 Isotopic characteristics of carbonate veins

Supplementary Table S3 reports new data on 14C, 87Sr/86Sr, d^{13}C and d^{18}O, collected for this paper. 14C contents are reported as fraction modern carbon, and as the 14C “age” of samples. The “age” assumes that they formed at a single time from a source equilibrated with atmospheric CO$_2$ at that time. About 2/3 of analyzed samples contained measurable 14C (7 of 15 from 3 to 57 m in BA1B, 6 of 6 from 5 to 9 m in BA3A, 10 of 14 from 1 to 32 m in BA4A). The chances of sample contamination are low – samples were acid washed to remove young carbon introduced during drilling and sample preparation, and in any case it is difficult to contaminate carbonate samples with carbon. Fraction modern 14C abundances range from zero to 0.0782 ± 0.00001, corresponding to nominal ages ranging from greater than ~ 50,000 years to 20,300 ± 100 years. The sample with the lowest measurable 14C abundance contains 0.16 ± 0.05 % modern carbon, corresponding to a nominal age of 52,600 ± 2300 years. Thus, about 2/3 of the carbonate veins appear to have formed, or incorporated a young carbon component, in the last 53,000 years. 14C abundance does not have any discernable variation with depth.

d^{13}C and d^{18}O ranges (-5.7 to -16.0 ‰ relative to VPDB, 23.5 to 34.3 ‰ relative to SMOW, respectively) are similar to those reported for peridotite-hosted carbonate veins sampled from outcrops and road cuts in Samail ophiolite peridotites, with values that are generally higher than in young travertines deposited at peridotite-hosted alkaline springs. (Kelemen and Matter 2008; Kelemen et al. 2011; Mervine et al. 2014; Falk et al. 2016; de Obeso and Kelemen 2018). If we apply published oxygen isotope exchange thermometers for dolomite [O’Neil et al., 1969; Vasconcelos et al., 2005] together with the observation that present-day Oman well and spring water has d^{18}O within two per mil of seawater (d^{18}O SMOW = 0), we obtain temperatures of ~ 10 to 45°C. Using d^{18}O exchange thermometers for calcite [Chacko and Deines, 2008; O’Neil et al., 1969], applied to d^{18}O data for aragonite, yields temperatures of ~ 22 to 50°C. These low temperatures, together with a mean annual surface temperature of 30°C in northern Oman, and an approximate geothermal gradient of 20 to 25°C estimated from temperature profiles measured in MBO boreholes, are...
consistent with the \(^{14}\text{C}\) ages, and both data sets are indicative of vein formation via water-rock reaction near the present-day erosional surface.

Present day \(^{87}\text{Sr}/^{86}\text{Sr}\) ratios in eleven carbonate vein samples range from 0.708216 ± 0.000016 to 0.708596 ± 0.000015, averaging 0.708492 ± 0.000066 (2 std error). These values are similar to \(^{87}\text{Sr}/^{86}\text{Sr}\) previously reported for peridotite-hosted spring and well water, and for young, low temperature carbonate veins, in the Samail ophiolite mantle section [Kelemen et al., 2011; Weyhenmeyer, 2000]. They are higher than \(^{87}\text{Sr}/^{86}\text{Sr}\) in seawater from 20 Ma to 96 Ma [McArthur et al., 2020], where 96 Ma is the age of Samail ophiolite crustal formation and hydrothermal alteration near an oceanic spreading center [Rioux et al., 2012; Rioux et al., 2013; Tilton et al., 1981; Warren et al., 2005]. However, the Sr isotope ratios in our carbonate vein samples are lower than present-day seawater and rainwater, most likely due to mixing between a young seawater component and small amounts of mantle-derived Sr with \(^{87}\text{Sr}/^{86}\text{Sr}\) ~ 0.703.

3.5 Borehole water properties

Borehole water properties were measured as described in Kelemen et al. [Kelemen et al., 2020c]. We used the measured temperature, pressure, Eh and pH to calculate oxygen fugacity, \(f_{\text{O}}_2\), as described in Section 2.6. Downhole variation of water \(f_{\text{O}}_2\) and pH is illustrated in Figure 24. Where repeated measurements were made in the same borehole, these are illustrated in separate panels.

In general, pH in borehole waters increases with depth, while \(f_{\text{O}}_2\) decreases with depth. Lubrication for drilling utilized fresh drinking water, thought to be close to equilibrium with air at 1 bar. Thus, drilling introduced oxidized water into the more reduced, peridotite-hosted aquifer(s). Partly for this reason, borehole waters have generally become more alkaline and more reduced over time since drilling. Unfortunately, it is not clear whether this results from (1) advective or diffusive mixing of freshwater introduced during drilling with reduced, alkaline pore water in the surrounding rocks, (2) flow of freshwater away from the Holes, to be replaced by reduced, alkaline pore water from the surrounding rocks, or (3) reaction between the freshwater introduced by drilling and the surrounding rocks.

Holes BA1A and BA1D are about 15 meters from each other. They are hydraulically connected at depth, via a fracture network with a permeability ~ 10\(^{-16}\) m\(^2\) [Lods et al., 2020]. Hole BA1B is ~ 105 meters from BA1D and 120 meters from BA1A. Water with intermediate pH near the top of BA1A flows rapidly downward from 25 to 60 meters depth, below which flow rates are too low to measure. Below 150 and 50 meters in BA1A and BA1D, respectively, one year after drilling water the lower half of both Holes had become more alkaline and reduced, with oxygen fugacity approaching the H\(_2\)O-H\(_2\) limit.

Unfortunately, water properties in BA1B have only been fully logged once, a month after drilling, though downhole pH was measured approximately two years later. A second pH log revealed lower pH in the upper 200 m of the Hole, and higher pH in the lower half of the Hole [Figure 2 in A Templeton et al., 2021]. The early measurements of Eh, pH, temperature and pressure yielded a calculated \(f_{\text{O}}_2\) with a relatively smooth gradient, gradually declining with increasing depth. As for BA1B, BA3A and BA4A were also logged just once, within a few months of drilling. In BA3A, a pH log two years after drilling revealed a small increase in pH throughout the hole, to ~ 11, suggestive of buffering involving Ca\(^{2+}\) and OH\(^-\) [Barnes and O’Neil, 1969; Bruni et al., 2002; J A M Leong et al., 2021; J A M Leong and Shock, 2020; Neal and Stanger, 1984; Paukert et al., 2012]. BA3A is 5 meters from water monitoring well NSHQ14, drilled in 2004. Aside from a steep gradient in \(f_{\text{O}}_2\) in the upper 50 meters of NSHQ14, the pH and \(f_{\text{O}}_2\) profiles in BA3A and NSHQ14 are similar, suggesting that they are close to steady state.

The maximum pH in BA4A, ~ 10, is lower than in BA3A and NSHQ14, suggestive of buffering by brucite-water equilibrium [J A M Leong et al., 2021; J A M Leong and Shock, 2020]. Hole BA2A was essentially dry during drilling. After drilling, the Hole was immediately filled with intermediate alkalinity water pumped from a pool in a nearby canyon. Within 40 days, the Hole had partially collapsed, and the pH had risen to more than 10, up to 11, throughout the remaining open hole. Logging 1 year later yielded pH ~ 11 throughout the ~ 120 m of open hole.
Figure 24: pH and log fO₂ from downhole logging in MBO Holes, and Omani Water Ministry monitoring well NSHQ14. fO₂ from measured Eh, pH, temperature and pressure. Black line illustrates fO₂ below which H₂O dissociates to form H₂, calculated from measured temperature and pressure. Rectangles: approximate bounds of fO₂ for selected sulfide-metall associations at 50 MPa from Figure 16. Blue: pentlandite, fO₂ < ~10⁻⁸² bars; orange: native copper + chalcopyrite, 10⁻⁸⁰ > fO₂ > ~10⁻⁸² bars; black: awaruite, fO₂ < ~10⁻⁷⁵ bars. Pink shaded region is bounded on top by the oxygen fugacity buffer 12 goethite = 4 magnetite + 6 H₂O + O₂, and on the bottom by the buffer magnetite = 3 metallic iron + 2 O₂.
fO$_2$ throughout Holes BA2A and BA3A, and below 50 meters depth in NSHQ14, appears to be limited by the reduction of H$_2$O to form H$_2$ together with ongoing reduction of remaining ferrous iron in serpentine and brucite (Section 4.8). No calculated fO$_2$ values fall below the H$_2$O·H$_2$ limit at any depth (within the uncertainty of measurement).

4. Discussion

4.1 Reactive fractionation

Dunite samples in core from the MBO have systematically lower Mg#'s than harzburgites from the same Holes, but the two lithologies have similar contents of Ni, a compatible element during igneous crystal fractionation (Figure 25, left). Dunites in the MBO also have highly variable Ca# (molar CaO/(CaO + NaO$_{0.5}$, Figure 25, right), suggesting enrichment of incompatible elements like Na via igneous crystal fractionation. The juxtaposition of these characteristics, with high, nearly constant compatible element concentrations combined with highly variable incompatible element enrichments, is the signature of "reactive fractionation", in which cooling, olivine-saturated magma begins to crystallize in the uppermost mantle while reacting with residual peridotite. Compatible element concentrations and Mg# in the resulting magmas are "buffered" by diffusive interaction with, and recrystallization of Ni-rich, high Mg# mantle olivine, together with dissolution of high Mg# mantle pyroxene. Meanwhile, decreasing magma mass leads to accumulation of incompatible elements in the remaining liquids. These characteristics have been previously observed in dunites and "troctolites" (plagioclase-bearing lherzolites, sensu stricto) sampled via dredging and drilling along the mid-ocean ridges (Section 1.2). Based on these considerations, we infer that the large dunite body intersected by boreholes at Sites BA1, BA2 and BA4 was the locus of reactive fractionation of primitive magmas in the uppermost mantle beneath the spreading ridge that formed the crust of the Samail ophiolite.

Alternatively, one could ask whether the Mg#, Ni contents or Ca#'s of the dunites and harzburgites in the MBO have been modified by alteration. For example, it has been proposed that low Mg#'s and MgO/SiO$_2$ in some weathered peridotites are produced by preferential dissolution and export of MgO, as discussed further in Section 4.3. However, because Mg#'s in these rocks are not correlated with MgO/SiO$_2$ ratios, we do not think that the lower Mg#'s in dunites compared to harzburgites are the result of preferential MgO removal from the dunites. It is likely that Na has been removed from some igneous rock compositions via dissolution in reacting fluids (Section 4.2). However, this would serve to decrease the variation in Ca#, so that we don't think this process has been important in producing the highly variable Ca# observed in the MBO dunites.
4.2 Gabbric dike compositions

Based on the observations and interpretations of the shipboard science team, the protoliths of igneous dikes in core from the MBO appear to have been dominantly wehrlites, clinopyroxenites, olivine gabbros and gabbros [Kelemen et al., 2021d; f; g], rather than websterites and gabbronorites. The latter suite of orthopyroxene-rich rocks forms abundant dikes and small intrusions into the shallow mantle elsewhere in the Wadi Tayin and Samail massifs and is abundant in the northern massifs of the ophiolite (Section 1.3). In this interpretation, the dikes in MBO peridotites are similar to those near the center of the “mantle diapir” inferred to be preserved in the Samail massif, and different from the orthopyroxene-rich dikes that are present in the mantle surrounding the “diapir” [Ceuleneer et al., 1996].

However, interpretation of the MBO dikes in terms of igneous rock compositions should be undertaken with caution. We computed CIPW norms for the bulk compositions of the 40 “gabbro” and “pyroxenite” dikes in MBO core that were analyzed by the shipboard team. In calculating the norms, for simplicity we assumed that all Fe is FeO, and because the science team did not emphasize the presence of relict ferric-iron-bearing oxides in the dikes, perhaps because they are not present. Most of the dike compositions are distinct from those of common gabbric and ultramafic, igneous rocks. 65% of the compositions are peralkaline, with normative nepheline, leucite and/or kalsilite. Two peralkaline samples also contain corundum in the norm. None of these low SiO2 minerals has been observed in less altered mantle dikes, or in crustal gabbros, of the Samail ophiolite. Their presence in the norms is indicative of alkali addition, aluminum addition, and/or SiO2 extraction during alteration. All but two of the 14 samples that are not peralkaline contain normative orthopyroxene. As noted above, orthopyroxene is common in most Samail mantle dikes, where it is the most SiO2-rich mineral. Given the possibility of extensive SiO2 extraction during alteration, perhaps (some of) the protoliths of peralkaline dikes in MBO drill core were gabbronorites and websterites, after all.

Moreover, 60% of the norms contain more than 50% olivine, whereas gabbric dikes and intrusions commonly contain approximately cotectic proportions of olivine and plagioclase, ± calcic pyroxene, with less than 30% olivine. On the other hand, ultramafic dikes commonly contain no plagioclase at all. Again, the presence of > 50% olivine in most of the CIPW norms for “gabbric” dikes may be indicative of SiO2 removal during alteration, rather than a record of the proportion of olivine present in the igneous protolith of these rock compositions, which have been very substantially modified during alteration.

Finally, the CIPW norms consistently have high molar anorthite contents (An) in normative plagioclase. All have normative An in plagioclase greater than 90%, all but one have normative An > 95%, and 78% have An of 100%. In contrast, igneous plagioclase with more than 90% An is rare, and igneous plagioclase with 100% An is never observed in fresh igneous rocks [Kohut and Nielsen, 2003]. Thus, it seems likely that Na has been removed from these rock compositions during alteration.

4.3 Pervasive silica addition to peridotites

Figure 26 illustrates the compositions of MBO dunites and harzburgites in terms of wt% Al2O3/SiO2 versus wt% MgO/SiO2. For brevity, throughout the rest of this section, we will refer to these ratios as Al/Si and Mg/Si. This commonly used diagram was first used by Jagoutz et al. to infer the composition of the bulk silicate Earth [Jagoutz et al., 1979]. Such diagrams consistently show that partially serpenetinized harzburgites and lherzolites have low Mg/Si at a given Al/Si ratio, compared to the
residues of partial melting and melt extraction in the upper mantle. Dunites, of course, have higher Mg/Si than harzburgites. Mixtures of high Mg# olivine and Al-bearing spinel in dunites have high, nearly constant Mg/Si over a large range of Al/Si, forming a nearly horizontal array on such diagrams. Again, partially serpentinized dunites commonly have Mg/Si lower than for the high Mg#, high Mg/Si protolith.

Figure 26: Wt% Al$_2$O$_3$/SiO$_2$ vs wt% MgO/SiO$_2$ for dunites (light green) and harzburgites (dark green) samples in core from the MBO, compared to estimated and observed compositions of residual mantle lherzolites and harzburgites [red, Asimow, 1999; Baker and Beckett, 1999]. Diamonds: Hole BA1B, squares: Hole BA3A, circles BA4A. MBO data from Kelemen et al. [2021d; f; g].

Low Mg/Si in serpentinized peridotites has often been ascribed to either (1) Mg dissolution and removal from the rocks [Beinlich et al., 2010; de Obeso and Kelemen, 2020; de Obeso et al., 2021; Monnier et al., 2006; Snow and Dick, 1995], or (2) Si addition [de Obeso and Kelemen, 2018]. To these two possible explanations, one might add a third: Perhaps igneous “impregnation”, for example by crystallization of small amounts of relatively Al-rich, Si-rich, Mg-free plagioclase feldspar in pore space in residual peridotites in the shallow mantle, does not follow the same trend as melt extraction, and produces rocks with low Mg/Si at a given Al/Si. This third hypothesis is quantitatively evaluated, and rejected, in Supplementary Text Section 5.

There is little doubt that both processes (1) and (2) occur. For example, Mg dissolution from peridotites is required, as the source of Mg in meter-wide magnesite veins in peridotite elsewhere in the Samail ophiolite. However, the Mg in these veins could be produced by large amounts of Mg removal from small volumes of peridotite, or small amounts of removal from larger volumes. Thus, the relative importance of Mg removal versus Si addition, in producing observed, low Mg/Si ratios in serpentinized peridotites, remains uncertain, and could vary from place to place.

If the low Mg/Si contents were produced mainly by preferential dissolution and export of Mg, one would expect that the size of the Mg/Si deficit, at a given Al/Si, would be positively correlated with Fe/Mg and negatively correlated with bulk rock Mg#. Based on the relationships evident in residual mantle peridotites and MBO dunite samples, we can quantify this by computing the Mg/Si deficit in harzburgites as

$$\text{Mg/Si deficit} = \text{predicted residual peridotite wt\% MgO/SiO}_2 - \text{observed wt\% MgO/SiO}_2$$

where

$$\text{predicted residual peridotite wt\% MgO/SiO}_2 = -3.15 \times \text{observed wt\% Al}_2\text{O}_3/\text{SiO}_2 + 1.12$$

$$y = -3.15x + 1.12$$

$$R^2 = 0.82$$
and the Mg/Si deficit in dunites as

$$Mg/Si_{\text{deficit}} = fresh_dunite_wt\%MgO/SiO_2 - observed_wt\%MgO/SiO_2$$ (9)

where

$$fresh_dunite_wt\%MgO/SiO_2 \approx 0.30 * observed_wt\%Al_2O_3/SiO_2 + 1.21$$ (10)

assuming spinel-free dunites have Mg/Si of 1.21 (as in many of our dunite samples at low Al/Si), and spinels in dunites contain ~ 50 mole % MgAl_2O_4 and 50 mole % FeCr_2O_4, as is typical.

Supplementary Figure S8 demonstrates that the Mg/Si deficits, estimated in this way, are not correlated with Mg# in dunites or peridotites, nor are they correlated with depth below the surface. Thus, though small amounts of Mg removal may have occurred, it is likely that the pervasively low Mg/Si in MBO harzburgites and dunites has been produced mainly by SiO_2 addition. In particular, many workers have proposed that serpentine can form, in part, via addition of dissolved SiO_2 to brucite, in general [Bach et al., 2004; Bach et al., 2006; J.S. Beard et al., 2009; Frost et al., 2013; Klein and Bach, 2009; Klein et al., 2009; B.M. Tutolo et al., 2018] and related to specific observations in the MBO [Ellison et al., 2021; L.E. Mayhew et al., 2018; Miller et al., 2016; A Templeton et al., 2021; A S Templeton and Ellison, 2020]. Evaluating the likely effect of water/rock reaction, using observed fluid compositions from the MBO and elsewhere in Oman, provides substantial support for the SiO_2 addition hypothesis. Because fluids from peridotite-hosted springs and boreholes in the Samail ophiolite contain appreciable dissolved SiO_2, in all cases the reaction

$$\text{brucite (3Mg(OH)_2)} + 2\text{SiO}_2(aq) = \text{chrysotile serpentine (Mg}_3\text{Si}_2\text{O}_5(OH)_4)+ H_2O$$ (11)

is predicted to proceed from left to right, consuming brucite, adding SiO_2 to the rock, and producing serpentine (Supplementary Figure S2). As noted above, fO_2 calculated from Eh, pH, temperature and pressure in some deep borehole waters is very low, closely approaching the limit where H_2O is reduced to form H_2. However, in the presence of fluids with appreciable dissolved SiO_2, even these low fO_2 conditions favor oxidation of the Fe component in brucite, to form ferric-iron-bearing serpentine via

$$\text{Fe-brucite (4Fe}^{2+}(\text{OH})_2) + \text{SiO}_2(aq) = \text{cronstedtite serpentine (Fe}^{2+}_3\text{Fe}^{3+}\text{SiFe}^{3+}_2\text{O}_5(OH)_4)+ H_2O + H_2$$ (12)

as quantitatively illustrated in Supplementary Figure S2, together with

$$\text{Fe-brucite (5Fe}^{2+}(\text{OH})_2) + \text{Fe}^{2+}\text{serpentine (Fe}^{2+}_3\text{Si}_2\text{O}_5(OH)_4)=2\text{Fe}^{2+}_2\text{Fe}^{3+}\text{SiFe}^{3+}_2\text{O}_5(OH)_4+H_2O+2H_2.$$ (13)

The bulk compositions of almost all dunites and harzburgites in the MBO still retain molar (Mg+Fe^{2+})/Si ratios greater than 1.5 (for example, wt% MgO/SiO_2 greater than ~ 0.9 for a sample with molar Mg/(Mg+Fe^{2+}) = 0.9), and thus they require the presence of brucite or cronstedtite as well as serpentine in fully hydrated normative mineral proportions. However, almost all of these calculated, fully hydrated mineral paragenesis are metastable with respect to the observed fluid compositions in peridotite-hosted springs and boreholes, which contain appreciable dissolved SiO_2. As a result, ongoing, gradual silica addition will continue to shift Mg/Si to lower values over time.

The question arises, if brucite is a common phase throughout most of the core, yet most or all borehole waters contain dissolved SiO_2 concentrations higher than fluids in equilibrium with brucite, what is the source of the SiO_2? Bach et al. [2004] and Frost et al. [2013] suggested that SiO_2 for conversion of brucite to serpentine could be derived from alteration of orthopyroxene. However, while this silica source may contribute in some parts of the system, many of the cores from the MBO are so highly serpentinized that they contain no relict pyroxene. Paulick et al. [2006] suggested that silicification of peridotites at ODP Site 1268 involved fluids derived from relatively SiO_2-rich gabbroic rocks, but the proportion of gabbroic lithologies in the MBO is too limited to explain the widespread presence of relatively SiO_2-rich groundwater in altered peridotites. Similarly, one might consider that SiO_2 is derived from the continental crust and shelf sediments that underlie the Samail ophiolite. However, low Sr isotope ratios in altered peridotites rule out a continental component in fluids during weathering [Supplementary Figure S3 and related text in Kelemen et al., 2011], except in specific
locations just above the basal thrust beneath the ophiolite [Kelemen et al., 2021j] and just below the Cretaceous unconformity above the ophiolite [de Obeso and Kelemen, 2018].

Other suggestions regarding the source of SiO$_2$ for silicification of brucite involve weathering reactions within the serpentinites themselves. Thus, Klein et al. [2009] and Beard et al. [J.S. Beard et al., 2009] invoked silica dissolution during oxidation of Fe$^{2+}$ from serpentine to form magnetite via

$$\text{Fe}_3\text{Si}_2\text{O}_5(\text{OH})_4 = \text{Fe}_3\text{O}_4 + 2\text{SiO}_2(\text{aq}) + \text{H}_2\text{O} + \text{H}_2.$$ (14)

On the one hand, this kind of reaction might not be an important source of SiO$_2$ in the MBO, since many investigators have concluded that formation of magnetite during oxidative, hydrous alteration of peridotite is uncommon below ~200°C [e.g., Klein et al., 2014; Klein et al., 2009; McCollom and Bach, 2009; McCollom et al., 2016; Streit et al., 2012]. On the other hand, however, whole core magnetic susceptibility data [Kelemen et al., 2021d; f; g; A Templeton et al., 2021] indicate an average abundance of less than 1.5 wt% magnetite throughout most of the core [e.g., Figure 1 and related calculations in Ellison et al., 2021]. Alternatively, Streit et al. [2012] and Ellison et al. [2021] suggested that dissolved SiO$_2$ rises due to carbonation reactions such as

$$\text{Mg}_3\text{Si}_2\text{O}_5(\text{OH})_4 + 3\text{CO}_2 = 3\text{MgCO}_3 + 2\text{SiO}_2(\text{aq}) + 2\text{H}_2\text{O}.$$ (15)

Formation of Mg-carbonate minerals by reaction of dissolved CO$_2$ with peridotite certainly does increase SiO$_2$ activity, driving up the Si/Mg ratio in silicate minerals [e.g., Falk and Kelemen, 2015; Frost, 1985; Kelemen et al., 2011; Klein and Garrido, 2011; Streit et al., 2012], and indeed, veins in core record Mg-carbonate formation in the shallow portions of Holes BA1B, BA3A and BA4A [Section 3.3 and Kelemen et al., 2021d; f; g]. However, it remains unclear to us whether the proportion and rate of carbonation in the uppermost part of the peridotite-hosted aquifer is sufficient to overcome the buffering capacity of brucite-bearing serpentines and produce the relatively high SiO$_2$ contents observed in almost all borehole water samples.

In any case, mass balance requires the continued presence of brucite in fully hydrated MBO dunite and harzburgite compositions (Figure 9 and related calculations). In keeping with these calculations, brucite is observed in the MBO core. For example, although sampling for X-ray diffraction onboard DV Chikyu was commonly focused on identifying relatively coarse-grained minerals in veins, shipboard X-ray diffraction data for serpentine-bearing samples detected the presence of brucite in 10 to 15% of analyzed samples, while less biased, electron microprobe, X-Ray diffraction and Raman analyses revealed the presence of brucite in a significant proportion of samples in drill cuttings from rotary boreholes NSHQ14, BA1A and BA2A [Kelemen et al., 2021d; e; L.E. Mayhew et al., 2018; Miller et al., 2016]. Finally, 6 of 11 samples from Hole BA3A, 13 of 15 samples from Hole BA4A, and 21 of 23 samples from Hole BA1B analyzed by quantitative XRD contained appreciable brucite [Ellison et al., 2021] [A Templeton et al., 2021].

In this context, the presence of brucite in the mesh-textured, serpentinite matrix is similar to the presence of highly reduced sulfides in cores from shallow depths in the MBO. While equilibrium may be closely approached at the micro- to nano-scale in these samples, it is likely that mesh cores are far from equilibrium with fluids in nearby fractures that are similar to spring and borehole waters.

4.4 Correlation of water properties and core composition

The shipboard science team quickly realized that there is a strong correlation between carbonate vein abundance and pH in borehole waters, in data from Holes BA1B and BA4A (Figure 27, left; BA1B log vein frequency per 25 m = 11.9 – 1.056 x – pH, R^2 = 0.90; BA4A, log vein frequency per 25 m = 17.443 – 1.68 x pH, R^2 = 0.92). Indeed, interpreting C concentration and 14C data for peridotite hosted carbonate veins and travertines in the Samail ophiolite, Kelemen and Matter [Kelemen and Matter, 2008] inferred the presence of a shallow horizon of carbonate vein deposition just beneath the surface, with most carbonate veins in a ~15 m layer below the present-day erosional surface. This relationship is not as clear in data from Hole BA3A, where a fault at ~70 m depth is associated with a peak in carbonate vein frequency. Consistent with the observed correlation in BA1B and BA4A, less comprehensive observations of carbon concentration in core samples show a correlation between the pH of borehole water and the carbon content of core from Hole BA1B (Figure 27, right).
Since the solubility of carbonate minerals decreases rapidly with increasing pH, the shipboard team attributed the correlation of carbonate vein abundance with depth to carbonate precipitation as pH increased along a reaction path, as water descending through the porous aquifer interacts with increasing amounts of peridotite. This seems evident, even obvious... except that it does not explain the correlation between present-day fluid compositions and carbonate abundance, unless the carbonate veins are also young, precipitated from descending fluids near the present-day erosional surface.

As for borehole pH and the carbon content of core, since both the ferric to ferrous iron ratio in core samples and the oxygen fugacity in borehole waters systematically decline with increasing depth in Hole BA1B, one might expect a correlation between borehole water fO$_2$ and whole rock Fe$^{3+}$/Fe$^{2+}$. As shown in Figure 27, center, this correlation may be present, though it is not very strong.

![Figure 27: Relationships of core observations to water compositions in boreholes at the same depth. The log of carbonate vein frequency (25 m running average) in Holes BA1B and BA4A decreases with increasing pH in borehole fluids. Ferric to total iron ratios in core from Hole BA1B are weakly correlated with fO$_2$ in borehole water from the same depth. CO$_2$ content in core from Hole BA1B is high at relatively low pH, while it is low and less variable at high pH in borehole waters. [Data from this paper and Kelemen et al., 2021d; g].](image)

Carbonates in core from the MBO are generally in veins within fractures, which are macroscopic conduits for fluid flow and probably record high time-integrated water/rock ratios. Thus, one might expect a reasonably strong correlation between carbonate mineral abundance in core, and the composition of water in larger fractures, and in boreholes that are filled primarily by flow in larger fractures.
In contrast, nickel-, copper- and iron-bearing minerals are found throughout our rock samples, in mesh cores as well as veins. These different micro-environments record very different oxidation states which could all be present in peridotite-hosted aquifers at the same time, juxtaposed on very short length scales. For example, as emphasized by de Obeso and Kelemen [2020], some peridotite outcrops elsewhere in the Samail ophiolite preserve almost the entire range of fO₂ on Earth, over a length scale ~ 10 cm, from native metals and highly reduced sulfides in dark serpentinites to rusty orange, clay-bearing assemblages in which all iron is ferric.

Similarly, as noted in Section 3.2, Kelemen et al. [2021d; f; g] and Eslami et al. [Eslami et al., 2018], awaruite, native copper, heazlewoodite, pentlandite and magentite are found – in various combinations – in the serpentinite matrix of samples from a range of depths, and a corresponding range of fO₂ in borehole waters logged at the same depth (Figure 28). Similar assemblages are reported in other peridotite masses [e.g., Alt et al., 2013; de Obeso and Kelemen, 2018; 2020; Schwarzenbach et al., 2012; Schwarzenbach et al., 2016; Schwarzenbach et al., 2021].

4.5 Sulfur-rich, “black serpentinite” zone from 30-150 m depth in Hole BA1B

The relatively high sulfur content, up to 0.6 wt% of the BA1B core in some samples located between ~30 and 150 meters depth (Figure 12) – is almost certainly hosted in microscopic Ni sulfide together with sulfide – hydroxide ± carbonate minerals such as tochilinite and haapalite (Section 2.6) – suggests another potential correlation between the mineralogy of the core and present-day borehole fluid compositions. Sulfur concentrations in the core in this interval [Kelemen et al., 2021d] are 10 to 100 times higher in samples from outcrops of less weathered, residual mantle dunites and harzburgites from other parts of the Samail ophiolite (5 to 100 ppm in 21 samples from Hanghoj et al. [2010], 100 to 500 ppm in 5 samples from Oeser et al. [2012]). This observation, coupled with the weathering-related redox gradients in the MBO – recorded by the decline in Fe³⁺/(total Fe) ratios with depth in core compositions, and by declining fO₂ with depth in borehole waters – calls to mind well-known enrichments of Ni and Cu in laterites and supergene ore deposits. These deposits are generally thought to form via dissolution of metals in oxidized, near-surface ground waters, and re-precipitation of those components at greater depth, as downward migrating fluids become reduced by reaction with surrounding rocks.
In 2018, a few months after drilling, fO$_2$ in BA1B borehole waters at 30 to 150 m depth was $\sim 10^{-30}$ to 10^{-40} bars, too high for sulfide saturation at the low dissolved sulfur concentrations we model ($\Sigma S < 10^{-3}$ molal, Figure 29). As noted in Section 3.5, because drilling operations used fresh, oxidized drinking water for lubrication, it may be that steady state fO$_2$ (and/or dissolved S contents) at these depths had not yet been attained when the Hole was logged. In any case, thermodynamic modeling, presented in Section 4.6, shows that fO$_2$ drops from $\sim 10^{-35}$ bars to 10^{-65} bars -- where sulfide saturation is predicted in our Step 2 models illustrated in Figure 29 -- over a very short interval of reaction progress. Thus, a small increment of reaction between borehole waters and surrounding rocks would lead to sulfide precipitation.

More generally, borehole waters may record ambient fluid compositions in large fracture systems, which are probably the locus of most fluid flow in the peridotite-hosted aquifer. Thus, prior to drilling, relatively oxidized waters with fO$_2$ from 10^{-30} to 10^{-40} bars may have already been present in the larger fracture systems at 30 to 150 m depth. However, where these waters infiltrate smaller fracture systems, and/or react diffusively with surrounding rocks, it is likely that they become highly reduced and sulfide-saturated, contributing to continued accumulation of sulfide minerals in the black serpentinite zone. In this scenario, over time the erosional surface will continue to migrate downward with respect to the present-day surface, and the supergene enrichment zone will also migrate downward, as sulfides at the top of the zone are gradually oxidized by near surface fluids, and begin to dissolve. In this way, such zones can be both ancient, and active. It has been proposed that the formation of supergene metal enrichment, via low temperature sulfide precipitation, is unlikely without the intervention of sulfate-reducing bacteria [e.g., Tornos et al., 2019; Zammit et al., 2015]. In turn, Templeton et al. [A Templeton et al., 2021] report that sulfate-reducing microbial activity has not yet been detected in extracts from BA1B core samples in the 30 to 150 meter black serpentinite zone. In contrast, extracts from core retrieved from greater depth, where borehole waters record more reducing conditions, show evidence of biological sulfate reduction in the lab. The maximum rates of microbial sulfate reduction occurred in samples from 280 m depth, where fO$_2$ in borehole water was $\sim 10^{-62}$ bars in 2018.

On the basis of these observations, one hypothesis might be that microbial reduction of sulfate at ~ 250 to 300 m depths produces H$_2$S, which then migrates upward through the rocks -- perhaps along fault zones at 30 and 160 meters depth -- to produce the observed sulfur enrichment in rocks at 30 to 150 m depth. However, here we suggest a simple alternative, that supergene sulfur enrichment is ongoing, with descending, oxidized, near-surface fluids dissolving sulfur from the oxidized red zone from 0 to 30 m depth, and transporting dissolved sulfate downward. This continues until the fluids become reduced by reaction with serpentinites, and precipitate sulfides in the black serpentinite zone.
from 30 to 150 meters depth. In this alternative interpretation, either microbial activity is not essential to this process, or the microbes that facilitate this relatively shallow process have not yet been detected in samples extracted from core. Indeed, in water samples from obtained from the 41 to 132 m depth interval of Hole BA1A via packer sampling, Nothaft et al. [2021a] found that 20 to 92% of 16S rRNA gene amplicon sequences were affiliated with a class of bacteria supported by sulfate reduction.

4.6 Reaction path modeling including Cu, Ni and S

In order to quantify the hypothesis that the black serpentine zone observed in BA1B core may form via supergene enrichment, we conducted geochemical reaction path modeling, using methods described in detail in Section 2.5. We followed the general rubric outlined by Barnes and O'Neil [Barnes and O'Neil, 1969] and Neal and Stanger [Neal and Stanger, 1985], and modeled by Bruni et al. [Bruni et al., 2002], Paukert et al. [Paukert et al., 2012] and Leong et al. [J A M Leong et al., 2021b]. In these models, rainwater falling on peridotite dissolves Mg$^{2+}$ and other components from the rock, charge balanced mainly by uptake of CO$_2$ from air to form HCO$_3^-$. This process forms Mg-HCO$_3^-$-rich waters with pH ~ 8.5 to 10, which Barnes and O'Neil termed Type I. As extensively discussed elsewhere [e.g., Kelemen et al., 2011 and references therein], Type I waters in the Samail ophiolite are typically sampled from wadis (small canyons) and shallow groundwater wells in the peridotite-hosted aquifer. Some Type I fluids are then thought to continue reacting with peridotite at greater depth, isolated from the atmosphere. Precipitation of serpentine and Mg-bearing carbonates along this reaction path, together with dissolution of Ca-bearing phases, produces low Mg and Ca-H$_2$O-rich fluids with pH > 10 and low fO$_2$, which Barnes and O'Neil termed Type II waters. In all of these respects, our new models do not depart significantly from past results.

However, our new models incorporate dissolved S, Ni and Cu, together with a host of metal and sulfide minerals, and thus can be used to evaluate potential mechanisms of supergene sulfide enrichment in the serpentinized peridotites hosting Hole BA1B. The results of these models are depicted in Figure 29. As predicted on qualitative grounds, formation of Type I fluids via reaction open to CO$_2$-uptake from air is accompanied by dissolution of sulfur-bearing phases. In turn, reaction of Type I fluids with serpentinite, closed to CO$_2$ uptake from air, leads to precipitation of serpentine, dolomite and hematite, together with production of highly reduced fluids that precipitate sulfides and native metals. When dissolved O$_2$ concentrations drop below those of dissolved H$_2$, a dramatic drop in fO$_2$ from 10^{-35} to 10^{-65} bars over a narrow range of water rock ratios ($10^{3.391195}$ to $10^{3.390982}$). This is accompanied by saturation in native copper and sulfide minerals cubanite, millerite and pyrite. As fO$_2$ continues to fall, and sulfide precipitation also lowers fS$_2$, hematite precipitation is supplanted by magnetite, there is another big drop in fO$_2$ over a narrow range of reaction progress, overall sulfide precipitation declines, and the sulfide and metal assemblages associated with magnetite that have been observed in serpentinite mesh cores (Section 3.2) – heazlewoodite, chalcopyrite, and ultimately awaruite – are predicted to form.
Figure 29: Results of thermodynamic reaction path modeling at 35°C and 50 MPa. From the perspective of fluid gradually reacting with rock, reaction progress increases from right to left, as the water/rock ratio (W/R) decreases.

Because the Klein et al. [2013] thermodynamic database used for this modeling (Section 2.5) is limited to 50 MPa, these results for 50 MPa, whereas the maximum pressure in MBO boreholes is ~ 4 MPa. Fortunately, few relevant equilibria (other than H$_2$ saturation in water!) are dependent on pressure in this range.

Results are presented in terms of abundance of precipitated minerals (top row) and dissolved species (bottom row). Bottom right panel also illustrates fO$_2$ (red line), fO$_2$ values at the H$_2$O-H$_2$ limit where water breaks down to form H$_2$ (horizontal, dashed red lines), and corresponding dissolved H$_2$ concentrations at H$_2$-gas saturation (horizontal, dashed grey lines) at 0.1, 0.4, 20 and 50 MPa.

Step 1 (left-hand panels) simulates reaction of rainwater with peridotite, in a system in equilibrium with air. Step 2 (right-hand panels) simulates reaction between water produced in step 1 and serpentinized peridotite, in a system isolated from air. Step 1 produces oxidized, clay- and hematite-bearing serpentinites (upper left panel) while dissolving sulfur from the protolith, and solute-rich fluids with pH ~ 8 and ~ 1 millimole dissolved sulfur (lower left). Step 2 produces reduced serpentinites with magnetite, sulfides, and metal alloy (upper right), together with sulfur-, magnesium-, silicon- and carbon-poor fluids (lower right).

A sharp sulfide precipitation front accompanies a drop in fO$_2$ from ~ 10^{-35} to 10^{-65} bars at a water/rock mass ratio ~ $10^{3.39}$. Illustrating this, the middle panel on right illustrates sulfur concentration in precipitated solids at a given water/rock ratio (black line). This forms a sulfur-rich zone at water/rock ratios from ~ $10^{3.3}$ to 10, similar in origin to supergene sulfide deposits. Sulfide, Fe-oxide and metallic phases precipitated along the reaction path are further illustrated in Supplementary Figure S9.
The middle panel also illustrates results in terms of iron redox (orange lines). Cumulative $\text{Fe}^{2+}/(\text{total Fe})$ in all precipitated solids is illustrated with small dashes, cumulative moles Fe precipitated are shown with the solid line, and cumulative moles of Fe^{3+} precipitated are tracked with large dashes. Because this reaction path model includes solid solutions, whereas the calculations in Figure 31 are for pure mineral end-members, the results in the middle panel provide a crucial complement to those in Figure 31, for understanding the evolution of fO_2. Although $\text{Fe}^{3+}/(\text{Fe total})$ of precipitating solids declines with reaction progress at a water/rock ratio less than $\sim 10^5$, it only falls by a factor of ten in the bulk, and a factor of five in the serpentine (Supplementary Figure S10), whereas the amount of precipitated solids (mostly brucite + serpentinite) increases by a factor of ~ 100 from water/rock of 10^5 to 10^0. In this model at 50 MPa, H_2 partial pressure is not limited to 4 MPa, (dissolved $\text{H}_2 \sim 30$ mM) but instead increases to 50 MPa saturation (water/rock $\sim 10^{0.8}$, ~ 375 mM dissolved H_2). In the MBO system at ~ 4 MPa, dissolved H_2 concentration would be limited to ~ 30 mM, fO_2 would be fixed at about 10^{10} bars, and H_2 gas would evolve with continued oxidation of Fe^{2+} in the protolith to form increasingly large cumulative masses of Fe^{2+}-bearing serpentinite.

Abbreviations: Serpentine (Srp, chrysotile + greenalite + Fe^{2+}-cronstedite solid solution), talc (Tlc, talc + minnesotaite solid solution), Mg-saponite (Sap), Mg-amesite (Ame), garnet (Grt, andradite + grossular solid solution), magnesite (Mgs), calcite (Cal), dolomite (Dol), gibbsite (Gbs), hematite (Hem), brucite (Brc, Mg and Fe^{2+} solid solution), magnetite (Mag), tenorite (Tnr), millerite (Mlr), cubanite (Cbn), pentlandite (Pn), heazlewoodite (Hzl), pyrite (Py), native copper (Cu), native nickel (Ni), and awaruite (Awr). Amesite is treated as an end-member phase, not part of the serpentine solid solution. In natural rocks, amesite is a component in serpentinite solid solutions. Similarly, native Ni and awaruite (Ni$_3$Fe) are treated as end-member phases in the calculation, whereas in some studies a range of Fe/Ni ratios has been observed.

Some potentially significant departures of model results from observations include saturation in millerite, cubanite and pyrite, which haven’t been observed in the core, and precipitation of Ni metal from W/R ~ 100 to 10, prior to formation of awaruite. The latter discrepancy is perhaps explained by the fact that the method used for modeling cannot account for solid solutions. Frost [1985] and Sleep et al. [2004] noted that if there were complete solid solution from Ni to Fe metal, one might use the Fe/Ni ratio as an indicator of fO_2. In essence, because Ni-NiO occurs at much higher fO_2 than Fe-FeO, one could anticipate a negative correlation between oxygen fugacity and the Fe content of NiFe alloys. Low temperature phase equilibria in this system are uncertain [Cacciamani et al., 2010; Howald, 2003; Klein and Bach, 2009; Navak and Meyer, 2015]. Fe-rich “tachent,” “awaarite” and “tetrataenite” are reported in terrestrial serpentinites [Botto and Morrison, 1976; Navak and Meyer, 2015], while Sciortino et al. [2015] and Ellison et al. [2021] analyzed “awaarite” with low Fe contents in serpentinites, including in a sample from 100 m depth in Hole BA3A. Similarly, incomplete observations, and/or lack of solid solution data in the thermodynamic calculations, may be responsible for model predictions of sulfides that have not (yet?) been observed in core, and conversely for the lack of model predictions of sulfides that are observed.

Overall, solid reaction products are predicted to have high total sulfur contents in the range of water rock ratios from 10^5 to 10^1, which we propose is the mechanism for the formation of the sulfur-rich, black serpentinite zone from 30 to 150 m depth in BA1B core. More generally, the model whose results are depicted in Figure 29, and other, similar, previous models of the evolution of Type I and Type II fluids in peridotite-hosted aquifers, include the implicit assumption that all of the reactions involved are ongoing, perhaps even at steady state. Of course, this assumption is approximate, and it is likely that the rocks contain armored relicts of earlier mantle and alteration phase assemblages. With that said, specific instances of apparent disequilibrium, relic mantle minerals, or “out of sequence” alteration assemblages may be preserved relicts of prior events, but they could also be indicative of micro to meter scale variation in fluid/rock ratios in a reactive system that is close to equilibrium at small length scales, over times of tens to hundreds of thousands of years.

4.7 Rate of ongoing alteration

The ^{14}C data for carbonate veins (Section 3.4, Supplementary Table 3), together with the fact that texturally young, waxy serpentine veins are intergrown with, and locally crosscut, young carbonate veins, indicates that serpentine formation occurred in the Pleistocene and probably continued in the Holocene. Together, waxy serpentine abundances ~ 5 volume percent, and measurable ^{14}C “ages” of 20 to 50 kys for 2/3 of the carbonate samples analyzed, yield an order of magnitude estimate of ~ 1 vol% serpentine formation per 10,000 years, equivalent to a volume fraction of 3×10^{-14}/s. This estimate is roughly consistent with new, experimentally-based estimates of low temperature serpentine formation from olivine [Lamadrid et al., 2021] and estimates of the Fe-redox rate based on observed H_2 and CH_4 gas fluxes [J A Leong et al., 2021a]. In keeping with other work and considerations in Section 4.3, we hypothesize that most of the ongoing serpentine formation occurs via addition of
aqueous SiO$_2$ to brucite to form Mg-rich serpentine, and oxidation of Fe-brucite to form ferric-iron-bearing serpentine.

4.8 Controls on fO$_2$, pH and dissolved SiO$_2$ in borehole waters

Figure 30, left, shows that fO$_2$ in some boreholes very closely approaches the limit where H$_2$O is reduced to form H$_2$. Also, much has been made of the observation of H$_2$O-rich gases bubbling out of peridotite-hosted alkaline springs in the Samail ophiolite and elsewhere [e.g., Boulart et al., 2013; Neal and Stanger, 1985; Sano et al., 1993; Vacquand et al., 2018]. It is proposed that reactions between water and peridotite produce highly reduced fluids, which evolve free H$_2$ gas. Indeed, fO$_2$ in the lower parts of BA3A 2018, NSHQ14 2018, and BA2A appears to be fixed by a combination of the reaction $2\text{H}_2\text{O} = 2\text{H}_2 + \text{O}_2$ reaction itself, and some sink for O$_2$ at low fO$_2$. Obviously, in the presence of excess water, fO$_2$ cannot decline below the value fixed by this reaction at a given temperature and pressure. Conversely, the rocks still contain ~ 3 wt% ferrous iron (Figure 12). Since the average proportion of magnetite inferred from magnetic data is less than 1.5 wt%, and only 31 wt% of magnetite is composed of FeO (accounting for < 0.5 wt% FeO in bulk rocks), some ferrous iron must still reside in serpentine or brucite, as confirmed by X-ray and Raman spectroscopic analyses of serpentine and brucite in BA3A core samples [Ellison et al., 2021].

Ongoing oxidation of the remaining Fe$^{2+}$ in serpentine and/or brucite, could provide a continuing sink for O$_2$, with concurrent production of H$_2$, thus pinning fO$_2$ at the H$_2$O-H$_2$ reaction limit. If this hypothesis is correct, and if we could obtain gas-tight samples of pore fluid from the rocks surrounding the bottoms of these Holes, we predict they would be H$_2$O-saturated. We are not certain of the nature of the specific reactions that continue to consume O$_2$, and produce H$_2$, at the H$_2$O-H$_2$ limit. Magnetite is stable with respect to Fe-brucite, down to about 2 log units below H$_2$O-H$_2$ (Figure 31), so that brucite oxidation could play a role via

$$6\text{Fe}^{2+}(\text{OH})_2 + \text{O}_2 = 2\text{Fe}^{2+}\text{Fe}^{3+}_2\text{O}_4 + 6\text{H}_2\text{O}$$ \hspace{1cm} (16)

Similarly, remaining Fe$^{2+}$ in serpentine (greenalite, cronstedtite) could be oxidized to form magnetite and/or cronstedtite via

$$2\text{Fe}^{2+}_3\text{Si}_2\text{O}_5(\text{OH})_4 + \text{O}_2 = 2\text{Fe}^{2+}\text{Fe}^{3+}_2\text{O}_4 + 4\text{SiO}_2(\text{aq}) + 4\text{H}_2\text{O},$$ \hspace{1cm} (17, also 14)

$$6\text{Fe}^{2+}_2\text{Fe}^{3+}\text{Si}\text{Fe}^{3+}_2\text{O}_5(\text{OH})_4 + \text{O}_2 = 8\text{Fe}^{2+}\text{Fe}^{3+}_2\text{O}_4 + 6\text{SiO}_2(\text{aq}) + 12\text{H}_2\text{O},$$ \hspace{1cm} (18)

and

$$8\text{Fe}^{2+}_3\text{Si}_2\text{O}_5(\text{OH})_4 + 3\text{O}_2 = 6\text{Fe}^{2+}_2\text{Fe}^{3+}\text{Si}\text{Fe}^{3+}_2\text{O}_5(\text{OH})_4 + 10\text{SiO}_2(\text{aq}) + 4\text{H}_2\text{O}.$$ \hspace{1cm} (19)

Reactions 16, 17 and 18 involve production of magnetite, and thus may be inconsistent with various observations and calculations indicating that magnetite production during peridotite alteration is limited at low temperature (Section 4.3). However, it may be that prior work has not fully explored the very low fO$_2$ conditions near the H$_2$O-H$_2$ limit at low temperature and pressure, and/or that the thermodynamic data are uncertain. Note that the results of the reaction path model in Figure 29, incorporating solid solutions, include a small amount of magnetite precipitation at a water/rock ratio ~ 200, and a predicted increase in the total amount of Fe$^{3+}$ incorporated in serpentine with reaction progress at water/rock less than 200, with fO$_2$ at the H$_2$O-H$_2$ fO$_2$ limit. In addition to providing an ongoing sink for O$_2$ (source of H$_2$) at the H$_2$O-H$_2$ limit, reactions 17-19, involving continued reduction of Fe$^{2+}$ in serpentine, could also be providing a source of "excess" dissolved SiO$_2$ for brucite silicification (Section 4.3). An additional potential O$_2$ sink in the MBO might be ongoing serpentinization of relict olivine, which is observed in less altered core samples, particularly in the lower part of Hole BA1B. This could include reactions such as fayalite-greenalite-magnetite

$$12\text{Fe}^{2+}_2\text{SiO}_4 + 12\text{H}_2\text{O} + \text{O}_2 = 2\text{Fe}^{2+}\text{Fe}^{3+}_2\text{O}_4 + 6\text{Fe}^{2+}_3\text{Si}_2\text{O}_5(\text{OH})_4$$ \hspace{1cm} (20)

and/or fayalite-greenalite-cronstedtite

$$5\text{Fe}^{2+}_2\text{SiO}_4 + 6\text{H}_2\text{O} + \text{O}_2 = \text{Fe}^{2+}_2\text{Fe}^{3+}\text{Si}\text{Fe}^{3+}_2\text{O}_5(\text{OH})_4 + 2\text{Fe}^{2+}_3\text{Si}_2\text{O}_5(\text{OH})_4.$$ \hspace{1cm} (21)

In contrast to the highly reduced water inferred from 2018 data for the deeper parts of Holes BA2A, BA3A and NSHQ14, fO$_2$ calculated from logging data for Holes BA1A and BA4A in 2018, and BA1D
in 2019 is higher, and appears to approach an asymptote at about 4 log units above the H$_2$O-H$_2$ limit toward the bottoms of these Holes. This might be explained by various proposed buffers for fO$_2$ involving awaruite, andradite, diopside and/or calcite [e.g., Ellison et al., 2021; Frost and Beard, 2007; J A Leong et al., 2021a]. However, Ni and Ca, are relatively minor components in the rocks, suggesting that equilibria involving these Ni- and Ca-bearing minerals may have limited buffering capacity. Instead, we suggest that equilibria involving Fe$^{2+}$-Mg solid solutions in cronstedtite ((Mg,Fe$^{2+}$)$_2$Fe$^{3+}$SiFe$^{3+}$O$_5$(OH)$_4$), chrysotile ((Mg,Fe$^{2+}$)$_3$Si$_2$O$_5$(OH)$_4$), and brucite (Mg,Fe$^{2+}$)(OH)$_2$ are controlling fO$_2$ in waters near the bottom of these Holes. Figure 31 illustrates the results of thermodynamic calculations illustrating that, depending on the Mg/Fe$^{2+}$ content of the cronstedtite, these reactions constrain fO$_2$ to within 2.5 to 4.5 log units of the H$_2$O-H$_2$ reaction. If we consider only the Mg-cronstedtite endmember, then the fO$_2$ range is 3.5 to 4.5 log units above H$_2$O-H$_2$, which in turn is consistent with the apparent asymptotic fO$_2$ values for water at the bottom of Holes BA1A 2018, BA1D 2019 and BA4A 2018. The hypothesis that these brucite-serpentine mineral assemblages control fO$_2$ in serpentinizing systems at depth is appealing, because these minerals are composed of the major elements present in the rocks.

Figure 30: Compiled data on downhole variation in fO$_2$ (left) and pH (right) in MBO borehole waters. Red rectangle on left illustrates fO$_2$ for reduction of H$_2$O to form H$_2$ at ~ 35°C and 40 bars, ± 1 log unit (likely precision of borehole fO$_2$ calculated from Eh, pH, temperature and pressure). Green rectangle in lefthand panel illustrates range of fO$_2$ set by reactions involving brucite, cronstedtite, and chrysotile-greenalite solid solutions. Green rectangle in righthand panel illustrates pH range for coexisting brucite, serpentine and andradite. Orange bar in lefthand panel illustrates the position of the oxygen fugacity buffer FMQ (fayalite + O$_2$ = magnetite + quartz) along the geotherm measured in our boreholes.

In addition, brucite-serpentine equilibria also have a potentially important control on dissolved SiO$_2$ concentrations and pH in coexisting fluids. Mg-brucite-Mg-chrysotile and Mg-chrysotile-Mg-talc equilibria constrain SiO$_2$ activity in fluids to range from 10$^{-8.2}$ to 10$^{-4.7}$. This range of SiO$_2$ activities encompasses observed aSiO$_2$ in almost all peridotite-hosted borehole and alkaline spring water samples from the Samail ophiolite with pH $>$ 9 [J A M Leong et al., 2021b]. In turn, Mg-brucite-Mg-chrysotile equilibrium in this SiO$_2$ activity range constrains pH to be ≥ 10. Mg-brucite and Mg-
chrysotile in combination with andradite, which is commonly intergrown with serpentine in core samples from the MBO [Ellison et al., 2021; Kelemen et al., 2021d; f; g; A Templeton et al., 2021], constrain pH to ≤ 11.5. Though pH in borehole waters increases downward near the top of most holes, it is variable at depth, and does not show the asymptotic patterns that are evident in the fO₂ data. However, with the exception of BA1A 2018, the range of pH in all borehole waters logged more than a year after drilling is 10 to 11.3, consistent with the hypothesis that brucite + serpentine ± andradite equilibria control fO₂ in the lower part of these boreholes.

Figure 31: Phase diagrams in terms of temperature vs log fO₂ (left) and log activity of dissolved SiO₂ vs log fO₂ (right), for various reactions involving Mg- and Fe-brucite (Brc, FeBrc), Mg- and Fe²⁺-cronstedtite (MgCtd, Ctd), chrysotile (Ctl), greenalite (Gre), goethite (Gth), magnetite (Mag), awaruite (Awr), heazlewoodite (Hzl), bunsenite (Bun), andradite (Adr), fayalite (Fa) and hisingerite at 45°C and 4 MPa (T and P near the bottom of BA1A, BA1B and BA1D). Because of the choice of thermodynamic database, these results do not incorporate solid solutions. In the right panel, the stability fields of Fe-brucite, greenalite, Fe-cronstedtite, and hisingerite in the Fe-Si-H₂O system are indicated by the green lines. Violet lines indicate phase boundaries involving Mg-cronstedtite (Mg-Fe-Si-H₂O system):

1. MgCtd-Brc-FeBrc: 2Mg₂Fe⁴⁺SiFe⁶⁺O₅(OH)₄ + 3H₂O = 4Mg(OH)₂ + 4Fe(OH)₂ + 2SiO₂ + O₂;
2. MgCtd-FeBr-Ctl: 6Mg₂Fe⁶⁺SiFe⁶⁺O₅(OH)₄ + 2SiO₂ + 8H₂O = 12Fe(OH)₂ + 4Mg₃Si₂O₅(OH)₄ + 3O₂;
3. MgCtd-Ctl-Gre: 6Mg₂Fe⁶⁺SiFe⁶⁺O₅(OH)₄ + 10SiO₂ + 4H₂O = 4Mg₃Si₂O₅(OH)₄ + 4Fe₃Si₂O₅(OH)₄ + 3O₂.

The stability of reaction (3) with respect to hisingerite was not calculated and hence this reaction is shown as a dashed violet line where hisingerite is stable in the Mg-free system. Temperature dependent fO₂ set by the intersections between lines (1) and (2) and lines (2) and (3) in the right panel are shown by the two violet curves in the left panel:

4. MgCtd-Br-Ctl-Gre: 2Mg₂Fe⁴⁺SiFe⁶⁺O₅(OH)₄ + 3H₂O = 4Fe(OH)₂ + Mg(OH)₂ + Mg₃Si₂O₅(OH)₄ + O₂;
5. MgCtd-Br-Ctl-Ctl: 6Mg₂Fe⁶⁺SiFe⁶⁺O₅(OH)₄ + Fe₃Si₂O₅(OH)₄ + 9H₂O = 15Fe(OH)₂ + 4Mg₃Si₂O₅(OH)₄ + 3O₂.

Temperature-dependent fO₂ set by the greenalite, Fe-cronstedtite, and Fe-brucite assemblage, which is at green triple point in the right panel, is equivalent to the green curve in the left panel:

6. Ctl-Gre-FeBrc: 2Fe²⁺³Fe⁶⁺SiFe²⁺O₅(OH)₄ + 3H₂O = 5Fe(OH)₂ + Fe₃Si₂O₅(OH)₄ + O₂.

Thus, to summarize, brucite - serpentine reactions [± andradite, J A M Leong et al., 2021b], can potentially explain fO₂, pH and dissolved SiO₂ contents observed in reduced water at depths greater than 250 meters in BA1A 2018, BA1D 2019, and BA4A 2018, together with the pH and dissolved SiO₂ contents in even more reduced waters observed in BA3A 2018, NSHQ14 2018, and BA2A 2018. While minor phases clearly record fO₂, pH and/or aSiO₂ conditions in this range, we propose that minerals composed of major elements in the rock largely control these conditions.

Finally, water in BA1A 2017, BA1B 2018, BA2A 2017, and probably BA1D 2018, apparently records addition of fresh, high fO₂ water during drilling, suggesting that more than six months may be required for water in these Holes to reach steady state variation in fO₂ vs depth. Water in BA3A 2018 – highly reduced from top to bottom, and very similar to water in nearby Hole NSHQ14 drilled more than ten
years before logging – appears to be an exception to this “rule”. In interpreting the logging data, an additional factor to consider is that flow measurements indicated that (a) there is a relatively fast flowing, low pH aquifer near the top of BA1A, and (b) water flowed down the upper part of BA1A for more than a year after drilling, possibly because this is the natural process, and possibly because the borehole connected two previously isolated aquifers.

5. Conclusions

In this paper, we’ve provided an overview of some initial results from the Oman Drilling Project’s Multi-Borehole Observatory (MBO). Investigations of water and rock samples, from three cored and four rotary boreholes in the MBO have yielded a wealth of new information, which we have just begun to understand. Host rocks to the boreholes are partially to almost completely serpentinized residual harzburgites and replacive dunites from the upper few kilometers of the mantle section of the Samail ophiolite. Dunites show evidence for “reactive fractionation”, in which cooling, crystallizing magmas in the uppermost mantle continued to react with surrounding harzburgites, producing a distinctive trend of incompatible element enrichment at high, nearly constant Ni concentrations and molar Mg#'s. These mantle lithologies have been 65 to 100% hydrated, to form serpentine and other minerals. Similarly, the ferric to total iron ratio in core varies from 50 to 90%.

In the deepest cored hole, BA1B, the extent of hydration, oxidation, and carbonate vein formation all decrease systematically with increasing depth below the surface, and gradients in borehole water composition are correlated with variation in core composition, suggesting that much of the alteration is relatively young, ongoing, and related to low temperature weathering. This inference is borne out by the presence of young serpentine veins, which are intergrown with, and locally crosscut, carbonate veins with measurable 14C contents, yielding a mass fraction rate of “serpentinization” ~ 10^-15/s. Hydration is accompanied by ongoing SiO2 addition to all but the most silica rich dunite and harzburgite compositions. We hypothesize that sulfur enrichment at 30 to 150 m depth, is related to ongoing, oxidative leaching of sulfur from the upper 30 m, together with sulfate reduction and sulfide precipitation in an underlying zone of supergene enrichment.

Borehole waters below 200 to 250 m depth, and some mineral assemblages in core, record oxygen fugacity at and approaching the low fO2 limit where H2O forms H2. In Holes BA2A and BA3A, plus older water monitoring well NSHQ14, fO2 in water appears to be fixed by a combination of the H2O to H2 reaction itself, together with ongoing oxidation of remaining ferrous iron in serpentine, brucite and olivine. This is intriguing, because discrete sampling of water in the MBO has not yet produced compositions saturated in H2 gas, and the origin of H2 streaming from some peridotite-hosted alkaline springs elsewhere in the Samail ophiolite is debated.

In water properties logged more than one year after drilling, in Holes BA1A and BA1D, and in logging data from Hole BA4A just a few months after drilling, fO2 appears to approach an asymptotic value 3 to 4 log units above the H2O-H2 limit. We hypothesize that this is due to equilibria involving cronstedtite ((Mg,Fe2+)2Fe3+SiFe3+O5(OH)4), chrysotile ((Mg,Fe2+)3Si2O5(OH)4), and brucite (Mg,H2O(OH)2, with cronstedtite compositions close to the Mg-endmember Mg2Fe3+SiFe3+O5(OH)4 due to the high molar ratio of Mg/(Mg+Fe2+) in the rocks, in turn related to extensive iron oxidation. This mineral assemblage, ± the minor phase andradite which is commonly intergrown with serpentine in drill core, may control the limited range of pH (10-11.3) and dissolved SiO2 observed in waters from the MBO below 200 to 250 meters depth, and in peridotite-hosted alkaline springs throughout the Samail ophiolite.

Despite all of these indications of ongoing interaction between borehole water and surrounding rocks, including the inference that fluid-mineral equilibria may be controlling the present-day composition of water in the peridotite-hosted aquifer at the MBO, there are many striking indicators of “disequilibrium” in the core. Especially in Hole BA1B, where logging a few months after drilling revealed a gradient in the pH and fO2 extending downward for 400 meters, borehole waters are more oxidized than recorded by key minerals and mineral assemblages in core. On a much smaller spatial scale, Ellison et al. [2021] showed that the ferric to total iron ratios in serpentine was highly variable and correlated with texture at the microscale. Similarly, as shown by de Obeso and Kelemen [2020], some peridotite outcrops elsewhere in the Samail ophiolite preserve almost the entire range of fO2 on Earth, over a length scale ~ 10 cm, from native metals and highly reduced sulfides in dark serpentinites to rusty orange, clay-bearing assemblages in which all iron is ferric. These different micro-environments
record very different oxidation states which could all be present in peridotite-hosted aquifers at the same time, juxtaposed on short length scales.

It is likely that many of these variations are correlated with texture, in which reduced, low SiO₂ assemblages in mesh cores that record very low water/rock ratios are juxtaposed with adjacent veins recording much higher ratios as reported in core from Hole BA3A by Ellison et al. [2021], and by other workers for outcrop samples and drill core worldwide [e.g., Bach et al., 2004; Bach et al., 2006; J.S. Beard et al., 2009; Frost et al., 2013]. Of course, there are exceptions. Ellison et al. also reported that in samples from above 100 m depth in BA3A, mesh cores generally contained serpentine instead of brucite, and that the latest serpentine veins were more reduced. These observations likely reflect multiple levels of reaction progress (multiple water/rock ratios) and multiple controls on Fe oxidation state in serpentine.

Despite the observed local variability described in the last two paragraphs, overall, on the basis of observed gradients in bulk rock alteration with depth, we infer that the proportion of reduced mesh cores vs relatively oxidized veins increases with depth, and that the difference in fO₂ recorded in cores and veins decreases with depth. Moreover, we suggest that most of the diverse mineral assemblages observed in core could have formed concurrently, at a close approach to equilibrium, on time scales ~ 10,000 years, and indeed that most of these assemblages are continuing to form today.

In general, we hope this paper will be viewed as a starting point, for discussion, and more importantly for continued investigation. Most of the core is intact, and most of the boreholes remain open, for continuing research.

6. Author contributions

Peter Kelemen wrote most of the manuscript, asked James Leong and others a lot of questions, and developed some ideas on the genesis and evolution of peridotite protoliths, changes in bulk rock composition due to alteration, and – with Leong – fluid-mineral controls on fO₂, aSiO₂, pH and other parameters. Leong led the team in thermodynamic calculations and modeling, and tried to educate Kelemen, while Juan Carlos de Obeso conducted microprobe analyses of serpentine and minor phases including chlorite, andradite and grossular, and performed X-Ray diffraction, carbon, oxygen and strontium isotope analyses of carbonate vein samples. Jürg Matter led the borehole logging effort, and has generously provided the entire OmanDP Science Team with access to the resulting data. Eric Ellison, assisted by Dan Nothaft, provided valuable input on calculation of fO₂ from Eh, pH, temperature and pressure data for observed borehole waters, and fO₂ for the corresponding limit where H₂O is reduced to form H₂ at a given temperature and pressure, together with the uncertainty in these values. Alexis Templeton and Benjamin Malvoisin, together with Ellison, shared preprints and ideas, in essential discussions that helped frame the questions asked, and the tentative answers provided, in this paper. Compositions of borehole and spring water samples were compiled by Leong et al. (2021), but of course we are greatly indebted to all those who actually gathered and analyzed those samples, via borehole sampling led by Templeton, Nothaft and Ellison, among others. As always, Marguerite Godard ensured the high quality of geochemical data collected onboard DV Chikyu. Matter was ably assisted in downhole logging of Eh, pH, temperature, pressure and depth in borehole waters by Philippe Pézard and his research team. Jude Coggon and Nehal Warsi supervised 100% of core recovery operations. Coggon was also essential as Project Manager throughout the duration of OmanDP and beyond, recalibrating the XRF data and editing the Proceedings chapters long after the money was gone. Coggon and Saebyul Choe were staff scientists, while Godard, Kelemen, Katsu Michibayashi, Eiichi Takazawa and Damon Teagle were co-Chief Scientists onboard DV Chikyu during the monthlong description of 1 km of core from Holes BA1B, BA3A and BA4A. Kelemen, Matter and Teagle were co-PI’s of the ICDP Oman Drilling Project, and Zaher Sulaimani was In-Country Project Manager.

7. Acknowledgements

The results and ideas in this paper rely heavily on all the hard work and deep thinking of the shipboard scientific team onboard DV Chikyu, together with the many, many volunteers who worked
at the drill sites and helped with the logging. In case you have not noticed, you are all listed at http://publications.iodp.org/other/Oman/OmanDP.html. Drilling and research in the Oman Drilling Project were supported by the Alfred P. Sloan Foundation (in association with the Deep Carbon Observatory, DCO), the International Continental scientific Drilling Program (ICDP), US National Science Foundation (NSF) Research Grant NSF-EAR-1516300, the Japanese Marine Science and Technology Center (JAMSTEC), grant number 16H06347 from the Japanese Society for the Promotion of Science (JSPS), the US National Aeronautics and Space Administration (NASA, including the Rock Powered Life NASA Astrobiology Institute (NNA15BB02A), the European Science Foundation, the German Science Foundation, the Swiss Science Foundation, and the International Ocean Discovery Program (aka International Ocean Drilling Program, IODP), with contributions from the Sultanate of Oman Ministry of Regional Municipalities and Water Resources, the Oman Public Authority of Mining, Sultan Qaboos University, CNRS-Univ. Montpellier, Columbia University of New York, and the University of Southampton. Kelemen’s research was also supported with funds from the Arthur D. Storke Chair at Columbia University.

In addition to the authors of this paper, and the drill site and shipboard science teams, a huge group contributed to the success of OmanDP. In Oman, a Project Supervisory Committee chaired by Dr. Said Al Habsi (Director General of Water Resources Assessment in the Ministry of Regional Municipalities and Water Resources, MRMWR), and including Prof. Sobhi Nasir at Sultan Qaboos University, Dr. Ali Al Rajhi, Director of the Geological Survey of Oman, and others, ensured that the project went forward smoothly in accordance with Omani requirements. Members of MRMWR, particularly Ali Al Shukali, ably assisted with downhole logging operations. At Petroleum Development Oman (PDO), Dr. Hamad Shuaibi and Dr. Hisham Siyabi kindly facilitated storage of the archive half of all OmanDP core. We particularly thank Dr. Jay Miller and Dr. Brad Clement at IODP TAMU for making the online proceedings volume possible, and Shana Lewis, Rhonda Kappler, Jean Wulfson, Phil Rumford, Lorri Peters, Crystal Wolfe and Kenneth Sherar at IODP TAMU for editorial assistance in preparing the Proceedings of the Oman Drilling Project, more or less following IODP protocols in presenting the results of this decidedly non-standard ICDP project. We thank the technical staff onboard DV Chikyu for fantastic, efficient support and advice over four months in summers 2017 and 2018, especially Lena Maeda, Dr. Yusuke Kubo, and Dr. Chiaki Igarashi. Dr. Nobu Eguchi served as a patient, generous liaison between OmanDP, NSF and JAMSTEC. Core description onboard DV Chikyu would have been impossible without proactive support from JAMSTEC President Asahiko Taira and NSF Program Director Leonard Johnson. Similarly, we received essential assistance with borehole permitting from Professor Ali Al Bemani, Vice Chancellor of Sultan Qaboos University. On a different timescale, we are deeply indebted to His Majesty Sultan Qaboos bin Said Al Said for his open-door policy for scientific research in Oman, and to Professors Françoise Boudier, Bob Coleman, Cliff Hopson and Adolphe Nicolas for establishing the framework for modern studies of the Samail ophiolite. More recently, we thank a host of colleagues – especially Frieder Klein, Ron Frost and Everett Shock – for helpful discussions and scientific input, particularly via a flurry of emails during the last few days prior to completion of the first submitted version.

Finally, we thank Ben Tutolo and Ron Frost for detailed, authoritative, constructive reviews that helped to improve this manuscript.

Data availability: The data in this paper (Supplementary Tables S1 through S4) have been uploaded to the Zenodo repository where they are available via Open Access at https://zenodo.org/record/5717483#.YZr6dtbMJcs.

8. References cited

Abily, B., and G. Ceuleneer (2013), The dunitic mantle-crust transition zone in the Oman ophiolite: Residue of melt-rock interaction, cumulates from high-MgO melts, or both?, *Geology*, 41, 67-70.

Al Khirbash, S. A. (2016), Geology, mineralogy, and geochemistry of low grade Ni-lateritic soil (Oman Mountains, Oman), *Geochemistry*, 76, 363-381.

Godard, M., et al. (2009), Geochemistry of a long in-situ section of intrusive slow-spreading oceanic lithosphere: Results from IODP Site U1309 (Atlantis Massif, 30°N Mid-Atlantic-Ridge), *Earth Planet Sci. Lett.*, 279, 110-122.

Stanger, G., J. Laver, and C. Neal (1988), Black carbonate calcite associated with serpentinite from Oman, Min. Mag., 52, 403-408.

Suhr, G., P. B. Kelemen, and H. Paulick (2008), Microstructures in Hole 1274A peridotites, ODP Leg 209, Mid-Atlantic Ridge: Tracking the fate of melts percolating in peridotite as the lithosphere is intercepted, G-cubed, 9.

Takazawa, E., T. Okayasu, and K. Satoh (2003), Geochemistry and origin of the basal lherzolites from the northern Oman ophiolite (northern Fizh block), G-cubed, 4, 1021.

