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This article presents a theory in which motor execution in perceptual decision-making tasks is 

determined by the same evolving decision variable that drives response time. The theory 

builds upon recent insights from the neuroscience of decision-making and motor control. It is 

formalized as an extension of Ratcliff’s diffusion model, and assumes that two thresholds 

operate on the evidence accumulation decision variable. The first threshold, referred to as 

electromyographic (EMG) threshold, marks the onset of electrical activity in the response-

relevant muscle and the beginning of force production. The second threshold corresponds to 

the response. The theory makes several benchmark predictions. Notably, the mean duration 

of motor execution, as quantified by the mean latency between EMG onset and the response, 

should depend on the rate of evidence accumulation, and should thus increase as the 

perceptual difficulty of the task increases. We tested these predictions in a paradigmatic 

perceptual decision-making task, the random dot motion task, and recorded the EMG activity 

of response-relevant muscles. The behavioral and EMG data provide very strong evidence for 

each prediction. A final quantitative evaluation of the model showed good fits to these data. 

The theory resolves conflicting findings in the fields of mathematical psychology, motor 

control and decision neurosciences.  
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Perceptual decision-making is the process of converting sensory information into goal-

directed actions (e.g. deciding whether a traffic light is red or green, and acting on the car 

accordingly). Because adaptive behavior hinges upon the integrity of this process, it has been 

the object of a considerable interdisciplinary research effort over the past 50 years. Evidence 

accumulation models such as the diffusion model currently represent the dominant 

framework for understanding perceptual decision-making (Brown & Heathcote, 2008; 

Forstmann et al., 2016; Gold & Shadlen, 2007; O’Connell et al., 2018; Ratcliff et al., 2016; 

Ratcliff & Smith, 2004; Smith & Lilburn, 2020; Usher & McClelland, 2001). These models build 

upon three sequential processing stages: sensory encoding, decision-making, and motor 

execution. The decision stage is thought to involve accumulator units, which integrate noisy 

sensory information over time until a criterial amount of evidence is attained. Each 

accumulator is associated to a particular response alternative, and the accumulator that wins 

the race determines which response is chosen, and when it is chosen. This accumulation-to-

bound mechanism is followed by a motor process that executes the selected response. 

Evidence accumulation models assume selective influence of experimental 

manipulations on information processing components, the latter being represented by 

parameters. For example, the diffusion model for two-choice perceptual decisions has four 

main parameters (Figure 1A). The average rate of evidence accumulation, called drift rate (v), 

depends on the quality of sensory information and the efficiency of attentional processes. 

Decision thresholds (a: correct choice, -a: incorrect choice) regulate the speed-accuracy policy 

of the decision. A larger separation between thresholds produces slower but more accurate 

responding. The starting point (z) of the accumulation process reflects a potential a priori bias 

towards a particular response alternative. Finally, the non-decision time parameter (Ter) 
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quantifies the mean duration of processes outside the decision process, such as sensory 

encoding and motor execution (Ratcliff, 1978; Ratcliff et al., 2016; Ratcliff & McKoon, 2008; 

Ratcliff & Rouder, 1998; Ratcliff & Smith, 2004). This mapping between model parameters and 

information processing components has given rise to four sets of predictions (e.g., Ratcliff & 

McKoon, 2008; Smith & Lilburn, 2020; Voss et al., 2004). First, manipulations of perceptual 

difficulty should selectively modulate the drift rate parameter. Second, manipulations of 

speed-accuracy tradeoff (SAT) should selectively modulate threshold separation. Third, 

manipulations of response bias should selectively modulate the starting point of the evidence 

accumulation process. Finally, manipulations of sensory- or motor-related variables (e.g., the 

force required to press a response button) should selectively modulate mean non-decision 

time.  

 

Figure 1. A) Architecture of the standard diffusion model. Model parameters are shown in red: 
z = starting point of the evidence accumulation process, a = upper decision threshold, v = drift 
rate, Ter = mean non-decision time. See text for details. B) Typical EMG activity in a correct 
trial of a perceptual decision-making task. Response time (RT) can be divided into a premotor 
time (PMT; from stimulus onset to the EMG onset of the response) and a motor time (MT; 
from EMG onset to the response). 
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Several studies have been conducted to evaluate each of these predictions, yielding 

mixed results (for a review, see Smith & Lilburn, 2020). Although investigators generally 

observed the predicted parametric modulations, some experimental manipulations 

modulated additional parameters. For example, manipulations of SAT have produced 

additional modulations of drift rate (Donkin et al., 2011; Heathcote & Love, 2012; Ho et al., 

2012; Rae et al., 2014; Starns et al., 2012) and non-decision time (Arnold et al., 2015; de 

Hollander et al., 2016; Huang et al., 2015; Servant et al., 2018), and these violations seem to 

be model-dependent (Evans, 2020). Dutilh et al. (2019) recently conducted a blinded 

collaborative assessment of the quality of inferences from evidence accumulation model 

analyses. They manipulated perceptual difficulty, SAT, and response bias in a random dot 

motion task. The data from 20 participants were sent to a sample of 17 teams of researchers 

with expertise in evidence accumulation models. Researchers were blind to the experimental 

manipulations, and were invited to infer the processing components (model parameters) that 

were modulated by the experimental manipulations by fitting an evidence accumulation 

model to data. In general, researchers identified the psychological processing components 

hypothetically modulated by each experimental manipulation. However, many researchers 

reported that manipulations of motion coherence, response bias, and SAT also modulated the 

mean non-decision time component of the model.  

Because these additional parametric modulations by experimental variables were not 

predicted in the first place, they have been interpreted as violations of selective influence and 

evidence against the diffusion model architecture. However, the selective influence 

assumptions that have been derived from the diffusion model are not very strong. For 

example, drift rate is a free parameter reflecting the rate of evidence accumulation. Although 

the evidence may come from perceptual or memory representations, the model does not 
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specify how this evidence is computed. Without this additional theoretical development, it is 

difficult to make precise predictions regarding what experimental variables should affect drift 

rate. Similarly, non-decision time is a free parameter in the model reflecting sensory encoding 

and motor execution latencies. The model does not specify the computations underlying 

sensory encoding and motor execution, and it does not specify what variables should affect 

the duration of these processes. A theory of sensory encoding and motor execution is required 

to make these predictions.   

Several extensions of evidence accumulation models have been proposed to specify 

how drift rate is computed (e.g., Nosofsky & Palmeri, 1997; Smith & Lilburn, 2020; Smith & 

Ratcliff, 2009; White et al., 2011). The present work focuses on the motor execution 

component. The next section introduces an extension of the diffusion model designed to 

account for a range of motor phenomena in a specific category of perceptual decision-making 

tasks in which a task-irrelevant attribute of the stimulus can automatically activate a response 

opposite to the response associated with the task-relevant stimulus attribute, thus generating 

a response conflict (e.g., Stroop, flanker, Simon tasks). We will then hypothesize that this 

theoretical extension may generalize beyond conflict tasks. To test this hypothesis, we will 

first derive a set of five broad qualitative predictions from the model and submit them to an 

empirical test. A quantitative assessment will finally be performed by fitting the model to data.  

A dual-threshold diffusion model for deciding and acting 

Motor execution in perceptual decision-making tasks has been studied using a variety 

of methodologies (for a review, see Miller et al., 1999). Among these methodologies, the 

electromyography (EMG) of response-relevant muscles (e.g., the flexor pollicis brevis for a 

button press with the thumb) appears particularly valuable because it allows for an analysis 



7 
 

of motor execution on a trial-to-trial basis (Burle et al., 2002; Burle & Bonnet, 1999; e.g., Coles 

et al., 1985; Hasbroucq et al., 2001; Rochet et al., 2014; Servant et al., 2015; Spieser et al., 

2017; Weindel et al., 2020). EMG measures the myoelectric activity of muscle fibers in 

response to neural excitation (Stålberg et al., 2019; Vigotsky et al., 2018), which initiates force 

production after an electromechanical delay (Disselhorst-Klug et al., 2009; Perry & Bekey, 

1981). Figure 1B illustrates the typical EMG activity of response agonists in a correct trial of a 

perceptual decision-making task involving a choice between two manual responses. Thanks to 

the excellent signal-to-noise ratio of EMG, EMG onsets can be detected in each trial. 

Researchers can then divide each response time (RT) into a premotor time (PMT; from 

stimulus onset to the EMG onset of the response) and a motor time (MT; from EMG onset to 

the response). MT is a measure of the execution of the response, while PMT is determined by 

upstream processes such as perception and decision-making. 

The above RT fractionation technique based on EMG has been used to evaluate the 

effect of several experimental factors on premotor and motor execution processes. A 

summary of findings obtained with a set of common experimental manipulations in perceptual 

decision-making tasks (stimulus-response compatibility, perceptual difficulty, SAT, response 

bias, response force) is provided in Table 1. The bulk of studies has been conducted in conflict 

tasks for two reasons. First, investigators wanted to determine whether the stimulus-response 

compatibility factor modulates both mean PMT and mean MT. Compatible trials correspond 

to trials in which relevant and irrelevant stimulus attributes activate the same response (e.g., 

the word RED printed in red in a Stroop task).  Incompatible trials correspond to trials in which 

relevant and irrelevant stimulus attributes activate opposite responses (e.g., the word RED 

printed in blue in a Stroop task). The majority of studies reported a significant modulation of 

mean PMT only. Second, EMG signals in conflict tasks sometimes exhibit a surprising 
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phenomenon in correct trials. This phenomenon, termed partial error, takes the form of a 

small covert EMG burst in the incorrect response channel that occurs before the EMG onset 

of the correct response (Figure 2B). The proportion of partial errors is systematically higher in 

the incompatible compared to the compatible condition, suggesting that partial errors do not 

simply reflect motor noise.  

The very existence of partial errors requires a theory explaining how, why, and when 

discrete motor events sometimes occur during the decision process. The dual-threshold 

diffusion model (DTDM; Servant et al., 2015) for deciding and acting has been developed for 

this purpose. The core assumption of DTDM is that EMG activity is determined by the same 

evolving decision variable that drives RT. This hypothesis appears plausible in light of the 

neurophysiology of the musculoskeletal motor system. Electrophysiological studies in 

perceptual decision-making tasks have shown that the primary motor cortex (M1) exhibits 

choice predictive activities that reflect integrated sensory evidence (e.g., Afacan-Seref et al., 

2018; Donner et al., 2009; Gould et al., 2012; Kelly & O’Connell, 2013; O’Connell et al., 2012, 

2018; Servant et al., 2016; Steinemann et al., 2018; Wyart et al., 2012). On average, the 

electrical activity over M1 contralateral to the response reaches a peak amplitude after EMG 

onset (Servant et al., 2016), suggesting that evidence accumulation carries on after a 

command has been sent to the response-relevant muscle. Although M1 neurons do not form 

synapses with muscles, the most direct pathway for muscle activation involves a 

monosynaptic connection in the spinal cord between the axons of M1 pyramidal tract neurons 

and alpha motoneurons that innervate muscles (Bernhard & Bohm, 1954; Ebbesen & Brecht, 

2017). These direct cortico-motorneuronal connections are relatively recent in the 

evolutionary history, and appear to be involved in fine motor behaviors involving the distal 

extremities (e.g., independent finger movements such as those required for a button press; 
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Lemon, 2008). Consequently, the decision variable may be transmitted to the muscles without 

undergoing significant transformations. Strong support for this hypothesis comes from a study 

in which participants performed a perceptual decision-making task and indicated their 

decision by moving a handle of a robotic manipulandum to one of two targets (Selen et al., 

2012). During decision formation, the state of the peripheral motor system was probed by 

briefly extending the elbow at random times, thereby eliciting a stretch reflex. The reflex gain, 

as quantified by EMG, reflected the accumulated sensory evidence in support of the evolving 

decision.  

The general architecture of the DTDM is similar to that of the standard diffusion model, 

with one important difference. The decision threshold a does not indicate a commitment to a 

choice; it simply marks the onset of EMG activity. To emphasize this functional difference, we 

refer to this threshold as EMG threshold (parameter m), and assume that it operates at the 

M1 level. DTDM explicitly assumes that evidence accumulation continues until a response 

(button press) is made, and a second threshold (parameter r) corresponds to the response. 

Two thresholds thus operate on the decision variable: the EMG threshold (-m: EMG activity in 

the incorrect response channel, m: EMG activity in the correct response channel), and the 

response threshold (-r: incorrect response; r: correct response), with |𝑚| < |𝑟|. In this 

framework, PMT corresponds to the latency at which the decision variable hits the EMG 

threshold m, and MT corresponds to the latency at which the decision variable hits the 

response threshold r minus PMT (Figure 2A). In addition, PMT and MT incorporate residual 

(nondecisional) processing components with mean duration Te and Tr respectively, though 

the precise nature of these components is unclear. At minimum, Te incorporates a sensory 

encoding latency and the corticomuscular transmission time. Tr incorporates the 

electromechanical delay, defined as the latency between muscle excitation and force 
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production (Cavanagh & Komi, 1979; Lacourpaille et al., 2013). The electromechanical delay 

comprises both electrochemical and mechanical processes involved in force production (e.g., 

cross-bridge formation between actin and myosin filaments).  

Metaphorically, the transmission of information between decision-making and motor 

execution can be conceptualized as a flow of water (the decision variable) regulated by a 

faucet (EMG threshold). When the decision variable hits the EMG threshold, the brain turns 

on the faucet, and the water activates the muscle, producing force. The response will be given 

if a sufficient amount of water (response threshold) is discharged. However, if the decision 

variable goes below the EMG threshold before having reached the response threshold, the 

brain will turn off the faucet, resulting in a partial EMG burst (generating insufficient force to 

produce a response). DTDM thus predicts a partial EMG burst when the decision variable hits 

an EMG threshold but goes back in the space delimited by the two EMG thresholds. 

Consequently, DTDM predicts a partial error when the decision variable hits the incorrect EMG 

threshold –m but finally reaches the correct response threshold r (Figure 2B). If compatible 

and incompatible trials had the same drift rate, the model would predict the same partial error 

rate in both conditions. However, diffusion models of conflict tasks typically assume a time-

varying drift rate, whereby the decision evidence is dominated by the irrelevant stimulus 

attribute in early stages of processing, and becomes progressively determined by the relevant 

stimulus attribute only (Hübner et al., 2010; Ulrich et al., 2015; White et al., 2011). With this 

additional time-varying drift rate assumption, Servant et al. (2015) demonstrated that DTDM 

predicts the rate, latency, and correction time of partial errors in both compatible and 

incompatible trials. In addition, the model generally predicts no effect of compatibility on 

mean MT, consistent with observed data, because the drift rate of incompatible trials 

converges towards the drift rate of compatible trials as processing time increases.   
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DTDM is appealing because it provides a theoretical account of both decision-making 

and motor execution in conflict tasks. Thus, the main goal of this article is to determine 

whether DTDM can generalize beyond conflict tasks, and predict EMG data in standard 

perceptual decision-making tasks as well (in which performance is only determined by task-

relevant stimulus information). A core assumption of DTDM is that EMG activity is determined 

by the evolving decision variable. Consequently, experimental manipulations designed to 

modulate drift rate, such as manipulations of perceptual difficulty, should modulate mean 

PMT as well as mean MT. Specifically, an increase in perceptual difficulty should decrease drift 

rate, and should thus increase both mean PMT and mean MT. To the best of our knowledge, 

six experiments have examined the effect of perceptual difficulty on mean PMT and mean MT 

in perceptual decision-making tasks (see Table 1). In general, these studies reported significant 

increases of both mean PMT and mean MT as perceptual difficulty increases in both conflict 

and non-conflict tasks, but the absolute effect sizes are very small (up to 8 ms). In addition, 

two experiments reported a significant modulation of mean PMT only (Miller et al., 1999).   

There are at least two explanations for these somewhat equivocal findings. First, the 

force required to issue the response greatly varies between studies, and has often not been 

reported. This parameter is important within DTDM because it determines the distance (in 

accumulation units) between EMG and response thresholds. If the force required to respond 

is low (e.g., 0.44-0.59 N for a typical computer keyboard), the distance between EMG and 

response thresholds will be small. Consequently, MT will be short, and modulations of drift 

rate will produce small modulations of mean MT that can be missed if the sampling rate of 

EMG signals is low or if signals are noisy. Conversely, if the force required to respond is high 

(e.g., the thermoplastic rubber hand-held buttons of the Black Box Toolkit moduleTM used by 

several psychology laboratories, ~8.83 N), the distance between EMG and response thresholds 
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will be larger. Consequently, the same modulations of drift rate will produce larger effects on 

mean MT. Second, Table 1 shows that some perceptual difficulty manipulations produced a 

small effect on mean PMT (e.g., ~30 ms for the two experiments of Miller et al. 1999). Small 

modulations of drift rate will produce small modulations of MT that can be hard to detect, 

especially if the force required to respond is low.   

In order to provide a rigorous test of the assumption –core to DTDM– that EMG activity 

is determined by the evolving decision variable, a large modulation of drift rate coupled with 

a relatively high force required to respond is necessary. For this reason, we manipulated 

perceptual difficulty in a random dot motion task (RDM), and used the thermoplastic rubber 

hand-held buttons of the Black Box Toolkit moduleTM (8.83 N)1. RDM requires participants to 

determine the global direction of a random dot kinematogram featuring a proportion of dots 

moving coherently in the left or right signal direction (Figure 3A). This proportion, termed 

motion coherence, determines the perceptual difficulty of the decision. Specifically, 

perceptual difficulty increases as motion coherence decreases. Coherence manipulations can 

produce effects on RT much larger in magnitude (726 ms in the upcoming experiment) 

compared to tasks in which all the evidence appears at a given onset time, such as those used 

by previous EMG studies (up to 110 ms, see Table 1). Consequently, modulations of drift rate 

in our RDM task are expected to be large. DTDM makes several EMG predictions that are 

detailed in the next section.  

 
 

 
1 Although we wanted to manipulate the force required to respond in this experiment, the lab of the 
first author is not currently equipped with force sensors.  
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Figure 2. Architecture of the dual-threshold diffusion model (DTDM) for deciding and acting 
and EMG predictions. A) DTDM assumes that EMG activity is determined by the same evolving 
decision variable that drives RT. Two different types of thresholds thus operate on the decision 
variable. EMG thresholds (±m) determine the level of accumulated evidence required to 
transmit information to the response-relevant muscle and generate EMG activity. Response 
thresholds (±r) determine the level of accumulated evidence required to issue a response. The 
noisy sample path represents the trajectory of the decision variable in a given trial of a 
perceptual decision-making task and the green straight line represents the accumulated drift 
rate. The predicted PMT corresponds to the latency at which the decision variable hits the 
EMG threshold m, and the predicted MT corresponds to the latency at which the decision 
variable hits the response threshold r minus PMT. PMT and MT also incorporate residual 
(nondecisional) processing components, with mean duration Te and Tr respectively (not 
shown for sake of clarity). B) Typical partial error trial in the incompatible condition of a 
conflict task. Although the response is correct, a small partial EMG burst, called partial error, 
develops in the incorrect EMG channel during PMT. DTDM predicts a partial error when the 
decision variable hits the incorrect EMG threshold –m but finally reaches the correct response 
threshold r. The green line represents the accumulated time-varying drift rate assumed by 
diffusion models of conflict tasks in the incompatible condition. On average, the decision 
evidence is dominated by the irrelevant stimulus attribute in early stages of processing, and 
becomes progressively determined by the relevant stimulus attribute only. This property 
increases the likelihood of partial errors in the incompatible condition. C) Predicted mean PMT 
and mean MT in a standard perceptual decision-making task featuring different levels of 
perceptual difficulty, such as the random dot motion task. Because EMG activity is determined 
by the decision variable, mean PMT and mean MT are determined by the drift rate. 
Consequently, mean PMT and mean MT should increase as perceptual difficulty increases.  
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DTDM predictions 

(1) The first prediction, derived from the assumption that EMG is determined by the 

decision variable, is that both mean PMT and mean MT should monotonically increase as 

motion coherence decreases. This prediction is illustrated in Figure 2C. 

 (2) EMG bursts are characterized by a sequence of depolarizations and 

hyperpolarizations that occur on the muscle fiber membrane (see Figures 1B, 2A, and 2B), so 

averaging these bursts would lead to a signal close to zero. To analyze muscle excitation, 

researchers generally take the absolute value of voltages across time points, a procedure 

known as rectification (Vigotsky et al., 2018). A rectified EMG burst has a sudden onset (similar 

to a raw burst), and then exhibits a gradual and noisy build-up of activity followed by a decline 

back to the baseline electrical level. An illustration of the rectification procedure is provided 

in Supplementary Figure S1. DTDM predicts that the gradual build-up of rectified and averaged 

EMG bursts should reflect the accumulated drift rate, and should thus monotonically decrease 

as coherence decreases.  

 (3) Because evidence accumulation is a noisy process, the decision variable can 

sometimes oscillate around the EMG threshold before reaching the response threshold. This 

would produce partial EMG bursts during PMT (similar to partial errors in conflict tasks). 

Consequently, DTDM predicts partial EMG bursts during PMT, and the proportion of trials 

featuring partial bursts should increase as motion coherence decreases, because there is less 

evidence (motion energy) to drive the decision variable to the response threshold. For the 

same reason, the mean latency of the first partial EMG burst should increase as motion 

coherence decreases. Two recent studies have observed partial EMG bursts in standard 

perceptual decision-making tasks (Gabor orientation, Gajdos et al., 2019; contrast 
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discrimination, Weindel et al., 2020). Although one of these studies manipulated perceptual 

difficulty (Weindel et al., 2020), the effect of perceptual difficulty on partial EMG bursts has 

not been analyzed.  

 (4) The standard diffusion model predicts right-skewed RT distributions that have the 

same shape as those observed in perceptual decision-making tasks (Ratcliff, 1978; Ratcliff et 

al., 2016; Ratcliff & McKoon, 2008). Consequently, DTDM predicts that the distributions of 

PMT and MT should exhibit a similar right-skewed shape for each subject and motion 

coherence level, which should translate into an approximately linear PMT quantile MT 

quantile (QQ) plot (Supplementary Figure S2A). 

 (5) Without between-trial variability in the rate of evidence accumulation, DTDM 

predicts a null between-trial correlation between PMT and MT within each coherence level. 

This assumption stems from the Markov (memoryless) property of the diffusion process: the 

conditional probability distribution of future states of the process only depends upon the 

present state (Supplementary Figure S2B). However, the predicted between-trial correlation 

between PMT and MT necessarily increases as between-trial variability in drift rate increases 

(Supplementary Figure S3). A modest amount of between-trial variability in drift rate is usually 

incorporated into the DDM, because internal representations of the same stimulus 

presumably vary from trial to trial. It also allows the model to predict slower error than correct 

responses, a pattern generally observed when decision-making is difficult (Ratcliff, 1978; 

Ratcliff et al., 2016; Ratcliff & McKoon, 2008). Consequently, we anticipated a small positive 

correlation between PMT and MT in our random dot motion task. To the best of our 

knowledge, only one study analyzed the between-trial correlation between PMT and MT in a 

perceptual decision-making task (contrast discrimination; Weindel et al., 2020). Interestingly, 
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this study reported a null correlation, consistent with DTDM with no between-trial variability 

in drift. 

Table 1. Summary of EMG studies examining the effect of a set of common experimental 
manipulations in perceptual decision-making tasks (sub-tables: stimulus-response 
compatibility, perceptual difficulty, speed-accuracy tradeoff, response bias, response force) 
on PMT and MT. Within each sub-table, studies are organized in chronological order. 

Experiment 
manipulation and 

corresponding studies 

Statistically 
significant 

modulation of 
PMT? 

Statistically 
significant 

modulation of MT? 

Statistically 
significant 

modulation of 
error rate (ER)? 

Muscle 
recorded 
and force 

required to 
issue the 
response 

 
Stimulus-response 

compatibility 

    

 
Eriksen et al. (1985) 

flanker task 

Yes 
PMT compatible < 
PMT incompatible  

Yes 
MT compatible <  
MT incompatible  

 

Yes  
ER compatible (M = 

5.0%) <  
ER incompatible (M = 

15.0%) 

 
Forearm 

flexor 
 

 
Coles et al. (1985) 

flanker task 

Yes 
PMT compatible < 
PMT incompatible  

Yes 
MT compatible <  
MT incompatible  

 

Yes  
 

Forearm 
flexor, 25% of 

maximum 
force 

 
Smid et al. (1990) 

flanker task 

Yes 
PMT compatible (M =  

316 ms)  < PMT 
incompatible (M =  

359 ms)   

Yes 
MT compatible (M =  

112 ms)  < MT 
incompatible (M =  118 

ms)   

Yes  
ER compatible (M = 

1.8%) <  
ER incompatible (M = 

8.1%) 

 
Flexor 

digitorum 
2.94 N force 

 
Hasbroucq et al. (1999) 

Simon task 

Yes 
PMT compatible (M =  

244 ms)  < PMT 
incompatible (M =  

261 ms)   

No 
MT compatible: 

M = 126 ms 
MT incompatible: 

M = 129 ms 
 

No  
ER compatible : 

M = 3.5% 
ER incompatible : 

M = 4.6% 

 
Flexor pollicis 

brevis 
9.81 N force 

 
Burle and Bonnet (1999) 

Simon task 

Yes 
PMT compatible (M =  

237 ms)  < PMT 
incompatible (M =  

257 ms)   

No 
 

No 
 

 
Flexor pollicis 

brevis 
20 N force 

 
Hasbroucq et al. (2001) 

Fitts task 

Yes 
PMT compatible (M =  

183 ms)  < PMT 
incompatible (M =  

216 ms)   

No 
MT compatible: 

M = 126 ms 
MT incompatible: 

M = 130 ms 
 

No  
ER compatible : 

M = 1.2% 
ER incompatible : 

M = 1.3% 

 
Flexor pollicis 

brevis 
5.88 N force 

 
Burle et al. (2002) 

Simon task  
 

Yes 
PMT compatible (M =  

288 ms)  < PMT 
incompatible (M =  

316 ms)   

No 
MT compatible: 

M = 106 ms 
MT incompatible: 

M = 106 ms 
 

No 
 

Flexor pollicis 
brevis 

low (0.49 N) 
versus high 

(9.81 N) force 

 
Hasbroucq et al. (2009) 

Simon task 

Yes 
PMT compatible (M =  

183 ms)  < PMT 

No 
MT compatible: 

M = 118 ms 
MT incompatible: 

  
Flexor pollicis 

brevis, 
 10 N force 
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incompatible (M =  
216 ms)   

M = 118 ms 
 

 
Servant et al. (2015) 

flanker task 

Yes 
PMT compatible (M =  

296 ms)  < PMT 
incompatible (M =  

339 ms)   

No 
MT compatible: 

M = 122 ms 
MT incompatible: 

M = 122 ms 
 

Yes  
ER compatible (M = 

2.3%) <  
ER incompatible (M = 

6.0%) 

 
 

Flexor pollicis 
brevis 

 
Servant et al. (2016) 

Simon task, manipulation 
of color saturation 

 

Yes 
PMT compatible (M =  

346 ms)  < PMT 
incompatible (M =  

368 ms)   

No 
MT compatible: 

M = 133 ms 
MT incompatible: 

M = 133 ms 
 

Yes  
ER compatible (M = 

4.8%) <  
ER incompatible (M = 

7.9%) 

 
 

Flexor pollicis 
brevis 

 
Spieser et al. (2017) 

flanker task  
 

Yes 
PMT compatible (M =  

293 ms)  < PMT 
incompatible (M =  

308 ms)   

No 
MT compatible: 

M = 94 ms 
MT incompatible: 

M = 95 ms 
 

Yes  
ER compatible (M = 

13.9%) <  
ER incompatible (M = 

24.1%) 

 
 

Flexor pollicis 
brevis 

 
Perceptual  
difficulty 

    

 
 

Romaiguère et al. (1993) 
Simon task, manipulation 

of light intensity 

Yes 
PMT lowest 

perceptual difficulty 
(M =  383 ms) < PMT 
highest perceptual 
difficulty (M  = 400 

ms) 
 

Yes 
MT lowest perceptual 
difficulty (M = 313 ms) 

< MT highest 
perceptual difficulty (M 

= 321 ms) 
 

No 
 

 
Abductor 

pollicis brevis 
low (2.45 N) 
versus high 
(15.44 N) 

force 

 
 

Miller et al. (1999) Exp 1 
letter discrimination, 

manipulation of contrast  
 

Yes  
PMT lowest 

perceptual difficulty 
(M =  262 ms) < PMT 
highest perceptual 
difficulty (M  = 291 

ms) 
 

No 
MT lowest perceptual 
difficulty: M = 186 ms; 
MT highest perceptual 
difficulty: M = 185 ms 

 

No 
 

 
 

Flexor 
digitorum 

 
 

Miller et al. (1999) Exp 2 
pitch discrimination, 

manipulation of sound 
intensity  

 

Yes  
PMT lowest 

perceptual difficulty 
(M =  317 ms) < PMT 
highest perceptual 
difficulty (M  = 334 

ms) 
 

No 
MT lowest perceptual 
difficulty: M = 160 ms; 
MT highest perceptual 
difficulty M = 161 ms 

 

No 
ER lowest perceptual 
difficulty: M = 2.7%; 

  ER highest 
perceptual difficulty: 

M = 2.0% 

 
 

Flexor 
digitorum  

 
 

Servant et al. (2016) 
Simon task, manipulation 

of color saturation 
 

Yes  
PMT lowest 

perceptual difficulty 
level (M =  333 ms) < 

PMT highest 
perceptual difficulty 
level (M =  382 ms) 

 

Yes  
MT lowest perceptual 

difficulty (M =  132 ms) 
< MT highest 

perceptual difficulty (M 
=  134 ms) 

 

Yes 
ER lowest perceptual 
difficulty (M = 10.1%) 

< ER highest 
perceptual difficulty 

(M = 3.9%) 

 
 
 

Flexor pollicis 
brevis 

 
Weindel et al. (2020) 

 Exp 1 
gabor contrast 
discrimination  

 

Yes  
PMT lowest 

perceptual difficulty 
(M =  324 ms) < PMT 
highest perceptual 
difficulty (M =  424 

ms) 

Yes  
MT lowest perceptual 

difficulty (M =  107 ms) 
< MT highest 

perceptual difficulty (M 
=   113 ms) 

 

Yes  
ER lowest perceptual 
difficulty (M = 45.9%) 

< ER highest 
perceptual difficulty 

(M = 2.3%) 

 
 

Flexor pollicis 
brevis, 

6 N force 
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Weindel et al. (2020)  

Exp 2 
gabor contrast 
discrimination  

 

Yes  
PMT lowest 

perceptual difficulty 
(M =  354 ms) < PMT 
highest perceptual 
difficulty (M  = 440 

ms) 
 

Yes  
MT lowest perceptual 

difficulty (M = 74 ms) < 
MT highest perceptual 
difficulty (M = 78 ms) 

 

Yes 
ER lowest perceptual 
difficulty (M = 45.2%) 

< ER highest 
perceptual difficulty 

(M = 5.2%) 

 
Flexor pollicis 

brevis,  
2 N force 

 
Speed-accuracy 

tradeoff 

    

 
Spieser et al. (2017) 

flanker task  
 

Yes  
PMT speed (M = 265  
ms) < PMT accuracy 

(M = 336 ms) 
 

Yes  
MT speed (M = 83 ms) <  
MT accuracy (M = 106 

ms) 

Yes  
ER accuracy (M = 

8.3%) <  
ER speed (M = 29.6%) 

 
Flexor pollicis 

brevis 

 
Weindel et al. (2020) 

 Exp 1 
gabor contrast 
discrimination  

 

Yes  
PMT speed (M = 328 
ms) < PMT accuracy 

(M =440 ms) 

Yes  
MT speed (M = 101 ms) 

<  
MT accuracy (M = 120 

ms) 
 

Yes  
ER accuracy (M = 

19.2%) <  
ER speed (M = 23.8%) 

 

 
Flexor pollicis 

brevis,  
6 N force 

Weindel et al. (2020)  
Exp 2 

gabor contrast 
discrimination  

 

Yes  
PMT speed (M = 318 
ms) < PMT accuracy 

(M =474 ms) 
 

Yes  
MT speed (M = 71 ms) <  

MT accuracy (M = 81 
ms) 

Yes  
ER accuracy (M = 

18.4%) <  
ER speed (M = 24.6%) 

 
Flexor pollicis 

brevis,  
2 N force 

 
Response bias 

    

 
 
 

Meckler et al. (2010) 
even/odd number 

discrimination  
  
 

Yes 
PMT expected 

response (M =  232 
ms) <   

PMT unbiased (M =  
310 ms)  <  

 PMT unexpected 
response (M =  330 

ms) 
 

No 
MT expected response:  

M = 86 ms 
MT unbiased:  

M  = 87 ms  
 MT unexpected 

response:  
M = 86 ms 

Yes  
ER expected (M = 

1.0%) < 
ER unbiased (M = 

8.0%) < 
ER unexpected (M = 

35.0%) 

 
 
 

Flexor pollicis 
brevis 

 
Response force 

    

 
Romaiguère et al. (1993) 
Simon task, manipulation 

of light intensity  

Yes 
PMT highest force (M 

=  451 ms) < PMT 
lowest force (M =  

478 ms) 

Yes 
MT lowest force (M =  
264 ms) < MT highest 
force (M =  370 ms) 

No Abductor 
pollicis brevis 

low (from 
2.45 N to 
15.44 N) 

versus high 
(from 15.46 N 
to 63 N) force 

 
Burle et al. (2002) 

Simon task  
 

Yes 
PMT highest force (M 

=  295 ms) < PMT 
lowest force (M =  

308 ms) 

Yes 
MT lowest force (M =  
80 ms) < MT highest 
force (M =  131 ms) 

Yes  
ER highest force (M = 

0.5%) <  
ER lowest force (M = 

1.5%) 

Flexor pollicis 
brevis 

low (0.49 N) 
versus high 

(9.81 N) force 
Note: Some information (e.g., effect size, muscle recorded, force required) is missing for some studies because it has not 
been reported in the corresponding papers. N = Newtons (1 Newton in earth gravity is the equivalent weight of 101.97 grams), 
ms = milliseconds.  
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Experiment 

Method 

Participants. Eighteen undergraduate psychology students (2 men; age range: 18-32; 

mean age: 21.1) from the University of Franche-Comté participated in the experiment in 

exchange for course credits. This sample size was determined based on prior studies reporting 

significant perceptual effects on EMG activity (range 8-16 subjects; Romaiguère et al., 1993; 

Servant et al., 2016; Weindel et al., 2020). Criteria for inclusion in the study were normal or 

corrected-to-normal vision, no history of psychiatric or neurological disorders, and no history 

of injuries of the musculoskeletal system. Our experimental procedures followed the 

guidelines of the Research Ethics Committee of the University of Franche-Comté. Participants 

were not aware of the purpose of the experiment, and provided written consent to 

participate. 

Apparatus. The experiment took place in a dimly lit room. Subjects sat on a 

comfortable chair at a distance of 80 cm from a 34.6 × 19.4 cm LCD monitor (resolution: 1920 

× 1080; refresh rate: 60 Hz). For each subject, the height of the monitor was adjusted such 

that the eyes and the center of the monitor were at the same horizontal level. The experiment 

was programmed in Python, using components of the PsychoPy toolbox (Peirce et al., 2019), 

and was run on a PC computer natively running Windows 10.  Responses were communicated 

to the computer by means of two thermoplastic rubber hand-held buttons (Figure 3A) 

connected to a Black Box Toolkit moduleTM designed to guarantee millisecond accuracy. The 

force required to push each button was approximately 8.83 N (data provided by the Black Box 

Toolkit CompanyTM). To minimize tonic motor activity and maximize comfort, subjects’ hands 

were palm-faced down, resting on a supportive cushion placed on their laps.  
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Stimuli. White dots were presented within a virtual 12.6° circular aperture centered 

on a 24.8° × 13.9° black field. Each dot was a 4 × 4 pixel (.05° square), moving at a speed of 

8°/s. Dot density was fixed at 16.7 dots deg-2s-1. Random dot motion was controlled by a white 

noise algorithm (Pilly & Seitz, 2009):  from each frame to the next, a proportion p of dots was 

randomly selected to move in the signal direction (leftward versus rightward), and the 

remaining dots were plotted in random locations. We refer to p as motion coherence, which 

varied according to 6 levels (0, .05, .08, .12, .2, .4). 

Procedure. Participants were instructed to identify motion direction (leftward versus 

rightward) and press the corresponding button with their left or right hand. They were further 

instructed to respond as quickly and accurately as possible. Each trial was determined by a 

factorial combination of motion direction (leftward versus rightward) and motion coherence 

(0, .05, .08, .12, .2, .4). All types of trials occurred equally often, and were presented in a 

random order. Each trial started with the presentation of the random dot motion stimulus, 

which remained on the screen until the participant responded. A RT deadline was set to 5 s. If 

participants failed to respond by then, “Too slow! Please respond faster” was displayed in red 

on the screen for 1.5 s. The interval between the response to the stimulus and the next trial 

was 1.5 s. Participants first completed 24 practice trials (each of the 12 possible stimuli 

presented 2 times in a random manner) to ensure they understood the task. Each practice 

trial was followed by a feedback on performance (“Correct response” displayed in green after 

a correct response; “Incorrect response” displayed in red after an incorrect response). 

Participants then worked through 12 blocks of 96 trials each, with a short break between 

blocks. Practice trials were discarded from analyses.    

EMG recordings and signal processing. The EMG activity of the response agonist 

(flexor pollicis brevis) of each hand was recorded by means of two Ag/Cl active electrodes 
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connected to a Biosemi ActiveTwo Mk2 biopotential measurement system (sampling rate = 

1024 Hz). Electrodes were fixed 1 cm apart on the skin of the thenar eminence (Figure 3A). 

After data acquisition, EMG signals were processed in Python, using components of the 

MEG+EEG analysis & visualization (MNE) toolbox (Gramfort et al., 2013) and signal processing 

routines that will soon be released with an open-source license (Spieser & Burle, in 

preparation). For each subject, signals were bipolar re-referenced, high-pass filtered using a 

10 Hz cut-off (3rd order Butterworth filter), and epoched -0.5 to 5 s relative to stimulus onset. 

For each epoch, EMG burst onsets were detected using a three-step procedure. We first 

performed a detection of EMG activity by applying a threshold on signal variance. Specifically, 

we computed the mean 𝑀! and standard deviation 𝑆𝐷! of the rectified signal in the 0.5 s 

baseline period. Periods of EMG activity corresponded to time windows in which rectified 

signal amplitudes exceeded the following criterion: 

𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 = 𝑀! + 3.5 × 𝑆𝐷! 

Due to the oscillatory nature of EMG activity, we further merged consecutive time windows 

separated by less than 0.025s. Although this method is widely used to detect EMG onsets 

(defined as the first voltage sample above the criterion), it is sensitive to fluctuations in the 

signal-to-noise ratio, the presence of artifacts during the baseline period, and involves an 

arbitrary choice (the number of standard deviations) for setting the threshold. To attenuate 

these issues, we next defined new time windows bounded halfway between active EMG 

windows identified by the previous method. We then applied the integrated profile method 

to each window (Liu & Liu, 2016; Santello & McDonagh, 1998), as recommended by Spieser 

and Burle (in preparation). The method first requires to compute the integrated profile 𝐼𝑃(𝑡), 

defined as the cumulative sum of rectified voltage datapoints. A reference line 𝑅(𝑡), defined 

as the cumulative sum of an equally distributed signal, is then computed as follows: 
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𝑅(𝑡) = 𝐼𝑃(𝑀) ×
𝑡
𝑀 

where 𝑀 corresponds to the length of the time window. Taking the minimum of the difference 

𝐼𝑃(𝑡)-	𝑅(𝑡) gives the EMG onset (for an illustration, see Supplementary Figure S4). Note that 

the integrated profile method can detect only one EMG onset per time window, so it must be 

preceded by the threshold method to identify windows of active EMG activity in the trial. As 

a final step, each trial was inspected visually by the experimenter, and erroneous EMG onsets 

were manually corrected. All triggers relative to stimulus and response identification were 

removed, such that the experimenter was not aware of the experimental condition the epoch 

belonged to. For each trial, RT was then divided into a PMT (from stimulus onset to EMG onset) 

and a MT (from EMG onset to the response; Figure 1B). When the trial contained partial EMG 

bursts, PMT and MT were defined relative to the EMG onset of the response. EMG onsets 

could sometimes not be detected due to high tonic motor activity or electrical noise (7.5% of 

trials on average; range 0.2-24%), and these trials were discarded from all analyses.  

Data analyses. Anticipations (RTs < 150 ms; 0.13%) and trials in which participants 

failed to respond before the 5 s deadline (0.14%) were discarded from all analyses. 

Chronometric data and accuracy data2 were analyzed by means of repeated-measures 

ANOVAs with motion coherence as factor. The sphericity assumption was evaluated by 

Mauchly’s test (Mauchly, 1940). When sphericity was violated, degrees of freedom were 

corrected according to the procedure developed by Greenhouse and Geisser (1959). We also 

report the respective Bayesian analyses, i.e the Bayes factor (BF) in favor of the model 

incorporating the effect of motion coherence (alternative hypothesis H1) relative to the null 

model without the effect (null hypothesis H0). Our interpretation of the BF was based on 

 
2 When motion coherence was null, the expected correct response (left versus right) was chosen randomly. 
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Jeffreys (1961): BF10 > 30: very strong evidence for the effect, 30 > BF10 > 10 = strong evidence, 

10 > BF10 > 3 = moderate evidence, 3 > BF10 > 1 = weak evidence. We also report the error 

percentage (due to the Markov chain Monte Carlo algorithm) associated with each BF to 

inform the reader about the numerical stability of the results, as recommended by van Doorn 

et al. (2020). Although our chronometric analyses focus on correct trials, the results were 

unchanged when considering all trials.  

 

Results 

 RT and accuracy data. An ANOVA on mean RT data in correct trials with motion 

coherence as within-subject factor showed a significant effect of motion coherence 

(F(1.38,23.39) = 43.16, MSE = 0.10, p < .001, 𝜂"=.72) and very strong evidence for this effect 

(BF10 = 4.48×1018, error % = 0.45). Figure 3B shows that mean RT increases as motion 

coherence decreases (amplitude of the effect: M = 726 ms; see Table 2). An ANOVA on 

accuracy data with motion coherence as within-subject factor showed a significant effect of 

motion coherence (F(1.70,28.91) = 151.35, MSE = 0.011, p < .001, 𝜂"=.90) and very strong 

evidence for this effect (BF10 = 1.77×1038, error % = 1.06). Figure 3B shows that accuracy 

decreases as motion coherence decreases.  
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Figure 3. Random dot motion task and associated behavioral performance. A) In each trial, 
subjects were presented with an array of dots moving in random directions (blue arrows), with 
a proportion moving coherently leftward or rightward (red arrows). This proportion, termed 
motion coherence, varied randomly from trial-to-trial according to 1 of 6 levels (0, .05, .08, 
.12, .2, .4). Subjects had to discriminate the coherent motion direction, and press the 
corresponding button with their left or right thumb. The EMG activity of the response agonist 
of each hand (flexor pollicis brevis) was recorded by means of two electrodes fixed 1 cm apart 
on the skin of the thenar eminence. B) Subjects showed the typical behavioral performance in 
this task, with slower and less accurate responses as motion coherence decreases.  
 

Table 2. Chronometric and accuracy data averaged across subjects. Chronometric data are 
computed from correct trials only. 

 Motion coherence levels 

 0 .05 .08 .12 .2 .4 

Mean response time (s) 1.453 1.263 1.183 1.039 0.906 0.726 

Mean premotor time (s) 1.269 1.085 1.010 0.872 0.746 0.577 

Mean motor time (s) 0.184 0.178 0.173 0.167 0.160 0.149 

Accuracy 

(proportion correct) 

0.49 0.66 0.76 0.83 0.90 0.96 

 
 
 Prediction 1. According to DTDM, both mean PMT and mean MT should increase as 

motion coherence decreases (Figure 2C). ANOVAs on mean PMT and mean MT in correct trials 

with motion coherence as within-subjects factor revealed significant effects of motion 

coherence on PMT (F(1.37,23.32) = 40.03, MSE = 0.10, p < .001, 𝜂"=.70) and on MT 

(F(2.24,38.06) = 25.86, MSE = 0.0002, p < .001, 𝜂"=.60), and very strong evidence for these 

effects (BF10 = 5.18×1017 and BF10 = 4.53×1012 respectively, error % = 0.41 and 0.41 

respectively). Figure 4A shows that both mean PMT and mean MT increase as motion 

coherence decreases (amplitude of the effect on PMT: M = 692 ms; amplitude of the effect on 

MT: M = 35 ms; see Table 2), consistent with DTDM’s prediction.  
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Figure 4. A) Mean PMT and mean MT in correct trials as a function of motion coherence (black 
points). Red crosses are predictions from the best-fitting chronometric function of the 
standard diffusion model. B) Rectified EMG bursts for each motion coherence condition in 
correct trials averaged across subjects. Signals are time-locked to EMG onset, and baseline-
corrected with respect to the 100 ms window prior to the locking event. The inset shows the 
rising slope of EMG bursts (estimated by linear regression in the 60 ms window after EMG 
onset) averaged across subjects for each coherence level.  
 

Prediction 2. DTDM predicts that the rising slope of rectified and averaged EMG bursts 

for each motion coherence condition reflects the drift rate, and should thus decrease as 

motion coherence decreases. To test this hypothesis, we first rectified EMG signals for each 

subject and segmented correct trials -.1 to .5 s relative to EMG onset. The signals were then 

baseline corrected relative to the 100 ms window before EMG onset, and averaged for each 

motion coherence condition separately. We then estimated the rising slope of averaged EMG 

bursts using linear regression in the 60 ms window after EMG onset, and submitted these 

slopes to an ANOVA with motion coherence as within-subjects factor. This analysis revealed a 

significant effect of coherence (F(2.83,48.10) = 11.16, MSE = 115062, p < .001, 𝜂"=.40) and 

very strong evidence for this effect (BF10 = 3.96×105, error % = 0.39). As illustrated in Figure 

4B, the rising slope of averaged EMG bursts decreased as motion coherence decreased, 

consistent with DTDM’s prediction.  
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Prediction 3. DTDM predicts partial EMG bursts during PMT when the decision variable 

oscillates around the EMG threshold (due to noise in the evidence accumulation process). The 

proportion of partial EMG bursts should increase as motion coherence decreases, because 

there is less evidence (motion energy) to drive the decision variable to the response threshold. 

For the same reason, the mean latency of the first partial EMG burst should increase as motion 

coherence decreases.  

 
Figure 5. A) Examples of trials featuring at least one partial EMG burst during PMT. B) The proportion 
of such trials increases as motion coherence decreases. C) The latency of the first partial EMG burst 
relative to stimulus onset increases as motion coherence decreases.  

 

Consistent with previous work (Gajdos et al., 2019; Weindel et al., 2020), we 

sometimes observed trials featuring one or more partial EMG burst during PMT. Examples of 

such trials are provided in Figure 5A. An ANOVA on the proportion of correct trials featuring 

at least 1 partial EMG burst during PMT with motion coherence as within-subjects factor 

showed a significant effect of coherence (F(2.54,43.13) = 25.12, MSE = 0.005, p < .001, 𝜂"=.60), 
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and very strong evidence for this effect (BF10 = 2.39×1013, error % = 0.44). Figure 5B shows 

that the proportion of correct trials featuring at least 1 partial EMG burst during PMT increases 

as motion coherence decreases, consistent with DTDM prediction. An ANOVA on the mean 

latency of the first partial EMG burst during PMT with motion coherence as within-subjects 

factor showed a significant effect of coherence (F(1.72,29.29) = 27.47, MSE = 0.077, p < .001, 

𝜂"=.62), and very strong evidence for this effect (BF10 = 2.37×1013, error % = 0.37). Figure 5C 

shows that the mean latency of the first partial EMG burst during PMT increases as motion 

coherence decreases, consistent with DTDM’s prediction. Note that this analysis rules out an 

alternative explanation of partial EMG bursts in terms of motor noise, because a motor noise 

account predicts no effect of coherence on the mean latency of the first partial EMG burst 

(contrary to DTDM). 

Prediction 4. DTDM predicts that the distributions of PMT and MT should exhibit a 

similar right-skewed shape for each coherence level. Figure 6 shows histograms of PMT (row 

1) and MT (row 2) in correct trials across motion coherence levels (columns). Histograms were 

constructed by averaging PMT and MT deciles across subjects (Ratcliff, 1979). The width of 

each bar is determined by the latency difference between adjacent quantiles, and the height 

of each bar corresponds to the reciprocal of the width. Both dependent variables seem to 

exhibit a similar right-skewed shape. To assess whether it is the case, we constructed PMT-

MT quantile-quantile (Q-Q) plots. Figure 6 (row 3) shows that the Q-Q plot averaged across 

subjects is well described by a linear fit, suggesting that PMT and MT have a similar shape, 

consistent with DTDM’s prediction. Additional support for this hypothesis comes from the 

very high and positive Pearson’s correlation coefficient between PMT and MT deciles at the 

individual level (Table 3).   
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Table 3. Pearson’s correlation coefficient between PMT and MT deciles in correct trials for 
each motion coherence level. 

 Coherence level 
 0 .06 .08 .12 2 .4 

Pearson’s r 
averaged 

across subjects 

 
.978 

 
.985  

 
.985 

 
.980 

 
.987 

 
.990 

Range (min-
max) 

.890-.993 .950-.998 .956-.997 .920-.999 .949-.999 .978-.997 

Standard 
deviation 

.024 .012 .011 .019 .013 .005 

 

 

 
Figure 6. Histograms of PMT (row 1) and MT (row 2) in correct trials across motion coherence 
levels (columns) averaged across subjects. Also shown is a quantile-quantile (Q-Q) plot of PMT 
versus MT deciles for each coherence level averaged across subjects (row 3), and the 
corresponding regression line. See text for details. 
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Prediction 5. Without between-trial variability in drift rate, DTDM predicts a null 

between-trial correlation between PMT and MT. However, a modest amount of between-trial 

variability in drift rate, as classically assumed in the field, would generate a small positive 

correlation between PMT and MT. To test this prediction, we computed the between-trial 

Pearson correlation coefficient between PMT and MT for each subject and motion coherence 

level. These correlations are illustrated in Figure 7. For each coherence level, the averaged 

coefficient is small and positive, consistent with our prediction. Interestingly, the averaged 

coefficient is slightly smaller for the highest coherence level compared to lower levels. This 

pattern may reflect an increase in between-trial variability in drift rate as coherence 

decreases, which may stem from the increased amount of noise in the stimuli. 

 
 
Figure 7. Between-trial Pearson correlation coefficient between MT and PMT for each motion 
coherence level in correct trials. Black points show data from individual subjects. Each red line 
shows the coefficient averaged across subjects. 
 

Discussion 

 Our empirical data provides strong evidence for each of the five qualitative benchmark 

predictions derived from DTDM. Nevertheless, a complete test of the model requires a 

quantitative fit to both behavioral and EMG data. We also fit the standard DDM to behavioral 
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data, in order to evaluate the relationship between the best-fitting parameters from the two 

models.  

 Fits of the DDM to behavioral data usually incorporate between-trial variability in drift 

rate sv, starting point sz, and nondecision time sTer. However, parameter recovery studies 

have shown that sv and sz are poorly recovered, and tradeoff with the main model parameters 

(Boehm et al., 2018; Lerche & Voss, 2017; Ratcliff & Tuerlinckx, 2002). Because these tradeoffs 

could bias the comparison between DTDM and DDM, we decided to fix sv and sz to zero in our 

modeling. We also removed any source of variability in nondecision time components to 

ensure that good fits to PMT and MT data are not caused by these additional parameters. The 

drift rate was the only parameter allowed to vary between coherence levels. Because left and 

right responses were equiprobable in our random dot motion task, the starting point of 

evidence accumulation was fixed to zero (halfway between thresholds). Consequently, the 

DDM had eight free parameters: one drift rate v for each coherence level, upper decision 

threshold a, and mean nondecision time Ter.  DTDM had 10 free parameters: one drift rate v 

for each coherence level, upper EMG threshold m, upper response threshold r, mean residual 

latency Te added to predicted PMT (comprising at least the sensory encoding time and the 

corticomuscular delay), and mean residual latency Tr added to predicted MT (comprising the 

electromechanical delay).  

The next section is structured as follows. First, we simultaneously fit the DDM to the 

RT distributions of correct and incorrect responses and to accuracy data using a standard 

quantile-based method (Ratcliff & Smith, 2004; Smith & Lilburn, 2020; Smith & Ratcliff, 2009). 

Following previous work (Ratcliff & McKoon, 2008), we anticipated slower errors than correct 

responses in our data that the model should miss because we fixed sv to 0. Apart from this 
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minor misfit, we predicted that the standard DDM should provide a good account of the data. 

Next, we fit DTDM to the joint distributions of PMT and MT in correct and incorrect trials and 

to accuracy data using the same quantile-based method. Based on the theoretical foundations 

built from our previous qualitative assessments of the model, we predicted a good 

quantitative fit to data. Finally, we compare DDM and DTDM best-fitting parameters using 

between-subjects correlations and linear regressions. 

 

Modeling 

Method 

DDM fit procedure. Although closed-form expressions exist for the DDM (without 

between-trial variability in any of the model parameters), we simulated the model using the 

method and framework of Evans (Evans, 2019) to allow for a direct comparison with DTDM. 

The time-step dt was fixed at 0.001 s and the diffusion coefficient was fixed at 0.1. The model 

was coded in C, and the fit procedure was coded in Python.  

The model was fit to each individual behavioral dataset by minimizing the likelihood-

ratio chi-square statistic 𝐺" (Ratcliff & Smith, 2004; Servant et al., 2019; Smith & Lilburn, 2020; 

Smith & Ratcliff, 2009): 

𝐺! = 2$$$𝑛"#$

%

$&'

𝑙𝑛 '
𝑛"#$

𝑝𝑟𝑒𝑑_𝑛"#$ 	𝑁"
𝑠𝑖𝑚𝑢𝑙_𝑁"

3
!

#&'

%

"&'

 

The outer summation over 𝑖 extends over the six motion coherence conditions, and the 

summation over 𝑗 extends over the two trial types (correct vs incorrect). The summation over 
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𝑘 extends over the six bins bounded by RT quantiles (.1, .3, .5, .7, and .9)3. The variables 𝑛#$% 

and 𝑝𝑟𝑒𝑑_𝑛#$%  refer to the observed and predicted number of trials in coherence condition 𝑖, 

trial type 𝑗, and RT bin 𝑘. Finally, the variables	𝑁#  and 𝑠𝑖𝑚𝑢𝑙_𝑁#  refer to the observed and 

simulated number of trials in coherence condition 𝑖. The 𝐺" statistic thus characterizes the 

goodness-of-fit of the model to the correct and error RT distributions and to the correct and 

error choice probabilities simultaneously.  

The 𝐺" statistic was minimized using a differential evolution optimizer (Storn & Price, 

1997), and 20,000 simulated trials per coherence condition. Results were polished with a 

Simplex optimizer (Nelder & Mead, 1965), using 100,000 simulated trials per coherence 

condition. Codes were run on the advanced computing center from the University of Franche-

Comté.  

DTDM fit procedure. DTDM was simulated using the exact same method as for the 

DDM. An implementation of the model in C language is provided in Appendix A of 

Supplemental Materials. In each trial, predicted PMT and MT are defined as follows: 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑃𝑀𝑇 = 𝑇𝑒 + 𝑥 
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑀𝑇 = 𝑇𝑟 + 𝑦 

 
The variable 𝑥 corresponds to the latency between accumulation onset and the last crossing 

of an EMG bound before the response. The variable 𝑦 corresponds to the latency between the 

last crossing of an EMG bound and the corresponding response bound. Since observed PMT 

and MT were defined with respect to the last EMG burst giving the response, our 

computational definition is fully consistent with observed data.  

 
3 If subjects made a number of errors comprised between 5 and 10 in a given condition, a median split was used 
to form two bins. If there were fewer than 5 errors, error RTs for the condition were excluded from the 𝐺! 
computation.  
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The model was fit to each individual dataset by minimizing the likelihood-ratio chi-

square statistic 𝐺": 

𝐺! = 2$$$$𝑛"#$(

%

(&'

𝑙𝑛 '
𝑛"#$(
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The outer summation over 𝑖 extends over the six motion coherence conditions, and the 

summation over 𝑗 extends over the two trial types (correct vs incorrect). The summation over 

𝑘 extends over the six bins bounded by PMT quantiles (.1, .3, .5, .7, and .9), and the summation 

over 𝑙 extends over the six bins bounded by MT quantiles (.1, .3, .5, .7, and .9). The variables 

𝑛#$%&  and 𝑝𝑟𝑒𝑑_𝑛#$%&  refer to the observed and predicted number of trials in coherence 

condition 𝑖, trial type 𝑗, PMT bin 𝑘, and MT bin 𝑙. The 𝐺" statistic thus characterizes the 

goodness-of-fit of the model to the joint distribution of PMT and MT in correct and error trials 

and to the correct and error choice probabilities simultaneously. It was minimized using the 

exact same method as for the DDM.  

Results 

 The observed behavioral data and best-fitting predictions from the DDM averaged 

across subjects are shown in Figure 8A as quantile probability functions (QPFs). QPFs are 

constructed by plotting RT quantiles (y-axis) of the distributions of correct and incorrect 

responses for each experimental condition against the corresponding response type 

proportion (x-axis).  Individual fits are shown in Supplementary Figure S5. The model provides 

a good account of the data. As anticipated, the only apparent misfit concerns the relative 

speed of correct and error responses, due to the lack of between-trial variability in drift rate.  

DTDM fits to PMT and MT distributions in correct and error trials and to accuracy data 

averaged across subjects are shown in Figure 8B as QPFs. Also shown are RT predictions 
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computed from best-fitting parameters. The model provides a good account of the data, and 

does not show significant misfits beyond the relative speed of correct and error responses, 

even at the individual level (Supplementary Figure S6). RT predictions are virtually similar to 

DDM predictions, which allows for a straightforward parametric comparison between the two 

models.  

 

Figure 8. Observed and predicted quantile probability functions from the DDM (A) and from 
DTDM (B) averaged across subjects. Observed data are presented as colored circles and model 
predictions as black x’s.   
 

 Best-fitting DDM and DTDM parameters averaged across subject are shown in Table 4, 

and scatterplots of individual best-fitting DDM versus DTDM values for each parameter are 

shown in Figure 9. For motion coherence levels higher than 0, drift rates from DDM and DTDM 

are very similar, as indicated by comparable averaged best-fitting values, high between-

subjects correlation coefficients (all Pearson’s rs  ≥ .95), and regression lines close to the y = 

x identity line. The correlation is considerably weaker for the 0% coherence level, presumably 

because individual values are gathered in a very small interval around 0 due to the lack of 

motion energy. The predicted mean nondecision time from DTDM, defined as the sum of 
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parameters Te and Tr, is virtually identical to the mean nondecision time Ter of the DDM 

(Pearson’s r = .97; regression line: Te+Tr = 0.98Ter). In addition, our model fits suggest a 

correspondence between the upper decision threshold a from the DDM and the upper 

response threshold r from DTDM (Pearson’ r = .97; regression line: r = 0.93a + 0.008). The 

upper EMG threshold m from DTDM is about twice smaller on average than the upper decision 

threshold a from the DDM (see Table 4), though the two variables strongly correlate 

(Pearson’s r = .86). Finally, we computed the correlation between the upper EMG threshold m 

and the upper response threshold r. Recall that the distance between EMG and response 

thresholds within DTDM is only determined by the force required to respond, so the two types 

of thresholds are expected to correlate strongly. Consistent with this hypothesis, we found a 

high correlation coefficient between m and r parameters, Pearson’s r = .84. 

 

 

Table 4. Best-fitting parameters from DDM and DTDM models averaged across subjects. 
 drift rate v thresholds residual latencies (s) 
 0 .05 .08 .12 .20 .40 a m r Ter Te Tr 

DDM -0.003 0.034 0.069 0.111 0.177 0.318 0.096   0.375   

DTDM -0.001 0.035 0.069 0.111 0.177 0.310  0.048 0.098  0.298 0.070 

Note. DDM parameters: drift rate v, upper decision threshold a, mean residual time Ter; DTDM parameters: drift 
rate v, upper EMG threshold m, upper response threshold r, mean residual latency Te added to predicted PMT 
(comprising at least the sensory encoding time and the corticomuscular delay), and mean residual latency Tr 
added to predicted MT (comprising the electromechanical delay). 
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Figure 9. Scatterplots of individual best-fitting DTDM (y-axis) versus DDM (x-axis) values for 
each parameter. Also shown is the corresponding regression line.   
 

Discussion 

 Our modeling provides strong quantitative evidence for DTDM, and complements 

previous qualitative evaluations of the model. The model accounts for the distributions of PMT 

and MT in correct and error trials and for the correct and error choice probabilities 

simultaneously, with no systematic misfit beyond the relative speed of correct and error 

responses, which was expected because we did not incorporate between-variability in any of 

the model parameters. Residual motor latencies Tr range 32-103 ms with a mean of 70 ms, 

which fits nicely with previous empirical estimates of the electromechanical delay (range 30-

100 ms; Cavanagh & Komi, 1979).  
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 Though DTDM was fit to the joint distribution of PMT and MT, RT predictions of the 

model (computed from best-fitting parameters) match those from the standard DDM. A 

comparison of best-fitting parameters from the two models showed that drift rates and 

residual latencies also match. Importantly, this analysis revealed a correspondence between 

decision thresholds from the DDM and response thresholds from DTDM. Thus, thresholds and 

residual components from the DDM appear to have been misinterpreted in previous 

applications of the model (e.g., Ratcliff, 1978; Ratcliff & McKoon, 2008; Ratcliff & Rouder, 

1998; Ratcliff & Smith, 2004; Voss et al., 2004). DTDM clarifies this issue by providing an 

explanation of the computations involved in the motor execution stage, and shed new light 

onto conflicting findings regarding selective influence, as detailed in the General Discussion.  

Note that DTDM reduces to DDM when |𝑚| = |𝑟|. Because of the way muscles work, 

this difference must always be greater than 0. Thus, DDM may always be false but the 

difference between DTDM and DDM may be too small to detect. This means that DDM fits are 

close to being valid when response force is low, as in many experiments. Researchers should 

nevertheless be careful when attributing effects of experimental factors onto the mean 

nondecision time parameter Ter of the DDM. DTDM assumes that the residual latency at the 

motor execution stage Tr comprises the electromechanical delay. Given the strong 

contribution of mechanical factors, the electromechanical delay is unlikely to be modulated 

by cognitive factors, though this hypothesis should be carefully evaluated in future work. In 

addition, the electromechanical delay is relatively short, so large modulations of Ter are likely 

to be caused by processes prior to the decision process, such as sensory encoding, attention 

filtering, and short-term memory.    
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General discussion 

 

 DTDM enriches the standard diffusion model framework by providing a theory of 

motor execution. Specifically, the model assumes that EMG activity is determined by the same 

evolving decision variable that drives RT. This assumption is formalized by two sets of 

thresholds operating on the decision variable: EMG thresholds (±m) and response thresholds 

(±r). DTDM has proven to capture a broad range of EMG and behavioral phenomena in conflict 

tasks (Servant et al., 2015). The aim of the present work was to determine whether DTDM can 

predict EMG and behavioral data in standard perceptual decision-making tasks as well. We 

first derived five general predictions from the model that we submitted to an empirical test: 

(1) Mean PMT and mean MT should monotonically increase as motion coherence decreases. 

(2) The rising slope of rectified and averaged EMG bursts for each motion coherence condition 

should reflect the drift rate, and should thus monotonically decrease as coherence decreases. 

(3) The proportion of trials featuring partial EMG bursts should increase as motion coherence 

decreases, and the latency of the first partial EMG burst should increase as motion coherence 

decreases as well. (4) The distributions of PMT and MT should exhibit a similar right-skewed 

shape for each subject and motion coherence level. (5) The between-trial correlation between 

PMT and MT should be null (without between-trial variability in drift rate) or slightly positive 

(with a modest amount of between-trial variability in drift rate, as classically assumed in the 

field of mathematical psychology). To maximize the probability of detecting each of these 

effects, we manipulated motion coherence in a random dot motion task and chose response 

buttons that require a relatively high amount of force (see Introduction). Our empirical results 

provide very strong evidence for each prediction. We next performed a quantitative 

assessment of DTDM by fitting the model to the joint distributions of PMT and MT in correct 
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and error trials and to the correct and error choice probabilities simultaneously. DTDM 

provided a good fit to data, suggesting that it is a plausible processing account and thus 

generalizes to standard perceptual decision-making tasks.  

Our findings also speak to the issue of selective influence. Smith and Lilbrun (2009) 

recently argued that apparent violations of selective influence should not be equated with a 

failure of the diffusion model as a whole, but should instead motivate theoretical extensions 

in order to better understand the underlying cause of these violations. We concur with Smith 

and Lilburn’s view, and DTDM was specifically developed with this goal in mind (Servant et al., 

2015). Without an integrated theory of decision-making and motor execution, the empirical 

observation that both mean PMT and mean MT increase as motion coherence decreases 

might have been interpreted as a severe violation of selective influence, and strong evidence 

against the DDM architecture. However, a simple theoretical extension of the model, 

motivated by the neurophysiology of the musculoskeletal motor system and recent insights 

from cognitive neuroscience (see Introduction), provides a straightforward account of several 

non-intuitive aspects of the data.  

DTDM may also explain other empirical EMG observations in perceptual decision-

making tasks. For example, recent cognitive neuroscience studies in both humans and non-

human primates showed boosted sensory evidence representations under speed pressure, 

resulting in an increase in the rate of evidence accumulation compared to accuracy regimes 

(Heitz & Schall, 2012; Reppert et al., 2018; Servant et al., 2019; Steinemann et al., 2018). 

Within DTDM, a larger drift rate in the speed compared to the accuracy condition would 

necessarily produce a faster mean MT and a steeper rising slope of averaged EMG bursts in 

the speed compared to the accuracy condition, which is exactly what has been observed by 
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EMG studies (Spieser et al., 2017; Weindel et al., 2020; see Table 1). Conversely, manipulations 

of response bias are hypothesized to selectively modulate the starting point of evidence 

accumulation (Ratcliff & McKoon, 2008; White & Poldrack, 2014), so DTDM predicts no effect 

of response bias on MT. To the best of our knowledge, only one study analyzed the effect of 

response bias on EMG and reported no modulation of MT (Meckler et al., 2010; see Table 1), 

consistent with DTDM’s prediction. A more challenging EMG finding concerns the effect of 

response force on PMT and MT. Two studies reported a larger MT for high compared to low 

response force conditions, and an opposite effect on PMT (Burle et al., 2002; Romaiguère et 

al., 1993; see Table 1). The effect of response force on MT is readily explained by a modulation 

of the distance between EMG and response thresholds within DTDM. However, the 

mechanism generating faster PMT in high compared to low response force conditions 

deserves additional investigation. Higher response force levels may increase arousal, which 

may in turn increase the amount of attentional resources allocated to the task and thus drift 

rate. Alternatively, subjects may decrease EMG thresholds under high force regimes to 

compensate for RT lengthening and maintain an optimal speed-accuracy balance.  While these 

two hypotheses predict faster PMT in high compared to low force conditions, they make 

different predictions regarding accuracy and the rising slope of averaged EMG bursts. 

Specifically, the drift rate hypothesis predicts higher accuracy and a steeper rising slope in high 

compared to low force conditions. The EMG threshold hypothesis predicts a lower accuracy 

and no effect on the EMG rising slope in high compared to low force conditions. Consistent 

with the drift rate hypothesis, Burle et al. (2002) reported higher accuracy in high compared 

to low force conditions. However, Romaiguère et al. (1993) reported no significant effect of 

force on accuracy, suggesting that the two hypotheses may coexist. DTDM fits to data, coupled 

with an analysis of EMG rising slopes, should offer a strong test of these hypotheses. DTDM 
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may thus provide new theoretical insight into a broad range of behavioral and EMG results in 

perceptual decision-tasks, and opens an exciting avenue for future research to better 

understand the relationship between decision-making and motor execution. 

There are, of course, several pathways for model development. For example, DTDM 

could be combined with recent theoretical extensions of the DDM designed to account for 

how drift rate is computed, such as the integrated system model suggested by Smith and 

colleagues (Smith & Lilburn, 2020; Smith & Ratcliff, 2009). Another interesting avenue for 

future research concerns the mechanistic principles underlying the continuous flow of the 

decision variable up to M1. DTDM is agnostic with respect to these principles. It simply 

assumes a gate (EMG threshold) at the M1 level above which accumulated evidence is 

transmitted to the muscle. Verdonck et al. (2020) recently proposed a leaky integrated 

threshold architecture (LIT) that models the flow of information from perceptual evidence 

accumulation to the motor structures that prepare the response, such as M1. Specifically, LIT 

models perceptual evidence accumulation with a standard DDM, and assumes that motor 

preparation builds upon a leaky accumulation process that takes the accumulated evidence of 

the perceptual process as a continuous input. The dual-threshold assumption of DTDM could 

be combined with LIT in order to provide a full processing account of perceptual decision-

making, motor preparation, and motor execution. Given the complexity of this model variant, 

we believe that a rigorous test requires simultaneous EMG and EEG recordings in order to 

provide empirical constraints on each processing level.   

 The present work provides a bridge between different fields of research. So far, motor 

execution has mainly been the object of movement sciences and biomechanics, and many 

psychologists consider that motor execution is not cognitively interesting. For example, Turner 
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et al. (2015) developed a neural extension of the diffusion model that uses single-trial brain 

signals to better constrain model parameters. Motor execution is represented by a 

nondecision time parameter that “captures effects that are not cognitively interesting” (p. 

316). Our study speaks against this view, and demonstrates that motor execution –as 

quantified by EMG– offers a direct window on the decision variable. EMG thus appears 

particularly relevant to the fields of mathematical psychology and decision theory. However, 

we anticipate that the theoretical impact of DTDM will be much broader. For example, DTDM 

may provide new theoretical insights into studies of perception-action coupling (e.g., Witt, 

2018) and movement disorders that appear to have a cognitive basis, such as paradoxical 

movements in Parkinson’s disease  (normalization of gait pattern when sensory cues are 

provided to guide the movement; Perugini et al., 2018). DTDM may also provide new insights 

into studies of impulse control disorders. This line of research classically distinguishes motoric 

versus decisional forms of impulsivity (Dalley & Robbins, 2017), but DTDM suggests that these 

two seemingly different forms may have a common origin.  

 

Context of the Research 

The integrated theory of deciding and acting developed in this paper derives from two origins. 

The first being a popular French television quiz show from the 1990’s which involved 

responding to trivia questions of varying difficulties by pressing a buzzer. The pressure applied 

to the buzzer appeared to depend on the difficulty of the decision and the participant’s 

uncertainty: the more uncertain one was, the more hesitant hand pulses occurred (small 

pressures on the buzzer, not strong enough to generate the rasping sound signaling a 

response), and the slower one pressed the buzzer. Up to now, no psychological theory was 
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able to explain these motor phenomena that appeared to have a cognitive basis. The second 

source of influence concerns our previous EMG and computational work in conflict tasks 

(Servant et al., 2015), as explained in the Introduction section of the paper. Following this 

work, we hypothesized that motor phenomena observed in a variety of choice laboratory 

tasks should have a common processing origin. We then developed a research program aiming 

at testing this hypothesis and elucidating the processing mechanisms involved. The theory 

should shed light onto a variety of research problems that incorporate the motor system. One 

prominent example concerns movement disorders that appear to have a cognitive basis.  
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