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Generating Optical Schrödinger Kittens
for Quantum Information Processing

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat and P. Grangier

We present a detailed experimental analysis of a free-propagating light pulse prepared in a “Schrödinger kitten”
state, defined as a quantum superposition of “classical” coherent states with small amplitudes. This state is generated
by subtracting one photon from a squeezed vacuum beam, and it clearly presents a negative Wigner function. The
predicted influence of the experimental parameters is in excellent agreement with the experimental results. The
amplitude of the coherent states can be amplified to transform our “Schrödinger kittens” into bigger Schrödinger cats,
providing an essential tool for quantum information processing.

A key requirement for many quantum
computation and communication proto-
cols (1, 2) is to dispose of specific quan-
tum states of light as a resource for in-
formation processing. In the following,
we will be interested in quantum states
of propagating light beams, which can be
analyzed either by photon counting, or by
homodyne detection, which measures the
interference between the signal state and
an intense reference beam with a relative
phase θ. This measures a physical quan-
tity called a “quadrature component” of
the electric field, associated with the op-
erator x̂θ = x̂cosθ+ p̂sinθ, where x̂ and
p̂ are canonically conjugate field observ-
ables. The operators x̂ and p̂ are ana-
log to the position and the momentum
of a particle, and they are often called
“quantum continuous variables” (QCV).
From Heisenberg’s inequalities they can-
not be determined simultaneously with
an infinite precision, so one cannot gen-
erally define a proper phase-space den-
sity Π(x, p) for the electric field. How-
ever, one can define a quasi-distribution
W (x, p) called the Wigner function, the
marginals of which yield the probabil-
ity distributions P (xθ). By measuring
the distributions P (xθ) for several val-
ues of θ one can reconstruct the Wigner
function; this inverse process is known as
quantum tomography (3).

For specific quantum states, the
Wigner function can take negative val-
ues, thereby excluding any description
by a classical phase-space density. Gen-
erating such states for propagating light
beams is of special interest for QCV
information processing, because it pro-
vides the basis for entanglement distilla-
tion (4–6), universal quantum computing
(7–9), and proposed loophole-free tests

of Bell’s inequalities (10,11). Such states
have been realized recently by combining
homodyne detection with photon count-
ing, so that the quadrature components
are measured only when a photon is
detected in another (triggering) channel
(12–16). We have shown recently that
one can “degaussify” a squeezed state of
the light, and turn it into a state with
a Wigner function which was observed
to be strongly non-gaussian, though still
positive (14, 17, 18). Here we experi-
mentally observe a propagating light field
which exhibits a negative valued Wigner
function and is very close to a “small”
Schrödinger cat state.

Among non-classical states,
Schrödinger cat states play an especially
interesting role. Defined as quantum
superpositions of classical distinguish-
able states, they are very useful to study
the process of decoherence involved in
the transition from quantum to classi-
cal physics (19), which strongly lim-
its the development of quantum com-
puting and communications. Coherent
states are the most “classical” avail-
able in quantum physics, and we will
call a Schrödinger cat state a quantum
superposition of coherent states, well
separated in phase space, for example
|ψ⟩ = c (|α⟩ − | − α⟩), where |α| is the
amplitude of the coherent states and c is
a normalization factor. In this case, |α|2
defines the “size” of the cat, which be-
comes a “Schrödinger kitten” when |α|2
is small. The Wigner function of such
a state presents a negative value at the
origin. Here we wish to generate free-
propagating optical Schrödinger kittens
which, unlike Schrödinger cats generated
in cavities or bound systems (19–21),
can be used for quantum communica-

tions. Such kittens can be produced with
a very high fidelity either by subtract-
ing one photon from a squeezed vacuum
state (22) (see Fig. 1), or by squeezing
one photon (8, 23). The subtraction pro-
cedure, simpler to implement, can be re-
alized by reflecting towards an avalanche
photodiode (APD) a small fraction of a
squeezed vacuum beam produced by a
degenerate optical parametric amplifier.
The APD will herald the subtraction of
at least one photon, and the probability
to subtract more than one photon will
become negligible for a low reflectivity.
Thus, an APD detection will project the
transmitted beam into the desired state.

Fig. 1. Wigner function of an ideal
photon-subtracted squeezed state (s =

0.6) (left), compared to the one of the
closest Schrödinger kitten (|αopt|2 = 0.8)
(right). For any value of |α|2 < 1,
the theoretical fidelity between the two
matched states is larger than 0.997)

In our experiment (Fig. 2), a
squeezed vacuum beam is produced
in a frequency-degenerate optical para-
metric amplifier (DOPA) by down-
conversion of frequency-doubled fem-
tosecond laser pulses (see supporting on-
line text). A beamsplitter reflects 9.5%
of the squeezed beam towards an APD
through a filtering system, whereas the
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transmitted beam is analyzed by a homo-
dyne detection. This detection works in a
time-resolved regime, and measures one
quadrature x̂θ for each incoming pulse.

Quantum superpositions are very
fragile, and four main sources of deco-
herence appear in our case. First, the
state conditioned by the APD must be-
long to the spatio-temporal mode ana-
lyzed by the homodyne detection. We
will consider that it actually belongs to
this mode with a probability ξ, and to
an orthogonal mode with a probability
1 − ξ. This modal purity parameter ξ
is decreased by the limited spatial and
spectral quality of the optical beams, by
the imperfections of the filtering system,
and by the APD dark counts. These
effects mix the ideal photon-subtracted
state with a non-conditioned squeezed
state. The experiment is also extremely
sensitive to excess noise from the DOPA,
which can be modelled by introducing
a second, phase-independent optical am-
plifier with a gain h = cosh2(γrs) af-
ter an ideal degenerate amplifier squeez-
ing the quantum noise variance by a fac-
tor s = exp(−2rs). A non-zero γ,
which defines the ratio between the ef-
ficiencies of the two amplification pro-
cesses, adds uncorrelated APD counts
and homodyne noise. Furthermore, the
reflectivity R of the pickup beamsplit-
ter has to be large enough to ensure a
count rate much above the dark counts
of the APD. Therefore it introduces finite
losses on the transmitted beam, mixing
it with vacuum. Finally, two defects ap-
pear on the homodyne detection side : the
limited homodyne detection efficiency η,
and the electronic noise e (normalized to
the shot-noise value). However, these
defects are not involved in the genera-
tion but only in the characterization of
the state. They can be estimated in-
dependently, and corrected for in order
to determine the Wigner function of the
prepared state. All of these parameters
are extremely critical, and every percent
of losses strongly deteriorates the state.
Generating states with negative Wigner
functions required to adjust very care-
fully the filtering system and to pay a
special attention to the wavefront qual-
ity of the beams, in particular during the
extraction of the pulses from the laser
cavity and during the frequency-doubling

process. An optimized homodyne detec-
tion design allowed to observe negative
values without correcting for detection
losses (24).

Fig. 2 Experimental setup, and
reconstructed Wigner function of the
photon-subtracted squeezed vacuum
(“Schrödinger’s kitten”) propagating in
the experiment (s = 0.56, corrected for
homodyne losses).
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We show in the supporting online text
that in realistic and quite general exper-
imental conditions the Wigner function
and the marginal distributions of the de-
tected state have very simple analytic ex-
pressions parameterized by four quan-
tities σ1(s), σ1(1/s), σ2(s), σ2(1/s),
functions of the experimental parameters
introduced above. This model allows not
only for theoretical predictions, but also
for a very efficient data analysis, since
these quantities can be extracted from the
second and fourth moments of the mea-
sured distributions Pexp(xθ) with a sim-
ple algebraic procedure.

We generated and characterized three
“kittens” of different sizes defined by
squeezing factors s1 = 0.56, s2 = 0.60
and s3 = 0.63. For each of them,
a quantum tomography was performed
by measuring six quadrature distributions

Pexp(xθ) for 0 ≤ θ ≤ 5π/6. For each
value of θ, approximately 20000 experi-
mental points were acquired and divided
into 64-bin histograms. The analysis pro-
cedure described above provides, without
any free parameter, an excellent fit to the
data (Fig. 3), as well as a simple analyt-
ical expression for the (raw data) Wigner
function. The Wigner function recon-
structed using this method is in very good
agreement with the one obtained from
the model-independent Radon transform
(Fig. 3), applied to the uncorrected ex-
perimental data. In addition, our proce-
dure provides values for all experimental
parameters, which are found to be fully
consistent with the values directly mea-
sured on the experiment (see Table 1).

Fig. 3. (A) Experimentally mea-
sured quadratures and theoretical fits,
corresponding to a squeezing factor s =

0.56. (B) Wigner function obtained by
the generic model described online. (C)
Wigner function obtained by Radon trans-
form of the raw experimental data. In all
these curves no correction is made for de-
tection efficiencies, which are included in
the generic model together with other im-
perfections (see text for details).
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It is clear from Fig. 3 that these
measurements provide a negative value
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for the uncorrected Wigner function,
Wraw(0) = −0.026 ± 0.012, while this
was not the case in ref. 14. The qual-
ity of the above fits gives confidence that
the experimental parameters provided by
our analysis procedure are correct. In or-
der to determine the Wigner function of
the generated state, we have to correct
for the effect of a limited homodyne de-
tection efficiency η and an excess noise
e. This can be done by the standard
maximal-likelihood method (25, 26), but
we checked that the very same results are
obtained immediately from our model :
we simply replace the values of η and e
determined from our data by η = 1 and
e = 0 in the expression of the Wigner
function. All the other parameters, in-
volved in the generation process, are
kept unchanged. The resulting Wigner
function for s = 0.56 is displayed on
Fig. 2, showing a very strong negativ-
ity Wcor(0) = −0.13 ± 0.01. This is
to be compared with −0.32 for a perfect
setup with an infinitely low BS reflectiv-

ity, and −0.25 for a reflectivity of 9.5%
and s = 0.56.

The reconstructed state is similar to a
Schrödinger kitten of size |α|2 = 0.79,
with a fidelity Fcat = 70%. Clearly it
is still a statistical mixture, mostly due
to the conditioning process, which is not
corrected here since it is involved in the
generation of the state. It can thus be de-
composed further in pure states, and sim-
ple calculations show that it can be writ-
ten as 70% of the ideal photon-subtracted
state, 29% of the initial squeezed state,
and 1% of residuals. If our state was
a purely statistical mixture of coherent
states, this fidelity would be 0.40, and
would remain below 0.50 for any |α|2.
The results for the various experimental
values of s are presented in Table 1.

The present procedure allows to re-
produce small Schrödinger kittens, but
the structure of a larger cat becomes
more complicated (24). For “growing the
cat”, the generated kitten’s state should
be taken as a starting point to initiate a

“breeding” process as described by Lund
et al. (23). This can be done by com-
bining two kitten states of a beamsplitter,
and using one output channel for another
photon-counting “purifying” measure-
ment, while the other channel provides
the cat state with a larger amplitude. As
the quality of our state is actually higher
than it was assumed in ref. 23, such
an experiment can be realistically envi-
sioned. Our setup also allows, with minor
modifications, to generate quadrature-
entangled pulses (27). Subtracting one
photon from each mode provides entan-
gled beams with negative Wigner func-
tions, which have been proposed to im-
prove the fidelity of continuous-variable
teleportation (28–30), and to implement
a loophole-free Bell test (10, 11). These
examples clearly show that the availabil-
ity of the states demonstrated here opens
the way to many new quantum informa-
tion and communication protocols.

Table 1. Analysis of the generated states, after correction for the homodyne efficiency η = 80% and electronic noise e < 0.04
shot noise units. There is no correction for the excess noise factor γ and the modal purity ξ (the values presented above are
directly obtained from the fitting procedure). Here s is the squeezing factor, W (0) is the Wigner function negativity, Fvac is the
fraction of initial squeezed state, Fcat is the fidelity with the most similar Schrödinger kitten of size |αopt|2. As expected, in this
range of parameters the size of the kitten increases when the initial state is more and more squeezed (smaller s).

s W (0) Fvac Fcat |αopt|2 γ ξ
0.56 −0.13± 0.01 29% 70% 0.79 0.17 0.82
0.60 −0.09± 0.01 35% 64% 0.71 0.47 0.89
0.63 −0.08± 0.01 36% 63% 0.62 0.45 0.86
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16. J. Fiurášek, R. Garcı́a-Patrón, N. J. Cerf,
Phys. Rev. A 72, 033822 (2005).

17. M. S. Kim, E. Park, P. L. Knight, H. Jeong,
Phys. Rev. A 71, 043805 (2005).

18. S. Olivares, M. G. A. Paris, arXiv:quant-ph
p. 0506108 (2005).

19. M. Brune et al., Phys. Rev. Lett. 77, 4887
(1996).

20. B. Yurke, D. Stoler, Phys. Rev. Lett. 57, 13
(1986).

21. C. Monroe, D. M. Meekhof, B. E. King,
D. J. Wineland, Science 272, 1131 (1996).

22. M. Dakna, T. Anhut, T. Opatrnỳ, L. Knöll,
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