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Abstract—The major objective of resource management sys-
tems in the cloud environments is to assist providers in making
consistent and cost-effective decisions related to the dynamic
resource allocation. However, because of the demand changes
of the applications and the exponential evolution of the cloud,
the resource management systems are constantly called into
question with regard to their ability to guarantee an effective
resource provisioning. To tackle these challenges, the future
demand prediction is a practical solution that has been adopted
in the literature. The prediction has widely relied on the CPU
utilization since it is considered as a leading cause of the Quality
of Service (QoS) dropping. The successful application of artificial
intelligence techniques in forecasting problems motivated us to
use the Kohonen Self Organizing Maps (SOM) that tries to
capture the gathered empirical CPU load time series in regular
behaviors to perform an accurate forecast. The proposed solution
is a two-step approach that first classifies the collected data and
then predicts the future CPU load. The experimental results show
that our proposed system outperforms other models reported in
the literature. In addition, we proved that SOM known for its
strength in classification is also effective for prediction.

Index Terms—Cloud Computing, Resources management,
Load prediction, Times series, Clustering, Self organizing Map.

I. INTRODUCTION

Increasingly used by companies in all industries, cloud
computing is considered as a revolutionary technology for
the 21st century. Cloud computing is a general term used
to describe the on-demand delivery of different resources
and services over the Internet. It refers to the data storage
and computation through the Internet on remote powerful
servers rather than using local computers. Thanks to this type
of services, companies do not need to invest in their own
equipment. Basically, cloud computing refers to three service
categories: Infrastructure as a Service (IaaS), Platform as a
Service (PaaS) and Software as a Service (SaaS).

Cloud providers, such as Amazon Web Services (AWS),
offer virtual server storage, but also Application Programming
Interface (APIs) that allow the users to transfer their workloads
to remote virtual machines. An laaS can provide servers,
networks, storage space within data centers. Once users have
allocated storage capacity, they can start, stop or configure the
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VMs and storage as they wish. The infrastructure provided
as virtual machines can be small, medium, large or very
large to suit different needs. Therefore, the IaaS is scalable
and flexible, and can be adapted to the workload. As a
consequence, the IaaS becomes as one of the most dominant
services offered by cloud providers nowadays.

Although cloud computing promises a revolution in the
Information and Technology (IT) world, companies still face
economic challenges that require an optimal resource man-
agement, due to the growing demand for resources and the
dynamic nature of the cloud usage.

The cloud resource management is a complex process. To be
effective, it must allocate an appropriate amount of resources
based on the current demand for applications to meet the
service level agreement (SLA) and minimize the waste of
resources. Indeed, under-provisioning results in a violation of
the SLAs and a poor quality of service (QoS). On the other
hand, over-provising wastes energy and resources and even
increases costs in terms of cooling and maintenance.

Various techniques such as load balancing and consolidation
have been implemented to address the resource management
problem. However, the use of these techniques without taking
into account the ever-changing resource requirements of hosts
can lead to disastrous problems. Therefore, forecasting the
future behavior of the application based on specific aspects
is the only practical and effective solution for good resource
provisioning [1] [2] [3] [4]. Indeed, accurately predicting
the future use of host resources allows to make intelligent
management decisions.

CPU is one of the main causes of resource scarcity on the
cloud hosts, since it is the most dynamic, reactive and ever
fluctuating resource. It is intuitive that the CPU management
is inefficient, which can be disastrous for applications if they
are based on reactive methods like optimisation methods.

Hence, to optimize the use of CPU resource, monitoring its
condition and behaviour and correcting the causes of failure
with proactive methods are necessary. It is therefore essential
to apply forecasting models to manage cloud resources. How-
ever, it is very difficult to accurately predict host utilization in



a timely manner because of the very fast variation of the host
utilization and the strong instability with many bursts.

The contribution of this paper attempts to meet this chal-
lenge by proposing a solution that addresses the above-
mentioned issues. Indeed, our proposed methodology aims
at predicting the CPU resource of the next time slot based
on historical data issued from previous slots. We resort to
Self Organizing Map (SOM) algorithm known for its high
capacity in clustering, which we use to its full potential. The
time period for which forecasting provides critical information
about future load is very important. Therefore, we introduce
the sliding window technique which has proven its success
in predicting long time series. Thus, to predict CPU load of
the next time slot we variate the observation windows. For
prediction, we also use SOM through a simple but efficient
method. We illustrate the feasibility of our approach by using
the PlanetLab dataset generated by the COmon project [5].

The remainder of this paper is structured as follows. In
section II, we discuss the literature review. In section III, we
motivate our choice and present the used algorithm. Section
IV describes our proposed methodology by detailing each
step. Section V highlights the conducted experiments and the
performed results before concluding in Section VI.

II. RELATED WORK

To ensure a good QoS and to avoid resources wasting, we
need to manage resources. However, the big issue is how to
predict the future use of the host in real time as the workload
varies with time. Predicting future use of hosts is essential
for placing virtual machines on appropriate hosts or migrating
virtual machines in advance from overloaded or underloaded
hosts.

Numerous studies have been carried out on the prediction
in cloud computing according to various objectives of the
research: Prediction of the servers’ load [6], [7], [8], [9], [10],
prediction of the VMs’ load [11], [12], prediction of the VM
use [13], [14], prediction of the host use [15].

In the context of virtual machine migrations, various work-
load prediction techniques are used [16], [17], [18], [19], [20].

The CPU load is one of the most studied indicator to fore-
cast the data-center activity, as it is one of the leading causes
of resource shortages on cloud hosts. Artificial Intelligence
(AI) and Machine learning (ML) algorithms such as neural
networks and linear regression have been widely applied in
recent years to predict the CPU load.

Authors, in [21], used several prediction models to predict
the execution times of tasks, based on the CPU load forecast.
[22] used a recurrent neural network formed with the so-called
back propagation algorithm to predict the CPU utilisation of
a host on the Google Cluster trace data set.

Authors, in [23], proposed the implementation of local
regression, median absolute deviation, inter-quartile range and
robust local regression methods to determine when servers
may be over-utilized based on CPU usage.

To improve the performance of the VM placement algorithm
proposed in [23], Mason et al. [24] proposed the evolutionary

neural network approach to predict the host CPU utilization
based on both one-step and multi-steps ahead.

Unlike the approach described by Song et al. [25] who
used the short term memory (LSTM) model in a recurrent
neural network (RNN), Qazi and Aizenberg in [26] proposed a
prediction mechanism using MLMVN, which is a feed forward
neural network using complex-valued neurons. The CPU usage
of individual host machines for the 29 days was utilized for
evaluation.

In order to propose a virtual machine consolidation ap-
proach, the Kernel Density Estimation technique is used in
[27] to estimate resource usage and predict future host’s
states. Using real web server request traces, Calheiros et al.
[28] proposed an auto-regressive integrated moving average
(ARIMA) model that assesses the accuracy of future workload
forecasting.

In [29], an LA-based ensemble prediction algorithm based
on Learning Automata (LA) theory is proposed for CPU load
prediction based on several VMs gathered from the dataset
of the CoMon project. The proposed approach combines the
prediction values of multiple prediction models. Each model
is given a weight according to its performance. Then, an
autonomic approach is used to determine how much accurate
each prediction model is according to their predictions.

In [30], the authors presented a workload prediction model
using neural network and self adaptive differential evolution
algorithm to learn the best suitable mutation strategy along
with optimal crossover rate.

Sadeka et al., in [31], proposed empirical prediction models
for adaptive resource provisioning in cloud computing us-
ing neuronal network and linear regression. Their prediction
method applied some strategies including sliding window.
They also provided evaluation metrics for validating the tech-
nique such as MAPE and RMSE.

Salam Ismaeel et al., in [32], proposed an ELM technique
to predict data center VM requests based on historical data,
that they combine with the clustering K-Means method. The
authors presented these techniques in a small framework. They
used data from real google traces.

In order to minimize energy cost and consumption in cloud
data centers and to reduce the number of active physical
servers on data centers, Fahimeh Farahnakian et al. in [33],
proposed a dynamic virtual machine consolidation based on
k-nearest neighbor regression algorithm that predicts in each
host the CPU usage. To achieve SLA violation and energy
cost, they adopted four algorithms of [23] that they combined
with their proposed method k-nearest neighbor algorithm.

In [34], an adaptive short-term prediction strategy is pro-
posed to adaptively select a precise short-term prediction
method. The proposed approach works in three stages: pre-
processing of abnormal data and replacement of outliers,
adaptive selection to select a better prediction algorithm based
on a dynamic threshold and finally an error adjustment by
proposing an error adjustment factor for improve accuracy.
The conducted experiments demonstrate the effectiveness of



the proposed approach in terms of the prediction accuracy,
however it suffers from a high time cost.

To address the challenge of allocating several requests to
a VM, authors in [35] proposed A Regressive Ensemble
Approach for Predicting (REAP) CPU usage of a scientific
application. REAP predicts intelligently the CPU utilization
by integrating Genetic Algorithm-based feature selection and
CPU usage prediction techniques. The experimental results
show that the proposed approach enhances the accuracy by
2% and reduces the execution time by 16.2% comparatively
to the existing machine learning regression models.

The authors, in [36], proposed a deep learning approach
that they designed with a deep belief network (DBN) com-
posed of multiple layered restricted boltzmann machines and
a regression layer. They used the DBN to extract the high
level features from data and regression layer for prediction. A
MAPE error is calculated to evaluate the proposed method.

Salam Ismaeel et al, in [37], proposed a survey of the
most techniques and algorithms used in proactive dynamic VM
consolidation. This study focuses on energy consumption.

The authors of [38] combined linear and non linear predic-
tion models using ARIMA and SVR. ARIMA model is used
to predict time series of linear attributes while SVR model
is used to extract non linear attributes from the dataset they
used. Both models used MAPE and RMSE to validate their
methods.

The authors of [39] consider another important parameter
for prediction that is the SLA. Since this parameter is critical
for both the customer and the cloud provider, they use scaled
conjugate gradient neural network to make predictions possible
on SLA violations.

Cloud data centers contain hundreds of thousands of servers,
which host millions of VMs of different sizes, types and appli-
cations. Hence, since server resources are strongly influenced
by the VMs they host, it makes more sense to focus on VMs
resource management rather than server management as in [6]
(7] [8].

The choice of a good data set that is representative of a
real cloud computing environment is important. Authors of
[27] [26] [32] [25] [21] have worked on the data set of Google
[40] that gathers the collected CPU and memory traces of web
servers, while in [5] collected the percentage of CPU usage
by several VMs hosted in different servers located in different
regions of the world.

Our research work focuses on the data set of [5] like in
[23] [24] [33] [37]. The drawback of these works is that they
did not exploit all the data. Some of them selected randomly
some VMs while others selected randomly time intervals. This
distorts the results in case of generalization.

In addition this data set is of time series type, which is
an important point to take into account. The produced time
series present a particular difficulty in predicting their future
values. It is well known that the usual prediction methods
already used in prediction problems have poor performance
when used without first clustering the time series [41].

The fact that, the works cited above didn’t resolve well the
problem, motivates us to propose and focus in this paper on
three important issues: data clustering, time series analysis and
predicting the future CPU load.

III. THE SELF ORGANIZING MAP

Developed by Teuvo Kohonen, self-organized map (SOM) is
a new method to represent neural networks and to perform au-
tomatic classification tasks. Unlike artificial neural networks,
SOM is an unsupervised method. It is composed of simple
elements (neurons) assembled into neural networks, whose
the functioning is strongly influenced by the connection of the
elements to each other. SOM is often used to analyze observed
data whose the structure requires investigation.

A. PRINCIPLE OF SOM

SOM is a method that projects the space of observed data
(of large dimensions) into a space of small dimensions such
as 1, 2 or 3D, called MAP. The map is made up of a set of
neurons connected to each other according to the notion of
neighbourhood. Each neuron has fixed coordinates in the map
space and coordinates adaptable on the space of the data called
referential vectors, responsible for an area of this space.

This projection must respect the topology of the data. It
is based on vector quantification methods that partition all
available observations into similar groups using learning algo-
rithms. These groups are characterized by their neighbourhood
structures, which can be materialized using a discrete space
called a "topological map”. This space forms a small lattice on
which neighbourhood structures are taken into consideration
by the model. The choice of a topology depends on the nature
of the problem.

The implementation of a topological map requires a distance
¢ on the topological space to define the notion of neighbour-
hood on the map. It is a discrete distance defined by the length
of the shortest path connecting two neurons on the map. Thus,
the order neighbourhood of a neuron can be defined as the set
of neurons located at a distance d from the neuron.

The distances that link the neurons to each other allow
to vary the relative influence of the different neurons which
can be quantified by a K function. We often use a family of
KT functions set to 7', sometimes called activation functions
to better control the size of the neighbourhood as in the
following:

K" = K(7) (1)

T is a parameter used to control the influence between
neurons.

B. ALGORITHM OF SOM

Once the map topology and activation functions have been
chosen, the reference vectors are obtained by learning from
the data. The algorithm used to learn the map is described as
in the following.



Step 0 : Initialization of the reference vectors W.

Step 1: At each iteration: As input of the map, an example
of a selected learning X (n) is presented. The algorithm
compares the example to all the reference vectors so that the
winning neuron ¢ is the one whose reference vector W;(n) is
the closest to the input X (n) :

it = argmin(d(Wi(n), X (n))) (2)

Where 7 denotes in turn each neuron in the network and W
its referent vector.

We evaluate the neighbourhood of the winning neuron by
the equation below:

K (i) = KT(8(3,47)) 3)

Then, all neurons of the Map are updated for any ¢ belong-
ing to the neighbourhood of ¢*. The Map is more adapted by
the fact that the neurons are neighbours of ¢*:

Wi(n +1) = Wi(n) + a(t) KL 0)[X (n) = Wi(n)]  (4)

where « is a learning parameter called learning step which
decreases as a function of n, and is less than 1. It’s also
an important element because it allows to find a compromise
between the convergence speed and the quality of the map
unfolding.

Finally the stopping criterion of the algorithm is defined in
several ways: number of iterations, difference between weight
vectors, quantification error and so on.

Phases 1, 2 and 3 are called respectively as in the following:

Competition: After selecting an example from the data-
base, we look for the neuron that most closely resembles it.
This neuron called ”winning neuron” is often rated BMU (Best
Matching Unit).

Cooperation: In this step, the neighbourhood of the win-
ning neuron is determined. It refers to the region of the map
that is the most active and closest, in terms of the distance
used, to the observation. The size of the neighbourhood of the
winning neuron is controlled by the learning radius.

Adaptation: The winning neuron is modified to look
more like the example and then information about its
neighbourhood is disseminated. This modification is done
using the activation function which controls the influence of
the winning neuron on its neighbourhood.

C. AUTOMATIC CLASSIFICATION WITH KOHONEN MAPS

Once a map is learned, we have the typical profiles of
each neuron called codebooks. Two close neurons in the map
are close standard profiles and a set of contiguous codebooks
represent a particular profile in the data.

Codebooks are a data set on which a hierarchical classifica-
tion can be applied to group similar neurons. The classification
of a new element can be done as follows:

o Present the new element at the card entry.

« Identify the winning neuron, the one whose codebook is
close to the new element.
« Identify the cluster of the winning neuron.

IV. OUR PROPOSED APPROACH

In this section, we will highlight our methodology and
describe our proposed model while depicting each component
(see Fig. 1).

A. Methodology description

In the cloud computing, a data center is mainly made up of
a set of virtualized servers. Services are offered to customers
by allocating several heterogeneous virtual machines. The real
loads of these virtual machines are often dynamic. Thus, the
static allocation of resources is doomed either to waste, if it
is based on a worst-case scenario estimate, or to performance
degradation, if it is based on the average load. Thanks to the
cloud computing model, resources can be allocated on demand
and the sizing is adapted to load variation. However, resource
variations, especially the CPU load of VMs are frequent
and unpredictable, resulting in server overload, under-load or
even inactivity. This results in degraded performance, wasted
resources or violations of service level agreements (SLAS).

It appeared necessary to develop proactive methods for
the management of virtual machines before it leads to
under-consumption of resources on physical servers or over-
consumption.

In order to make an acceptable solution that is able to
predict future resources requirement in the cloud, we explored
a number of existing prediction methods as proposed in the
literature.

The first step of our proposed solution is to choose a
representative data set from a real environment. Since the CPU
resource is the most dynamic one on the servers, we choose the
Planetlab data of CoMon project [5]. These data are gathered
from a real workload of monitoring infrastructure. The CPU
utilization data is obtained from more than one thousand VMs
from servers located within more than 500 locations around
the world. Data is collected every 5 minutes. So, our research
problem relates to time-series analysis such as each VM is
a time series data that consists of a sequence of N pairs
(CPU;,t;), where C' PU; is the percentage of C PU utilisation
at time t;.

The Self Organizing Map mainly adopted in our proposed
system is one of the most common techniques used in clus-
tering problem. However, in our work, we propose to use it
not only for this purpose but also for prediction.

Moreover, to determine the best prediction on window, we
incorporate the concept of sliding window, which forecasts
future CPU resources using previous data in different obser-
vation windows sizes. Our proposed models are carried out
using statistical metrics as discussed in the following sections.

B. Our Proposed System Components

1) Clustering: A general rule in the descriptive statistics
consists in firstly observing and visualizing the data
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Figure 1: Proposed System Model

before making any calculations. This is due, in one hand,
to the number of VMs that is very large, and on the other
hand to the repetitive variation of VMs that can occur,
since a clear hypotheses may be rarely available. Hence,
the first step is to gather all VMs of the chosen dataset in
order to make a first clustering with the SOM algorithm.
The goal is to determine and to separate similar types
and variations of VMs into clusters such that the VMs
within a cluster become more similar that the VMs in
other clusters according to Algorithm 1.

Algorithm 2: Selection

1 Input: a set of neurons Y = {y1,y2, .., yn}

2 begin;

3 Initialize 1 = 1

4 repeat

5 foreach y; € Y do

6 S[] + allVMs € y;

7 SOrd]] «+ Ord(S, desc)

;  // Order S in Descending Order
according to their radius error

Algorithm 1: SOM-1

1 Input: a set of VMs X = {VM,,V M, .., VMy}
2 Output: a set of neurons Y = {y1, 42, .., yas }
3 begin;
4 Initialize Y = {y1, y2, .., yrs } randomly
5 repeat
6 Select VM eXrandomly
7 find y* such that

d(VM,y*) =min{d(VM,y)ly € Y}
8 Update the weight of the winner y* and its
neighborhoods

9 | y=y+v(VM —y)
10 reduce learning rate y
11 until Convergence;

8 SSelected]] + take one out of 3 from SOrd]|
9 end
10 until : = M,

3) Sliding Window

Each time we are interested in prediction problems using
time series, the sliding window is requested, especially
in the case of long series. Indeed, the prediction can
only be made on a finite number of points. In our case,
we have CPU loads as used by the VMs gathered every
five minutes during 24 hours.

Our data are therefore as follows :

CPUY,, ,CPU}y, ..., CPUR,,

Selection Once all the data are projected on Map and
each neuron summarizes the VMs belonging to it with
the same behavior, and in order to continue the next
steps, we have chosen to select a subset of VMs from
each neuron in order to obtain a sample of data of
reduced size while keeping the heterogeneity of the
whole set. In this way, our simulations for the prediction
that is the purpose of our work will not be saturated. The
data selection was made according to Algorithm 2.

CPU{,..,CPUM}, ..., CPUy,.
CPU, ,CPUR, ... CPUYy,
N:Number of VMs

k: number of time slot
to,t1, .., tx Time slot where tx - tx_1 = 5 minutes
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Sliding Window is a technique used to split a long time series
of infinite or long observations into short series that will be
used as an observation window to predict future values.
Because there is no rule to determine the appropriate size of
the observation window for better prediction, we have decided
to vary the window size in order to decide which one will be
the right one as follows:
In Fig.2, the size of the observation window is only used as an
illustrative example. In our work, we considered two scenarios.
In the first one, we tried to predict the 7th value by using the
previous 6 values, and in the second scenario, our aim was to
predict the 13th using the previous 12 values.
For each time series, i. €. for each VM, the values were
predicted from 7 to 288 in the first scenario and from 13 to
288 in the second scenario, knowing that we cannot predict
the values from O to 6 and from O to 12 because of scarce
values. Therefore, we use the following:
« First Case:

The 6 values of each VM:

From 0 to 6 to predict the 7th value

From 1 to 7 to predict the 8th value

From 2 to 8 to predict the 9th value

From 282 to 287 to predict the 288th value
« Second Case:

The 12 values of each VM:

From 0 to 12 to predict the 13th value

From 1 to 13 to predict the 14th value

From 2 to 14 to predict the 15th value

From 276 to 287 to predict the 288th value
We note:
XV M; ; the CPU measurement of VM, at time j (i=1,n)
(j =1, 288)

The problem consists then in using:

e« Case 01 : Observation Window = 6
XVM1,1 XVMl,Q XVMl,s XVM1,4
)(\/]\4115 XVM1,6 to predlct XVM1,7
Xva o Xvan s Xvan s Xva s
Xva g Xva, to predict Xy,
XVM1‘282 XVM1,283 XVM1,284 XVMl,st
XVMl,zss XVM1,287 to predICt XVM1,288
XVMn,zsz XVMn,283 XVMn,284 XVMn,zss
XVMn,zss XVMn,287 to predict XVMn,,zss

e Case 02 : Observation Window = 12

Xva Xva s Xva, s Xva
Xv s Xvm g Xvm, o Xvn s
XVM1,9 XVMl,lo XVM1,11 XVM1,12
to predict Xy Mi 13
XVM1,2 XVM1,3 XVM1,4 XVM1,5
XVMl,S XVM1,7 XVMI,S XVMI,Q
XVM1,10 XVM1,11 XVM1,12 XVM1,13
to predict Xy,
XVM1‘276 XVM1,277 XVM1,278 XVM1,279
XVMl,zso XVM1,281 XVM1,282 XVM1,283
XVM1,284 XVM1,285 XVM1,286 XVM1,287
to predict Xy g e
XVMn,276 XVMn,277 XVMn,27s XVMn,279
XVMn,2so XVMn,2s1 XVMn,282 XVMn,283
XVMn,284 XVMn,zss XVMn,zse XVMn,287
to predict Xy s, o

Therefore, we create in each case two matrices : input matrix
M npue and output matrix Moypye Written as follows:
o Case 01 : Observation Window = 6

Xvay,  Xva, Xva e

M | Xy, Xvas Xva,
Input —

XVMn,zsz XVMn,zsz XVMn,287

Mouwtput = [Xvaty s Xvaty g XV, s (2)
e Case 02 : Observation Window = 12

XVM1,1 XVMl,z XVM1,12

M _ | Xvmi,  Xva, XV s
Input — '

XVMn,zm XVMn,277 XVMn,287

(3

MOutput = [XVM1,13XVM1,14"'XVMnyzgg] (4)

The data of the input matrix in each case will be again learned
using SOM to gather similar observations within the same
neurons according to algorithm 3.
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Algorithm 3: SOM-2

1 Input: My pue

2 Output: a set of neurons Y = {y1, 42, .., yan }
3 begin;

4 Initialize Y = {y1, y2, .., yrs } randomly

5

6

7

repeat
Steps 6 to 10 of SOM-1
until Convergence;

At the end of this step, we obtain two Maps from each case.

Splitting

To evaluate the quality of the obtained Maps, a strong sim-
ilarity within the same neuron must be respected. Therefore,
we compute the standard deviation of each neuron of Maps.
Then, we define a threshold that we have set at a fix value.
The two obtained Maps in the previous step will be splited
into two Sub-Maps according to the defined threshold as in
Algorithm 3.

Algorithm 4: Spliting
1 Input: Map,Threshold;

2 Output: MisClassifiedData[], WellClassifiedData;
3 foreach Neuron € Map do

4 if STD(Y)< Threshold then
5 ‘ WellClassifiedData[] < Data € Neuron
6 else
7 ‘ MisClassifiedData[ [« Data € Neuron
8 end

9 lend

The MisClassified Data will be once again presented to SOM,
in order to reclassify and better distribute them on the neurons
and by the way reduce the standard deviation (See algorithm
5).

Algorithm 5: SOM-3

1 Input: MisClassified Data

2 Output: a set of neurons Y = {y1,y2,..,ym}
3 begin;

4 Initialize Y = {y1, ¥, .., yar } randomly

5 repeat

6 | Steps 6 to 10 of SOM-1

7 until Convergence;

SOM-Prediction

As we introduced earlier, we applied our SOM-based
algorithm for both clustering and prediction. We will explain
here how to make the prediction possible using SOM.

We consider the final obtained SOM Map by the previous step.
Each map consists of a set of neurons and each neuron gathers
a set of similar input observation windows.

The goal of SOM-Predictor is to make prediction in each one
of the neurons.

Let Y; denote the set of M neurons corresponding to each

Map Y; = {(y1,¥2, .., yn)}, and

X, = {(xtl",xtf, ..,xﬁ’“), (xgo,xgl, ..,xé’“), ey (pho t1

(where k=number of time slot) the subset of M;,,,; data
mapped to neuron ¢. For each element of X,, corresponds an
observed output from M,y,,¢. We note the set of outputs by
O, = {01, 02, .., On}'

The CPU load at time t;4; for all observation window data
belonging to the same neuron is then computed as follows:

Z?:l 0j

n

Pred(y;) = (&)

T -]

=
:

=
2 Eg

Figure 3: CPU Load of different VMs during 24 hours with
Sminutes interval showing the diversity of VMs types and their
variations

V. EXPERIMENTS RESULTS

In this section, the efficiency of the proposed prediction
system will be evaluated using a real world CPU load trace
[5] described in Table 1. Our experiments are conducted under
Matlab environment using SOM toolbox [42].

First, we plot some VMs of the data set (Fig.3) to show
the diversity of types and variability during 24 hours (one

., o)} measurement every five minutes).



Day Number of VMs
2011/03/03 1052
2011/03/06 889
2011/03/09 1061
2011/03/22 1516
2011/03/25 1078
2011/04/03 1463
2011/04/09 1358
2011/04/11 1233
2011/04/12 1054
2011/04/20 1033

Total 11737

Table I: Data Detail

As shown in Table 1, we have 11737 VMs and each VM
contains 288 CPU traces. An Input matrix of 11737%288 is
presented to SOM to be classified. Fig. 4 shows the SOM Map
obtained after projection with the data by PCA tool, while
Fig. 5 is the SOM Map obtained after selecting some VMs
to be used in the remaining steps. The two Maps obtained
(Fig. 4 and Fig.5) are not very different. This shows that the
selected VMs summarize well the global data and therefore our
selection method is efficient and the new obtained data set is
homogeneous. The selection step is very important during the
simulations. Indeed we have 11737*%288 data. This number
will increase considerably during sliding windows step that
not only blocks our simulations but also creates redundancies
of observation windows.

Fig. 6 and Fig.7 correspond to the SOM Maps obtained after
classification of the observations windows for the two different
cases 6 and 12 respectively. These figures clearly show that
the SOM Map is spread out over the data set, which proves
that the Maps are well learned in such a way that they reach
all points, even the remote ones.

In statistics, the standard deviation can be used to calculate
the homogeneity of several populations on the same variable.
It measures the dispersion of the values of a data set around
the mean. If the data values are all similar and homogeneous,
then the standard deviation will be small and close to zero. If
the data values are highly variable, then the standard deviation
will be large and greater than zero.

The standard deviation is computed for each neuron and
displayed in Fig.8 and Fig.9 by the U-Matrix. As shown by
these figures, the standard deviation varies between 0 and
13.5 when the slide window is equal to 6, and between O
and 14.6 when the slide window is equal to 12. After several
simulations, we define a threshold=2 which will be used to
split the obtained SOM Maps into two parts: the well classified
data and mis-classified data. We keep the neurons whose the
standard deviation is less than the threshold while the dataset
belonging to those whose the standard deviation is higher than
the threshold will be learned again by the SOM algorithm in
order to better reclassify them and to obtain two other maps
in each case, that are better learned.

In order to illustrate the effectiveness of this work, the
proposed SOM-predictor is compared with: Support Vector
Machine (SVM) and MultiLayer Perceptron (MLP) [43] mod-
els. To make this possible, we use the same selected data
set and the same size for observation windows and prediction
windows.

To conduct our evaluation and comparison, we have selected
two methods as described below. Our choice was based on
similar works of the literature:

¢ Root-Mean-Square Error (RMSE): is a frequently used
measure of the difference between the values predicted by
a model or an estimator and the values observed defined
as follows:

N ~ 2
2im1 (Yi —Y5)
N

e Mean absolute percentage Error (MAPE): is a measure
that indicates about the mean of the dispersion between
predicted and observed values, with the linear model (ab-
solute difference). Therefore, it’s a convenient indicator
for comparison.

The formula is:

RMSE = (6)

1 X Y - Y;
NZT (7
=1

Table 2 and Table 3 show significant values and clearly
highlight the chosen prediction method compared to SVM
and MLP. RMSE and MAPE errors obtained with SOM are
the smallest in the two cases where observation windows are
equal to 6 and 12. However, for SOM, the size of observation
window is clearly important such that the results of the errors
show that the choice of a smaller observation window allows
us to better predict.

In addition to the numerical values, we plot in figures
Fig.10 Fig.11 some VMs such that the graphs of each figure
show the observed values and the predicted ones by the three
methods SOM, MLP and SVM for each VM. The figures show
clearly that the lines of SOM follow the same variations of
the observed ones. In the data center environment, the goal
is not to predict the exact future CPU values but to predict
the variation that can each VM take in time. The peaks of
load that may occur are critical and have an important role
in the consolidation of VMs, especially in their migration.
Hence, through our experimentation, we have shown that SOM
combined with the proposed methodology is quite robust to
predict better, especially in critical cases unlike MLP and SVM
which predict quite well but are weak in such cases.

In addition to our experiments, we present some VMs of
the non-selected dataset to the SOM Map as shown in figure
Fig.12 (with observation window=6) to predict the future CPU
load with the three predictor methods. The results are shown
in graphs of Fig.13 and Fig.14 and prove that SOM predicts
better than MLP and SOM.

MAPE =
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Figure 4: PCA projection of data and neurons after Classification of all VMs
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Figure 5: PCA projection of data and neurons after Classification of selected VMs

VI. CONCLUSION AND FUTURE WORKS As a perspective, we plan to further test the proposed
method by considering not only the CPU workload, but
also different types of workloads (memory, storage, etc.) and
investigate the correlation between them. We intend also to
implement our method on a real platform for real-time decision
making.

Coupling classification and prediction in our study rep-
resents the original aspect of the contribution. Moreover,
developing a methodology based on observation and data
analysis allowed us to see the data in a different way than
with conventional methods. Our work used a subset of rep-
resentative data set from the totality of the data unlike other
existing works that focused only on limited data such as one
day or a certain interval of time.

Our prediction method is quite simple but very efficient as
shown by the obtained results and graphs compared to the two
prediction methods SVM and MLP which are known for their
robustness in regression prediction.
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Figure 9: Observed and Predicted data for some VMs

with the SOM, MLP and SVM methods, Case Slide Window=6
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Figure 10: Observed and Predicted data for some VMs with the SOM, MLP and SVM methods, Case Slide Window=12
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