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Abstract

The use of machine learning for the prediction of physical and chemical properties

of crystals based on their structure alone is currently an area of intense research in com-

putational materials science. In this work, we studied the possibility of using machine

learning-trained algorithms in order to calculate the thermal properties of siliceous

zeolite frameworks. We used as training data the thermal properties of 120 zeolites,

calculated at the DFT level, in the quasi-harmonic approximation. We compared the

statistical accuracy of trained models (based on the gradient boosting regression tech-

nique) using different types of descriptors, including ad hoc geometrical features, topol-

ogy, pore space, and general geometric descriptors. While geometric descriptors were

found to perform best, we also identified limitations on the accuracy of the predictions,

especially for a small group of materials with very highly negative thermal expansion

coefficients. We then studied the generalizability of the technique, demonstrating that

the predictions were not sensitive to the refinement of framework structures at a high

level of theory. Therefore, the models are suitable for the exploration and screening of

large-scale databases of hypothetical frameworks, which we illustrate on the PCOD2

database of zeolites containing around 600,000 hypothetical structures.
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Introduction

Zeolites are open three-dimensional framework structures composed of corner-sharing TO4

tetrahedra, where T is a tetrahedrally coordinated framework atoms, most typically Al or Si.

Zeolites are widely used in industrial applications as molecular sieves, for fluid adsorption and

heterogeneous catalysis.1 Their microscopic structure is a periodic three-dimensional network

of corner-sharing TO4 tetrahedra, where T is most commonly Al or Si. Out of an infinite

number of such arrangements mathematically possible, 244 fully ordered zeolitic topologies

have been currently determined experimentally, as approved by the Structure Commission

of the International Zeolite Association.2 The properties of these porous materials depend

in part on the topology of their frameworks, and also on their chemical composition, i.e.,

the nature of the atoms that make up the framework (and the extra-framework ions, when

they are present). Computational prediction of zeolite physical and chemical properties is

therefore a research topic of high interest, and a large body of work has been published on the

calculation of properties such as fluid adsorption3 and transport,4 gas mixture separation,5,6

catalytic activity,7–9 etc.

Recently, a new trend has emerged in the computational prediction of properties, it is the

large-scale computational screening of materials databases to identify promising candidates

for specific applications.10,11 In particular, there is a body of research trying to identify mate-

rials featuring unusual (or counter-intuitive, or “abnormal”) physical or chemical properties,

also called metamaterials.12 Framework materials, a category to which zeolites belong to,

frequently display structural responses under external stimulation, that range from counter-

intuitive to thermodynamically forbidden.13 Many zeolitic materials, in particular, display

features such as negative Poisson’s ratio14,15 (also called auxeticity16), negative linear com-

pressibility,17,18 pressure-induced softening,19 and negative thermal expansion.20,21 Negative

thermal expansion, or NTE, appears to be systematic in pure-silica zeolitic frameworks,21

and is of interest for potential use in ceramic, optical and electronic applications,22 as well as

in the creation of composite materials with zero thermal expansion for precision instruments
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and microelectronics.23,24

In the past decades, we have seen the continued development of computational chemistry

methods and the rapid increase in CPU speed and high-performance computing resources.

The combination of the two has made possible the systematic prediction of materials physical

and chemical properties from crystalline structure, even to the point of high-throughput

studies that can deal with hundreds or thousands of structures. However, such large-scale

studies involve massive costs in terms of CPU time (and associated carbon emissions). In

particular, highly accurate calculation methodologies at the quantum level remain expensive,

and not all properties can be studied in a high-throughput setting.

One of the possible avenues to accelerate the pace of materials discovery is therefore to

leverage the data available, either experimentally or from state-of-the-art computational ap-

proaches, through machine learning.25–27 Among the many tasks that machine learning (ML)

is being applied to, one of the most popular in chemical and materials sciences is the creation

of properties prediction algorithms based on structure and/or chemical composition,28 and

the identification of materials with specific properties.29 It has been applied to a wide diver-

sity of problems, including prediction of potential energy surfaces and stability,30 electronic

properties,31 magnetic properties,32 mechanical properties33,34 and stability,35 catalytic ac-

tivity,36 and the characterization of energetic materials,37 to name only a few examples. We

refer the reader to Refs. 28 and 25 for more comprehensive reviews of the principles and

applications, respectively.

In the field of zeolites, where a large number of hypothetical frameworks are known,38

the applications of machine learning for the identification and characterization of frameworks

has long been recognized.39,40 More recently, Helfrecht et al. have analysed the structural

diversity of hypothetical zeolites databases, showing the power of smooth overlap of atomic

position (SOAP) descriptors in order to classify local environments and identify zeolite build-

ing blocks.41,42 ML algorithms have also been applied to the design of zeolite templates (or

organic structure directing agents)43 and more broadly in synthesis,44 as well as the predic-

3



tion of catalytic activity.7,45 In the past few years, our group and others have demonstrated

the capability of ML to predict various mechanical properties of zeolitic frameworks. First,

we focused on average volumetric properties, such as bulk and shear moduli.34,46 Later, we

have shown how the use of ML techniques, integrated within a multi-scale modeling strategy

including quantum chemical calculations, can speed up the discovery of zeolites with com-

plete auxeticity,47 a subclass of mechanical metamaterials with very rare behavior.48 These

predictions have yet to be directly verified experimentally, due to the difficulty in system-

atic characterization of crystal elastic constants (or mechanical behavior under anisotropic

stress), but in cases where data is available, the mechanical properties are usually found to

be in good agreement with DFT values.21,49

In this work, we used a previously calculated database of thermal properties of pure silica

zeolites and investigated the feasibility of its use for machine learning purposes. In the next

sections, we first introduce the computational methods, including a brief presentation of the

databases we used, as well as the algorithm we chose and a definition of all the materials

descriptors. We then assess the accuracy of different models trained on our DFT-calculated

database, and compare the results using different types of materials descriptors. Finally, we

discuss the use of non DFT-optimised structures in the training of the model, and confront

our database of zeolites with a much larger one: the PCOD2 database of 600,000 hypothetical

zeolite structures.

Computational methods

DFT calculations

The present work is based on zeolite properties data calculated at the quantum chemical level,

previously obtained in the group. We used the data on thermal and mechanical properties of

pure SiO2 zeolites from these DFT calculations as a basis for the ML study reported herein.

We refer the reader to Ref. 21 for a full methodological description, but provide here a short
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summary for the sake of convenience.

The DFT calculations were done on 134 structures for which we optimized the geometry.

Those calculations were performed starting from the IZA models for 190 zeolites with fewer

than 150 atoms in their unit cell; from those 190, 134 structures achieved convergence within

reasonable time constraints. For these structures, we calculated the thermal properties using

the quasi-harmonic approximation. Of those, 120 calculations converged with a sufficient

range of volume and temperature. Compared to the computation of third and higher order

terms of the energy, this technique allows for the determination of certain thermal properties

while keeping an affordable computational cost. The principle behind it is to obtain the

relationship between the volume V and the frequencies of phonons ωk — this dependence is

missing in the harmonic approximation — by making several harmonic frequency calculations

at different volumes. Once this relationship is known, one can determine the equilibrium

volume at each temperature by minimizing the Helmholtz free energy F (V, T ) with respect

to the volume following the equation:

F (V, T ) = U0(V ) + Uvib(V, T )− TS (1)

where U0 is the zero-temperature lattice energy. Uvib, the vibrational part of the energy, can

be written as:

Uvib(V, T ) = E0(V ) + kBT
∑
k

ln

(
1− e

h̄ωk(V )

kBT

)
(2)

where E0(V ) is the zero-point energy of the system, kB is the Boltzmann constant, h̄ is the

reduced Planck constant and ωk is the volume-dependent vibration frequency.

Through this method we were able to obtain several properties such as the thermal expan-

sion and the bulk modulus, as well as the later’s dependence on pressure and temperature.

We compared the already synthesized SiO2 zeolites with the theoretical ones and, while it

was not straightforward to define synthesis conditions, we observed that the bulk modulus

K0 and its derivative K ′
0 seems of great importance in determining the synthetic feasibility
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for a given structure. Indeed the high rigidity of a framework makes it more stable and we

noticed that a overly large negative K ′
0 apparently leads to the structure not being synthe-

sizable, as no experimentally known framework was found to exhibit this behaviour. The

negative K ′
0 being associated with a mechanism of amorphization under pressure provides

an additional rationale for this finding.

Deem database

To compare our results with predictions made on a much larger number of zeolitic structures,

we used the PCOD2 database of hypothetical zeolites created by Deem and co-workers.38,50

The development of this database started in 199251 with 2,000 structures and continued

its growth reaching around 600,000 structures in 2006,52 which is the number of structures

we studied here. The database, no longer accessible on its original academic website, was

mirrored from our own local archives and made available at the following stable URL: https:

//doi.org/10.5281/zenodo.4030232

These structures were obtained from combined Monte-Carlo simulations, simulated an-

nealing and refinement using a classical force field, the Sanders-Leslie-Catlow (SLC) inter-

atomic pair potential. 10% of the 2.7 millions unique structures obtained in their work were

found to have an energy per SiO2 unit that is within 30 kJ/mol from the well-known α-

quartz dense phase. Many of these structures were expected to be stable and achievable

through synthesis, and the authors emphasized that their database could drive the discov-

ery and synthesis of novel materials as well as support identification of materials through

powder pattern searching and matching. In addition, they also calculated the stiffness tensor

of second-order elastic constants — with the same force field approach. As observed before

however,34 the results obtained on mechanical properties were not very accurate, as K val-

ues reported range from −27,000 (unstable) to 20,500 GPa (unphysically high). Nevertheless,

this structural database of hypothetical zeolites has been widely used in the exploration and

systematic prediction of structure/property relationships.42,53,54
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Machine learning

In order to apply a machine learning strategy to the task at hand, we chose a gradient

boosting regression (GBR)55,56 for the algorithm, as it has been proven to be quite robust and

efficient for small datasets, like in our case.57 This algorithm is a stage-wise additive model

which trains decision trees that are built in a greedy fashion to minimize the loss function,

which was chosen to be a least squares function in our case. We have used this methodology in

the past for the prediction of physical properties in dense and porous frameworks, including

mechanical stiffness,34 and anisotropic elastic properties such as negative Poisson’s ratio.47

Table 1: Hyperparameters for the gradient boosting regression

Parameter Value

Number of boosting stages 250 a / 500 b

Learning rate 0.01
Minimum samples split 2
Maximum depth 2
Minimum samples leaf 2
Subsample 0.4
max features square root of total features
loss function least squares
a Used for the geometrical descriptors only to avoid over-fitting observed in the learning curves.
b Used for all other descriptors.

We used the GBR implementation from the scikit-learn Python package.58 We used a

3-fold cross-validation procedure as implemented in Sci-kit learn package which we repeated

50 times in order to obtain relevant accuracy scores and errors by averaging them over

all the simulations. To choose and validate the hyperparameters, we used cross-validation

and chose as a measure of accuracy the root mean square error (RMSE). In particular, we

focused on the impact of the number of boosting stages, which — although GBR is generally

said to be fairly robust to overfitting — we found to be an important hyperparameter. The

learning curves for this hyperparameter, for the prediction of thermal expansion coefficient

based different sets of descriptors, are displayed in Figure S1. We can clearly see that even

though we took precautions to avoid over-fitting when defining the other hyperparameters,
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this phenomenon is happening for a large number of boosting stages. For the set of ad hoc

geometrical descriptors, we therefore chose to use 250 boosting stages. For other descriptors,

the phenomenon is not as pronounced, and we decided to keep a higher number of decision

trees (namely, 500). We report the final set of hyperparameters used for this study on Table 1.

Choice of descriptors

Besides the choice of the algorithm and hyperparameters, one other critical aspect of the

machine learning methodology for prediction of materials properties is the choice of descrip-

tors. Descriptors should reflect the nature of the input data properly (in this case, the atomic

structure of materials) and allow for the differentiation of the different materials. Moreover,

it is also important that the descriptors share some kind of link with the targeted labels.

Within these constraints, and based on the existing literature in the field,28 we identified

several sets of possible materials descriptors for use in our model. We then proceeded to

compare the performance (or statistical accuracy) of the models based on different descrip-

tors. For each set, we chose a total of 12 descriptors which, taking into account the size of

our training data set and our choice of hyperparameters, allowed a reasonable description of

our systems while avoiding over-fitting in our simulations. Here we give a brief explanation

of each type of descriptor and how we obtained them. The complete list of descriptors used

for each type is available in supporting information in Table S1, and the discussion of the

relative merits of the different sets is detailed in the text.

Ad hoc geometrical descriptors

Zeolitic frameworks are a three-dimensional assembly of corner-sharing SiO4 tetrahedra.

Therefore, it is natural to characterize the local geometry of each atomic environment by

the set of simple parameters such as Si–O distances and Si–O–Si angles. It was further

demonstrated in a large number of works, including some of the earlier studies on structure–

property relationships in zeolitic frameworks,59,60 that these two parameters are of great
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importance for understanding the physical and chemical properties of this family of materials.

In prior work, we have shown that such ad hoc geometrical descriptors — designed from

the chemical intuition and our knowledge about the systems at hand — can be used in

supervised machine learning for the prediction of mechanical properties.34,47 For this reason,

we included them in the present study: from each optimized zeolite structure, we calculated

the distribution of bond distances and angles using the pymatgen python package.61 We then

used as descriptors some statistical features of these distributions: different means, variance,

extremal values, etc.

Topological descriptors

One of the conclusion of our previous systematic study21 was that the topology plays a key

role on thermal properties of zeolitic frameworks. Indeed, we reported a large span of the

values for the thermal expansion and the bulk modulus of these frameworks, although the

composition for all zeolites is identical. This led us to think that topological features could

form interesting descriptors to include in our current study. Although several representations

of framework topology are possible, we chose here to use the coordination sequence, i.e., the

number of neighbours in each successive coordination spheres of the Si atoms.

Because zeolites are four-connected nets, the first term of the sequence is always 4; we

therefore decided to take into account from the second sphere to the 13th sphere — averaging

over all starting Si atoms. Information on topology such as the number of neighbours were

obtained from the optimized zeolite structures using the CrystalNets julia package.62 This

package designed for the identification and manipulation of crystal nets representation and

topology has been developed in our group and made available on Github at https://github.

com/coudertlab/CrystalNets.jl
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Volumetric descriptors

Because zeolites are nanoporous materials, another possible choice of structural descriptors

would be focused on the characterization of their pore volume, and more generally, nonlocal

or volumetric information. Indeed, as described earlier, the quasi-harmonic approximation we

used to determine the thermal properties of zeolites is considering the harmonic expression

of the Helmholtz free energy to which we added the vibrational part of the energy (which

depends on the volume). Thus volumetric descriptors such as the density, the accessible vol-

ume or the surface area could also play an important role in the prediction through machine

learning. These quantities were obtained from the optimized zeolite structures using the

Zeo++ software package.63,64 The surface area, accessible volume and volume being depen-

dent of the choice of unit cell, we normalized them per number of SiO2 units. For the sake

of consistency, we chose used as descriptor the calculated (DFT-optimized) crystallographic

density, instead of the topological density reported by the IZA. This choice is not crucial

to the conclusions of this work, however, as the reported and calculated density values are

almost identical.

Smooth Overlap of Atomic Positions (SOAP)

The SOAP is an encoding method introduced by Bartók and co-workers,41,65 which is a

descriptor of local geometry, describing the environment around a given point (usually an

atomic position). By projecting the local geometry onto orthornormal basis functions based

on spherical harmonics, it is invariant by rotation and permutation of atoms. It has been used

in particular to determine the similarity of two neighbourhood environments, and to identify

features that differentiate molecular structures from one another,66,67 including in the specific

case of zeolites.42 It has also been used to encode atomic environments for machine learning

inter-atomic potentials, due to its powerful and rich material representation.68 Finally, it is

also used as descriptor for regression tasks, namely the prediction of physical or chemical

properties.69,70
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One important parameter of this method is the cut-off, representing the distance until

which all the environment is included in the description. Initial tests showed that a suitable

value for zeolitic systems is around 6 Å, as this distance includes the nearest and next-nearest

neighbours, including then characteristics of both Si–O distances and Si–O–Si angles. This

was verified by computing the SOAP descriptors for different values of cut-off and running

machine learning predictions based on these different sets. For values of cut-off below 6 Å,

we observed a decrease of the RMSE with increasing cut-off, while the accuracy remained

constant for values higher than 6 Å. Finally, in order to reduce the large dimensionality of

the SOAP descriptors and bring them to a comparable set to other descriptors, we used the

Principal Component Analysis (PCA) technique, which determines through an algorithm the

most important components and projects the data on them — reducing the dimensionality

while keeping as much variation as possible. We chose here the first 12 components from the

PCA analysis.

Results and discussion

ML model based on geometric descriptors

In this section, we will discuss the general performance of ML models based on simple

geometric descriptors, as used in past studies for mechanical properties,34,47 for the prediction

of thermal properties of frameworks. To assess the statistical accuracy of our models, we

used a cross-validation strategy on our data set. Hyperparameters (in particular the number

of boosting stages) were tested systematically in order to avoid overfitting of the models,

as detailed in the Methods sections. We display on Figure 1 the results of a GBR model

for thermal expansion based on geometrical descriptors. We can see that values of thermal

expansion are overall well predicted in the center range as our data are concentrated between

around −2 and −1 K−1. However it can be seen that large deviations are present for several

points outside of this range. It seems that there are outlier materials (especially for very
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negative values of thermal expansion), and that there are too few values on the extreme

sides of the data set to allow for the model to train efficiently on them, which is why we are

witnessing such high errors on these points.

Figure 1: Left: GBR cross-validation prediction of the thermal expansion α, based on geo-
metrical descriptors. Right: relative importance of each descriptor.

To quantify this dispersion we used the RMSE (root-mean-square error), for which we

found an averaged value of 4.24 10−6 K−1 corresponding to an error of 20%, which is rea-

sonable considering the small data set used in this study — and in line with accuracy of ML

models based for other macroscopic physical properties based on local geometric descrip-

tors.48 We also confirmed that, removing the points with low values of thermal expansion

(outliers for α < −2.5 10−5 K−1), the RMSE lowers to 2.56 10−6 K−1, giving much better

predictive power. To try to find the microscopic origin of the specific behavior of these mate-

rials, we investigated their frameworks. As shown in supporting information Figure S3, while

their thermal expansion deviates away from the average value, no other property or feature

showed any systematic difference compared to the rest of the frameworks. Visual inspection

of their structures did not reveal any particularity either, and we therefore believe that the

specific behavior observed may be unphysical, and find its root in high order terms, which

are not included under the quasi-harmonic approximation and thus not taken into account

in our DFT calculations.

It is also important to note that the deviation observed in the prediction of thermal
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expansion also finds its origin (in part) in noise in the training data itself, that comes from

the uncertainty of the DFT calculations. The properties obtained by DFT calculations were

obtained through a rather long and difficult process which comes with a certain degree

of uncertainty. In order to perform a systematic study of thermal properties (to build the

database), we had to fix a certain set of parameters for all the frameworks (ranges of tem-

perature, volume expansion, number of points in numerical derivatives, etc): more fine-tuned

parameters for each zeolite could have resulted in a better accuracy for the calculated prop-

erties, but was not feasible in a systematic approach. We note that a deviation of the same

magnitude is also observed with other types of descriptors, for which representations can

be found in Figure S4. We note here that, in this study, our main interest is in evaluating

the feasibility of the ML models and the comparison of descriptors, for a physical property

(thermal expansion) that has never been studied in framework materials at that scale before.

Finally, we estimated the relative importance of each descriptor in the training process

and report the results on the right panel of Figure 1. It can be seen that the first descriptor

in terms of importance is related to the Si–O–Si angles (harmonic mean of angle values).

Going down the list, the angles appear to be of higher importance for the prediction of

thermal expansion than the Si–O distances. This confirms the physical intuition, because

thermal expansion is dominated by low-frequency vibration modes, which typically involve

tetrahedral rotations of SiO4 units and Si–O–Si angle bending.

This is further confirmed with the partial dependence plots depicted in Figure 2. With

this representation, we can see how a chosen property (here thermal expansion) responds

as a function of some specific descriptors (left: the Si–O–Si angle harmonic mean; right:

minimal Si–O distance). It can be clearly seen that the Si—O–Si angle exhibits a nearly

linear dependence with the predicted thermal expansion, starting from around 142°, whereas

the impact of the Si–O distance is smaller in amplitude, and without a clear monotonic trend.

Knowing that the minimal Si–O distance was found to be the second most important feature

when training the model, it highlights the fact that angles have much more importance than

13



Figure 2: Partial dependence plots of the (left panel) SiOSi hmean and (right panel) SiO min.
Right panel shows the comparison between the these two descriptors.

distances in the prediction of the thermal expansion.

Comparison of different descriptors

In this section, we want to compare the performance of different sets of descriptors for the

description of thermal properties. Among all four types of descriptors tested (see Figure S4),

the use of principle components of SOAP descriptors seems to provide the best-performing

description, with a RMSE value of 3.75 10−6 K−1. This is smaller than the ad hoc geometric

descriptors (angles and distances) as shown above (4.24 10−6 K−1): we comment this by

noting that the SOAP method gives a more comprehensive description of the local geometry

of the structure, including effects more complex than just the angles and distances. On the
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other hand, we see that topological and volumetric descriptors are on par with geometric

features, showing RMSE values of 4.13 10−6 K−1 and 4.16.10−6 K−1, respectively.

This conclusion is strengthened when we look at the prediction of other physical proper-

ties. As examples, we present in supporting information the predictions of the bulk modulus

(using the same methodology). There again, SOAP descriptors allow for the most accurate

description, with a RMSE value of 15.9 GPa, lower than for the topological and volumetric

descriptors (RMSE of 17.6 GPa and 20.9 GPa respectively). It can also be observed on the

representations (Figure S5) that volumetric descriptors result in a really poor prediction of

bulk modulus, as the cloud of points strays away from the perfect prediction represented by

the dashed line and tends to form an horizontal line. This conclusion is counter-intuitive,

as we could have expected the density or porosity-related metrics to be directly linked to

the stiffness of the materials. However, we show here that using solely these metrics is not

sufficient to efficiently train a model. On the other hand, we note that ad hoc geometrical

descriptors to an accuracy close to that obtained with the SOAP descriptors (RMSE of

16.0 GPa). This highlights once more the importance of Si–O–Si angles in determining the

properties of zeolites, as we observe a similar accuracy compared to SOAP descriptors which

contain much more information on the structure than just the angles.

Figure 3: Left: GBR cross-validated predictions on the thermal expansion using a combina-
tion of the best 3 descriptors of each type. Right: Feature importance histogram obtained
when training the model with different type of descriptors.
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Having looked at all the types of descriptor separately, we decided then to train a model

combining this time different types in order to compare them in the same model. We chose

to use the three best descriptors of each type in determining the thermal expansion which

gave us a new set of 12 descriptors (Table S2). We kept the same hyperparameters, after

confirming through learning curves that these allowed us to avoid over-fitting. We reported

the cross-validated prediction of the thermal expansion using this new set of descriptors in

Figure 3, along with the relative features importance. What we observe first is that, while

the accuracy is slightly better than before with a RMSE of 3.64.10−6 K−1, the improvement

is marginal, and mainly located for the low values of thermal expansion — many of which

were outliers in the previous models.

Looking at the features importance, we see that the second principal component of SOAP

descriptors is the most important in determining the thermal expansion — as was already the

case with only SOAP features. This demonstrates that, even if we reduced the dimensionality

of these features with a principal component analysis which causes a loss of some of the

information, this method still represents a highly competitive way of describing a structure.

Figures depicting the partial dependence of the second principal component of SOAP features

as well as the Si–O–Si harmonic mean can be found in supporting information (Figure S6).

These representations show that the dependence of the thermal expansion on those two

descriptors is quite similar. Both of them exhibit a strong linear dependence, unlike with all

the other descriptors used here, for which the dependence is either weak or almost null. As

already observed previously, Si–O–Si angles represent one of the major features to incorporate

in the description of the structure of zeolites. Here we demonstrated that this descriptor is

essential for the prediction of the thermal expansion, and we believe that it would be useful

to include it for the determination of other properties of zeolitic materials.
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Applying ML models to non-DFT optimised structures

We have proven above that the prediction of thermal properties is possible, with reason-

able accuracy, from the structure of a zeolitic framework optimized at the DFT level. While

interesting in itself, the need for a DFT-optimized structure can strongly limit the applica-

bility of the ML model in a high-throughput screening scenario. Indeed, while the structure

optimization is computationally less intensive than the quasi-harmonic calculation of ther-

mal properties (and can be performed in hundreds of structures47), it is not scalable to the

size of available hypothetical databases of zeolitic materials (which can contain hundreds of

thousands of structures).

Therefore we found interesting to investigate the performance of a ML model trained

on non DFT-optimised structures to predict the same thermal and mechanical properties

(still using for those properties the data obtained by DFT). This is, in effect, a test of the

sensitivity of the ML model to the accuracy of the geometries used as input. For this, we

created a data set containing the same 120 structures as the DFT-optimised data set but

using the zeolites structures from the IZA database (obtained by a distance least-squares

refinement technique) and used them directly as a training set without optimising them. We

used the same hyperparameters as well as the same combination of descriptors as the above

section, as we proved that the results were slightly better than with just only one type of

descriptor. All the features required were retrieved on the non-optimised structures following

the same procedure described in the computational methods. We reported the cross-validated

predictions along with the feature importance plot in supporting information.

We obtain for this new ML model a RMSE of 3.63.10−6 K−1 for thermal expansion,

close to the previous values observed. The same behavior is also observed on the repre-

sentation, with the same group of isolated outliers corresponding to the lowest values of

thermal expansion. This shows that non-optimised structures do not differ too much from

the optimised ones, and that these differences in geometry do not strongly impact the per-

formance of ML models. Furthermore, we can see on the feature importance plot (Figure S7)
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that the importance order is quite similar. Indeed the second principal component is the

most important followed by the harmonic mean of the Si–O–Si angles, just like the previ-

ous model with optimised structures. This is due to the similarity of the features between

non-optimised and optimised structures. Therefore, this validates the prediction of physical

properties from structures optimised at a level lower than DFT (for example, force field op-

timised structures), making it possible to investigate very large-scale zeolitic data sets, such

as the PCOD2 database created by Deem et al..38,50

Deem database

We now apply our ML model to the PCOD2 database,38,50 which contains around 600,000

hypothetical pure silica zeolite structures, obtained from combining Monte-Carlo simulations,

simulated annealing, and structure refinement using a classical force field (the Sanders–

Leslie–Catlow (SLC) interatomic pair potential71). It constitutes a great tool for the machine

learning-based exploration of new synthesizable structures, or the identification of candidate

zeolites with targeted properties. For example, we have used it in the past to identify new

frameworks with auxetic behavior.47 In this work, our interest lies in comparing our data set

of calculated zeolites with the full database of hypothetical structures and ultimately, trying

to predict the distribution of thermal expansion and bulk modulus of the PCOD2 database.

In order to do this, we first calculated different descriptors for the whole PCOD2 database.

For around 600,000 structures, the computational effort is as follows (timing reported for

nonparallel, single-CPU calculations): a couple of days for the bond distances and angles,

one week for the SOAP features and around two weeks for the topological descriptors. Due

to the size of some of the systems within this database, volumetric descriptors could not be

retrieved as the time needed to calculate them was excessively long. We reported histograms

of values of Si–O distances and Si–O–Si angles on Figure 4 for both our training data set, and

the entire PCOD2 database — with occurrences normalised for the sake of clarity. First, we

can see that the span of values for both distances and angles is close between IZA structures
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Figure 4: Distribution of descriptor values of our data set compared to the Deem database.
Descriptors represented are: (a) Si–O mean distance; (b) Si–O–Si mean angle; (c), (d) and
(e) first three components of principal component analysis of SOAP features. Due to the
difference in data set size, frequencies have been normalized for both data set.

and the PCOD2 database. This is strongly encouraging for a prediction model because the

geometrical descriptors show approximately the same distribution, meaning that a model

trained on these descriptors should be generalizable without extrapolation. Si–O distances

do not vary much, with values being concentrated between 1.60 and 1.62 Å — in line with

our observations that Si–O distances do not have a great importance when training ML

models. In comparison, Si–O–Si angles exhibit a larger range of values, with a total span of

up to 20°. This explains the importance of these angles in the predictions, as they account

for a lot of the diversity between the different structures.

All these observations are in contrast with the case of the principal components of SOAP

features. Indeed one can see that for the first three principal components there is a shift

in the distribution of IZA structures compared to the PCOD2 database. This would mean
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that the frameworks we are currently working on do not represent all of the possible envi-

ronments present in the database of theoretical structures: the geometrical diversity of the

PCOD2 database is higher. This could also mean that some of the structures in the PCOD2

database are outside of the realm of “feasible zeolite structures”, as defined by the convex

hull of features from the experimentally known frameworks (in the IZA database). This is

an interesting new take on the question of experimental feasibility of frameworks,42,49 which

we intend to pursue further, but is outside of the scope of our current work. We can only

conclude that a prediction on the PCOD2 database using the principal components of SOAP

features as descriptors would probably result in a poor prediction.

Figure 5: GBR prediction of the PCOD2 database on the thermal expansion and bulk mod-
ulus using the geometrical descriptors and our data set as training set.

Therefore, we decided instead to use the ad hoc geometrical descriptors and train a model

to try to predict the properties of the database of theoretical zeolite structures. We used the
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same set of statistic metrics on bond and angles as described earlier in this paper and used

them to predict the thermal expansion and bulk modulus on the full PCOD2 database.

Results are shown in Figure 5 — where they are plotted as a heat map, with the harmonic

mean of Si–O–Si angle, using a gradient of color as a third dimension. We can observe some

general trends on the PCOD2 structures, with a statistical correlation between thermal

expansion and bulk modulus: structures with a higher bulk modulus are often found to

correspond to larger (negative) values of negative thermal expansion (NTE). We can actually

see a hint of this behavior, already, in our training data set with properties computed at

the DFT level (Figure S3). We find that both physical properties are apparently linked to

the same geometrical feature, namely, the Si–O–Si angle — which we found previously to

be the most important feature when training ML models. Materials with higher values of

Si–O–Si angles have both higher bulk modulus, and more pronounced NTE. This correlation

between mechanical and thermal behavior through a relatively simple geometric feature is

an interesting new development, and would have to be confirmed — for example, through

systematic calculations of representative structures within the PCOD2 database.

Conclusions

In this work, we used our previously calculated database to train a series of machine learning

models for the prediction of thermal properties of zeolites: including thermal expansion, as

well as pressure and temperature dependence of bulk moduli. After identifying the optimal

hyperparameters for our gradient boosting regression models, we compared the accuracy of

models built on different types of structure descriptors: ad hoc geometric descriptors (based

on Si–O distances and Si–O–Si angles), generic structures descriptors based on Smooth

Overlap of Atomic Positions (SOAP), descriptors related to the geometrical characteristics

of the porous network, and others related to the topology of the four-connected zeolitic net.

From these comparisons, we gained insight into the structure–property relationships in
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zeolite frameworks. With regards to geometric descriptors, we saw that the description of

angles is much more important than distances for the zeolite frameworks as angles were

found to be the most important parameter when training the model. We also found that

“agnostic” geometric descriptors such as SOAP outperform the ad hoc descriptors that we

had identified, with lower root-mean-squared and mean-absolute errors. Moreover, even with

SOAP descriptors, the most important component was found to be directly related to Si–

O–Si angles, confirming our initial analysis. These conclusions are true regardless of the

specific thermal property under study (i.e.n the thermal expansion, the bulk modulus or its

derivatives), but we hypothesize that this would apply more broadly for a large scope of

physical properties of zeolite frameworks.

Finally, we applied our predictive models to the PCOD2 database of hypothetical struc-

tures of zeolites, to confront our data set of DFT-calculated structures with a much larger

set. Comparing the descriptors for both data set showed that the distributions of Si–O dis-

tances and Si–O–Si angles are within the same range, which hints that our database is well

suited to predict properties of zeolites using the geometrical descriptors. We noted also that

Si–O–Si angles exhibit a much larger variation of values compared to the distances. This is

certainly one of the reason why the metrics on angles are much more important than metrics

on distances. In the case of SOAP descriptors, distributions seem to be shifted compared

to the PCOD2 database, suggesting that the hypothetical environments may be too diverse

compared to feasible zeolites — and also showing that even though using SOAP descriptors

resulted in the best predictions throughout this work, they are not suited for a prediction

on the PCOD2 database. The geometrical descriptors were then used to predict the ther-

mal expansion and bulk modulus of the PCOD2 database, which highlighted a trend where

zeolites with a higher bulk modulus tends to have larger negative thermal expansion. We

also find this to be linked to the Si–O–Si angles as the higher the angles the higher the bulk

modulus.

These conclusions demonstrate the possibility for prediction of thermal properties of
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framework materials based on purely geometrical characteristics, and expand the range of

application of ML models on such systems, based on high-accuracy reference data obtained

by quantum chemical calculations. Our study demonstrates the importance and impact of

the choice of materials descriptors, and can be in future work extended to other physical

properties, or to a broader range of materials — include variations in chemical composition,

which would then need to be encoded into an entirely new class of features.
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