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ABSTRACT   

1. Under increasing environmental and financial constraints, ecologists are faced with 

making decisions about dynamic and uncertain biological systems. To do so, 
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stochastic dynamic programming (SDP) is a relevant tool for determining an optimal 

sequence of decisions over time.  

2. Despite an increasing number of applications in ecology, SDP still suffers from a lack 

of widespread understanding. The required mathematical and programming 

knowledge as well as the absence of introductory material provide plausible 

explanations for this.  

3. Here, we fill this gap by explaining the main concepts of SDP and providing useful 

guidelines to implement this technique, including R code.  

4. Using a case study in wildlife management, we illustrate each step of SDP required to 

derive an optimal strategy. Our results show how the determination of optimal policies 

is sensitive to the incorporation of uncertainty. 

5. SDP is a powerful technique to make decisions in presence of uncertainty about 

biological stochastic systems changing through time. We hope this paper will provide 

an entry point into the technical literature about SDP and will improve its application 

in ecology.  

 

Introduction 

Numerous problems in ecology involve making decisions about the best option among a set of 

competing strategies. These so-called optimization problems can be solved using 

mathematical procedures such as linear programming (Nash & Sofer 1996) which allows the 

determination of maximum benefits or minimum costs given some objectives and under some 

constraints for deterministic systems assumed at equilibrium. If uncertainty in the dynamic of 

the system needs to be accounted for, the Markov Decision Process (MDP, Puterman 1994; 
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Williams 2009) model is usually adopted. MDP, an extension of Markov chains, is a decision 

model in which the system changes from one state to another depending on a decision taken 

in a given state but does not depend on the previous states or on the previous decisions made. 

Once a problem is formalized as a MDP it can be solved using stochastic dynamic 

programming (SDP) techniques. In ecology, SDP is often used to refer to the mathematical 

model (MDP) and its solution techniques (SDP). MDPs are usually modeled and solved by 

going through several successive steps: defining the different objectives and formalizing them 

as a mathematical function of costs and/or benefits (Williams et al. 2002); defining possible 

states of the system, monitoring the system and making statistical inference on system 

behavior (Nichols & Williams 2006); defining a set of alternative actions that influence the 

performance of the system; building a dynamic model to describe the system transitions from 

one state to another after implementing every possible decision; and finally determining the 

optimal strategy that is the set of decisions that is expected to best fulfill the objectives over 

time (Runge 2011). These objectives are formalized in a utility function which prioritizes 

some desired outcomes by evaluating the benefits of any decision for the system (Williams et 

al. 2002). MDP models highlight the tradeoff between obtaining current utility and altering 

the opportunities to obtain utility in the future. Such problems abound in ecology because 

decisions taken today often have important implications for the future behavior of biological 

systems.  

Stochastic Dynamic Programming is an optimization technique used to solve MDPs 

and is appropriate for the non-linear and random processes involved in many biological 

systems. While the time dimension is often neglected in optimization procedures such as 

classical linear or nonlinear programming, SDP determines state-dependent optimal decisions 

that vary over time (Williams et al. 2002). Finally SDP is acknowledged to be one of the best 
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tools for making recurrent decisions when coping with uncertainty inherent to biological 

systems (Possingham 1997, 2001; Wilson et al. 2006; Chadès et al. 2011).   

The principle of SDP relies on the partitioning of a complex problem in simpler sub-

problems across several steps that, once solved, are combined to give an overall solution 

(Mangel & Clark 1988; Lubow 1995; Clark & Mangel 2000). SDP was first developed and 

used in applied mathematics, in economics and engineering (Bellman 1957; Intriligator 1971) 

and has gained attention in ecology (Mangel & Clark 1988; Shea & Possingham 2000). A 

pioneer use of SDP was in behavioral ecology to determine individuals’ breeding and 

foraging strategies maximizing fitness (Mangel & Clark 1988; Houston et al. 1988, Ludwig & 

Rowe 1990). Early work in resource management included applications to pest control 

(Winkler 1975) and fisheries management (Walters 1975, Reed 1979). In conservation 

biology, SDP has been successfully used to optimize resources allocation (Westphal et al. 

2003; Martin et al. 2007; Chadès et al. 2011) and more recently to manage natural resources 

in the context of global change (Martin et al. 2011). In forestry, SDP allowed achieving a 

balance between the protection of biological diversity and sustainable timber production 

(Lembersky & Johnson 1975; Teeter 1993; Richards et al. 1999). SDP has also been 

implemented in various studies aiming at controlling the spread of weeds, pests or diseases 

(Shea et al. 2000; Baxter & Possingham 2011; Pichancourt et al 2012),  to determine the best 

irrigation policies (Martin et al. 2009) or to enhance the efficiency of a bio-control agent 

(Shea & Possingham 2000). In wildlife management, SDP has often been used to find the 

optimal rates for harvesting populations (Johnson et al. 1997; Milner-Gulland 1997; Spencer 

1997; Martin et al. 2010). 

Despite the flexible nature of SDP and its ability to solve important decision-making 

problems in ecology, its transfer to ecologists is difficult. One reason for the slow uptake is 

the mathematical knowledge required for SDP to be implemented. Here, we provide a primer 
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on SDP for ecologists. We introduce the main concepts of SDP, provide a step-by-step 

procedure to implement dynamic programming in a deterministic system and illustrate how to 

make decisions in the presence of uncertainty. We demonstrate the applicability of SDP by 

applying this approach to data from a wolf population controlled by culling. We provide R 

code to run the models as well as procedures in specialized toolboxes implementing SDP that 

can conveniently be amended for one’s own purposes. 

 

The six steps of stochastic dynamic programming 

The aim of SDP is to find the solution of an optimization problem based on the 

“principle of optimality” which states that “an optimal policy has the property that, whatever 

the initial state and decision are, the remaining decisions must constitute an optimal policy 

with regards to the state resulting from the first decision” (Bellman 1957). The principle of 

optimality allows us to consider a static problem for the current period by assuming that all 

future decisions will be made optimally. The effect of the current action thus contributes to 

both current utility and to future utility through its effect on the future state of the system. In 

this way SDP finds a strategy that balances current rewards with future opportunities. SDP is 

the technique used to solve a Markov decision problem. One can conceive solving a Markov 

decision problem through six steps described below. Notations are gathered in Table 1 and a 

non-exhaustive list of studies that have used SDP is given in Table 2. 

The first step defines the optimization objective of the problem. An objective must be 

specific to the problem, measurable with indicators, acceptable by involved actors, achievable 

and defined over a period of time also called time horizon. Several objectives can be defined 

depending on the type of ecological problem we are investigating but an optimization 

objective must be defined as maximization or minimization function over a time horizon 
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(Puterman, 1994; Converse et al. 2012). The time horizon can be defined as finite or infinite. 

For many resource problems choosing the time horizon is quite challenging. An infinite 

horizon is often viewed as consistent with sustainability but inconsistent with legal mandate. 

The choice of a finite or infinite horizon depends on a number of factors. First, there may be 

mandated constraints on a problem. Conservation and management programs are often 

planned on a limited time and budget, and are bounded by political decisions also taken at 

regular time intervals. For instance, the conservation status of species listed under Appendix 2 

of the Habitat Directive is evaluated every 5 years by the European commission (92/43/EEC). 

As a consequence, some governments evaluate every 5 years decisions related to management 

of wildlife and habitats present within their territory (MEEDAT-MAP 2008).  For private 

decisions a finite horizon is often appropriate for situations in which firms hold time limited 

rights to extract resources. Finite horizons should be used carefully in situations where they 

are arbitrary specified. It is very possible that the “optimal” decision as the time horizon 

approaches will reflect only very short run goals. For example, a conservation problem that 

penalizes failure to meet a target performance level at the time horizon may result in short run 

decisions designed only to meet the target rather than designed to maximize the long run 

conservation goals. Objectives in management for harvested populations typically focus on 

maximizing the harvest opportunities, while insuring sustainable populations over the time 

horizon (Hauser et al. 2001, Nichols et al. 2007). Alternatively the monetary value of the 

economic yield from harvest might be used (Millner-Gulland 1997, Table 2). Objectives can 

include both conservation and exploitation of natural resources and can also include several, 

possibly conflicting, and conservation goals. For instance a conservation problem might deal 

with the protection of two species that are negatively interacting between one another over an 

infinite time horizon (Chadès et al, 2012), or with the protection of a habitat threatened by an 

invasive species by determining the optimal management strategy to eradicate the species 
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over a finite time horizon (Baxter & Possingham 2011). In metapopulation models, often used 

in invasion biology, epidemiology and landscape ecology, objectives can also be expressed as 

maximizing or minimizing the number of sites occupied by a species (Shea & Possingham 

2000, Chadès et al. 2011, and Table 2).  When the economic costs of management and 

monitoring, as well as the cost of failure to maintain a viable protected species are well 

known, the objective can be clearly formalized to determine the best way to allocate funding 

to protect a threatened species (Regan et al. 2006, Baxter & Possingham 2011).  

The second step is to define the set of states that represents the possible configuration 

of the system at each time step. Let Xt be the state variable of the system at time t. The state 

variable can be a population abundance (Milner-Gulland 1997; Runge & Johnson 2002) or 

predator abundance and prey productivity (Martin et al. 2010). Others studies have considered 

a qualitative state variable such as site occupancy of a colonizing species (Shea & 

Possingham 2000). We refer to Table 2 for additional examples.  

In the third step, one needs to define the decision variable, At, that is the component of 

the system dynamic that one can control to meet the objective. For example, it can be 

expressed as the way of releasing a bio-control agent in crop sites: many individuals released 

in few sites or few individuals released in many sites. Another example of control actions is 

different harvest rates in each age class (Martin et al. 2010) or sex class of a species (Milner-

Gulland et al. 1997). 

In a fourth step, one needs to build a transition model describing the system dynamics 

and its behavior in terms of effect of a decision on the state variables (Table 2). This transition 

model follows a Markov process in which the future state Xt+1 depends on the current state Xt 

and the action adopted At but not on the past state and action pairs of the system.  
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In a fifth step, one needs to define the utility function Ut at time t also called the 

immediate reward. It might be expressed in terms of economic benefits, desired ecological 

status or social improvement (Table 2) and might be quantified in a more or less subjective 

way (Simon 1979; Isen et al. 1988; Milner-Gulland 1997). This function, denoted as 

!! !! ,!! , represents the desirability of acting in a given state of the system and is defined in 

terms of the state variable Xt (step 2) and the decision At (step 3). The utility values can accrue 

over either a finite or an infinite time horizon depending on the objectives formalized in step 

1. In the former case a terminal reward or salvage value ! !!!!   can also be specified that 

measures the utility that accrues if the system is left in a given state after the last decision is 

made. In population biology and behavioral ecology, R(XT+1) is often chosen to be the desired 

abundance of a population or the energy state of an individual (Mangel & Clark 1988; Martin 

et al. 2010).   

Sixth, the final step consists in determining the optimal solution to the optimization 

problem. The optimal solution also called strategy or policy maximizes our chance of 

achieving our objective over a time horizon. An optimal solution is defined as a function that 

maps an optimal decision to each state,  !!:!! → !!.  Hereafter we examine the three most 

commonly used approaches to solve an MDP: backward iteration, value iteration and policy 

iteration.  

 

How to determine the optimal solution? 

Several algorithms using SDP technique are available to find the optimal solution of 

an MDP. How to choose the most appropriate algorithms mainly depends on the optimization 

objective (step one). Backward iteration is the run over a finite horizon in time-reversed 

fashion. It leads to a time and state specific optimal solution. Value iteration and policy 
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iteration are used to solve infinite time horizon problems. Both techniques provide an optimal 

action expressed as a time independent function.  

 

OPTIMIZATION PROCEDURE OVER A FINITE HORIZON 

According to the principle of optimality (Bellman 1957), an efficient way to find an optimal 

decision is by reasoning backward in time. More precisely, it consists in assuming that the last 

decision taken at the horizon time T is optimal and by choosing what to do in every remaining 

time step. T is the time required to reach the optimal solution. Let π* be a vector that maps the 

best decision for each state at the horizon time. π * is the set of decisions (A) associated with 

the maximum value function of the set of states (V(X)).  The finite horizon problem can be 

written formally as   

!! !! = max
{!!}!!!!

!!!!! !! ,!!

!

!!!

+ !!!!! !!!!                                                                                                                                     !"#1 

The expression includes two parts, the sum of the discounted utility values from time t to the 

horizon T and the discounted terminal reward (R(XT+1)), which is a function of the state that 

the system is left in, !!!!, after the last decision is taken. The discount factor, 0 < ! ≤ 1, 

represents the value of the reward gained in the next period relative to the reward obtained in 

the current period (Martin et al. 2011).  It can also reflect a measure of confidence level in the 

predictions of the dynamic model. Predictions made for the near future are generally more 

certain than the ones made for the distant future.  

In the backward iteration algorithm, the starting point is to realize that there exists a 

recursive relationship that identifies, for each state, a value function for step t, denoted Vt(Xt), 

given that step Vt+1(Xt+1) has already been solved (Appendix S1):  

!! !! = max
!!

   !! !! ,!! + !!!!!(!!!!)                                                                                                                                                             !"#  2 
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As suggested by the Principle of Optimality, the Bellman equations express the 

optimization problem in terms of the current decision alone. The first part of this equation is 

made of the immediate reward represented by the utility function while the second part is the 

value function for the next period, Vt+1(Xt+1). The procedure is initialized by setting 

VT+1(XT+1)=R(XT+1). Then, the previous value VT(XT) is computed,  then V(XT-1), and so on. 

The optimal action, that is the action associated with each initial state X0, is obtained by 

repeated backward recursions from the horizon time T to present time 0 (see Figs 1b, c, and d) 

and by taking the argument of the maximum initial values V0(X0) (Fig 1d and Fig 2).  

 Important issues in using a finite horizon approach, besides the choice of the horizon T 

and of the terminal value of the system, R(XT+1), is the choice of a discount factor ! (Lubow 

2001) which lies between 0 and 1 (Bellman 1957). Discounting is often specified in terms of a 

discount rate r, with the (annual) discount factor given by ! = 1/(1 + !).  Conservation 

biologist tend to advocate the use of a ! of 1, meaning no discounting the value of future 

system states. In such situations future utility contributes as much to the overall objective as 

current utility. Even though not discounting future utility complies with the sustainability 

principle, most economists recommend using a discount factor less than 1. 

 Many people give more importance in current than future rewards, especially when 

future rewards are risky (Norgaard & Howarth 1991). Most problems in resource 

management involve utilities that have some social and economic cost and benefit, associated 

with them. When the resource has a non-market value, one difficulty is to convert the 

ecological, social and economic costs and benefits into a common scale (Wam 2009). Such 

scale differences and issues of utility incommensurability impede the determination of an 

appropriate discount rate (whether financial, social or ecological). The method commonly 

used for selecting a discount rate is based on a market rate for a relatively risk-free asset such 

as a US Treasury bond. Recent recommendations for environmental projects suggest the use 
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of r=2% for long-term projects (http://www.whitehouse.gov/omb/circulars_a094/a94_appx-c; 

see also EU's "Guide to Cost-Benefit Analysis of Investment Projects”).  

 

OPTIMIZATION PROCEDURE OVER AN INFINITE HORIZON 

With infinite horizon problems both the value function and the optimal policy are 

independent of time. The problem to be solved can be written as 

! !! = max
!(!)

!!!!! !! ,!(!! )
!

!!!

                                                                                                                                    !"#3 

Starting with an arbitrary value function and iterating over an infinite-horizon model with 

policy or value iteration causes the optimal action to converge towards a time independent 

function also called a stationary strategy with the optimal solution only depending on the state 

of the system and not on time.  

The first algorithm used to solve MDP over infinite horizon, called value iteration, 

follows the same procedure as described above except that the Bellman equation is applied 

iteratively until a convergence criterion is met. A typical convergence criterion (Boutilier et 

al. 2001) is: 

 

!(!!!!)− !(!!) ≤
! 1− !
2!                                                                                                                                                                               !"#4 

 

where the norm !(!!!!)− !(!!)  is the maximum absolute value of the difference between 

two successive decision values, for all possible states. The value of ! is usually chosen to be 

small, so that when the condition in Eq. 4 is satisfied the value function is within ! of its 

optimal value. In our example we fixed ! at 10-3 as in Boutilier et al. (2001). We may notice 

that on an infinite time horizon it is necessary to discount future utility otherwise some 



12	  
	  

computation difficulty can be encountered. In such situation, the value function will never be 

stationary, unless there is a probability of 1 that the state variable reaches and stays in a non- 

valued state at some time. Otherwise the value function increases without bound as the time 

horizon goes to infinity. It is therefore more appropriate to use an average value approach 

which attempts to maximize the per period expected value function.	   

Another algorithm called policy iteration (Howard 1960) involves alternating between 

finding the best policy (or strategy) given the current guess of the value function and 

determining the value function associated with the current policy (Appendix S2). One 

advantage of the policy iteration algorithm is that it can run faster than the value iteration 

(Howard 1960). The policy iteration approach can be decomposed in three steps.   

 In the first step (evaluation), a value function is calculated from a guessed policy 

(Boutilier et al. 2001). Let At be any policy which describes the actions that are taken for any 

value of the state Xt, so that Xt+1 is a function of both variables that can be written as 

Xt+1=g(Xt, At). The value function associated with this policy can be determined by solving a 

system of linear equations, one for each value of the state variable 

!! !! = !! !,!! + !!!!! !(!!,!!)                                                                                                                                                             !"#  5 

In the second step (improvement), we find the policy A’ that satisfies, for each value of 

the state  

max!!  ! !! ,!′! + !!!!! !(!! ,!!)                                                                                                                                                    !"#  6 

 The same procedure is performed again (back to first step) until the two policies A and A’ do 

not change.    

Making decisions in presence of uncertainty  

 Thus far we have focused on deterministic MDPs. Here, we introduce how to 

accommodate uncertainty in dynamic programming. Let P be a transition matrix displaying 
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the conditional probabilities of the system at state Xt at time t and action At (in rows) to 

change into states Xt+1 (in columns) given the action. In SDP, there are several possible next 

states, given the action taken and the current state and each of them has a certain probability 

to be achieved. The Bellman equation can therefore be rewritten as the utility value at the 

current state (which holds in the deterministic version) and the expected future rewards that 

are the products of transition probabilities and values of all possible next states (Appendix 

S1), no matter which procedure is being used. For instance in the backward iteration 

procedure, the stochastic version of the equation is  

  

                            !! !! = max
!!

!! !! ,!! + ! ! !!!!   !! ,!! !!!!(!!!!)
!!!!

                                                                                    !"#. 7     

One may notice that the difference from Eqn 2 is the addition of the transition probability 

matrix. Actually, the deterministic version of the Bellman equation can be rewritten as a 

special case of SDP, where P is a matrix of 0s with a single 1 in each row. In SDP, P consists 

of transition probabilities depending on stochastic events related to demographic and/or 

environmental stochasticity or to the action taken, the effect of which can be uncertain. Then, 

the transition matrix is stochastic and the rows consist of non-negative values that sum to 1.  

We distinguish three types of uncertainty that can be accounted for to solve a Markov 

decision problem. First, management uncertainty results from the inability to accurately 

predict the transition states after applying an action. This can be due to natural random 

process or to the inability to implement the action correctly. Populations are subject to 

environmental stochasticity that can strongly affect their vital rates through changes in 

weather conditions, habitat structure or other external biotic and abiotic factors (Regan et al. 

2002; Martin et al. 2010). Demographic stochasticity is also a common source of natural 

uncertainty. It reflects the variability in survival and reproduction among individuals and is 
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likely to occur in small size populations (Lande 1993). Sometime actions themselves are 

taken in an uncertain way. For instance, a planned harvest rate can sometimes not be achieved 

by managers for many reasons even though it was assumed to be the best solution (Milner 

Gulland 1997; Baxter & Possingham 2011; Richards et al. 1999; see also Table 3). When 

management uncertainty is unknown, an alternative optimization approach to backward 

iteration, policy or value iteration is reinforcement learning. This technique makes sequential 

decisions when transition probabilities or rewards are unknown and cannot be estimated by 

simulation (Chadès et al. 2012). The Q-learning algorithm is used in which the optimal value 

V0* and the corresponding action are estimated by a learning process of observed transitions 

and values obtained with function approximation (Chadès et al. 2007; Table 3). A potential 

issue with this method, originally developed in robotics, is that it requires a large number of 

observations to build the transition matrix.  

The second type of uncertainty deals with that coming from the partial knowledge of 

the value of the state variable. To cope with such uncertainty, one may use Partially 

Observable Markov Decision Process (POMDP), a procedure that can solve stochastic 

dynamic problems assuming we are unable to observe perfectly the state of the system 

(Chadès et al. 2008). In a population model a POMDP might augment an MDP to include 

detection probability matrices. The detection history is not explicitly represented but rather is 

summarized by a belief state or probability distribution over the state space representing 

where we think the state of the system is (Chadès et al. 2008; see also Table 3). 

Unfortunately, POMDP are even more complex to solve than MDP, and to date it is possible 

to compute exact solutions only for small size problems (Chadès et al. 2011).  

 A third form of uncertainty is model uncertainty, which refers to the lack of certainty 

about the structural frame shaping the behavior of the system (Walters 1986; Punt & Hilborn 

1997). Adaptive Management is a common approach adopted to reduce such uncertainty by 
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testing multiple models through the ongoing process of management and monitoring 

occurring under the principle of “learning by doing” (Runge 2011). In adaptive management, 

belief weights are attributed to each model depending on the comparison between model 

predictions of the outcome of an action and the observed response from monitoring. Such a 

comparison allows us to increase our belief in the model that is most likely to give rise to the 

observed response.  

Two approaches, based on the role of learning are then conceivable (Williams et al. 

2009). Passive adaptive management assumes learning is a by-product of decision making in 

which the models weights are updated by applying Bayes theorem but remain constant during 

the optimization process (Williams et al. 2002). For instance, Martin et al. (2010) used 

passive adaptive management to determine an optimal harvest strategy to control raccoons to 

improve oystercatcher productivity. They considered two models, one assuming no effect of 

raccoons on oystercatchers’ productivity and another one assuming a strong effect. In the 

second approach, referred to as active adaptive management, model weights appear in the 

optimization process. More precisely, the next updated weights are incorporated in the 

expected sum of future rewards of the Bellman equation. Such approach is the most advanced 

form of adaptive management. In contrast to passive adaptive management, active adaptive 

management considers how current decisions will affect future learning and chooses an 

optimal balance between rewards based on current beliefs and future rewards based on 

updated beliefs (Runge 2011). For instance, McDonald-Madden et al. (2011) used active 

adaptive management to assess species relocation strategies in the context of climate change. 

They considered two models, one in which carrying capacity declined over time because of 

climate change and another one in which climate change had no impact on species carrying 

capacity. 
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Software packages performing dynamic programming 

There are several software packages that allow the implementation of SDP. ASDP 

(Lubow 1995, available at: http://www.cnr.colostate.edu/~bruce/downloads/sdp_dist.zip) was 

the first application developed for biologists to solve optimization problems using dynamic 

programming. It is a MS DOS executable that is no longer maintained by its author. Two 

other packages are available for Matlab: MDPSolve (Fackler 2011, available at 

https://sites.google.com/site/mdpsolve/), and MDPtoolbox (Version 4.0, Chadès et al. in prep) 

available at	  http://www.inra.fr/mia/T/MDPtoolbox/ . MDPtoolbox is also available for the 

open-source software for numerical computations Scilab, R and GNU Octave. Both 

MDPSolve and the MDPtoolbox implement the value iteration and the policy iteration 

algorithms, while ASDP uses only the former. ASDP does not use the convergence criterion 

discussed above for infinite time horizon but stops after the policy remains the same for a 

specified number of iterations. MDPSolve and MDPtoolbox deal with management 

uncertainty in finite and infinite time horizons (Table 3). MDPtoolbox satisfyingly copes with 

unknown management uncertainty through the implementation of Q-learning in an infinite 

horizon while MDPSolve does not. MDPSolve enjoys capabilities that permit solving 

POMDP and addressing model uncertainty, while MDPtoolbox does not. MDPSolve also 

allows defining probability of state transition not only in the form of a matrix but also in the 

form of a function. The “f2p” and “g2p” functions create transition matrix from conditional 

density functions or from any functional transition representation that can include random 

shock, reflecting environmental variation or other process noise. These functions can be very 

useful for problems with continuous state variables that need to be discretized (Nicol and 

Chadès, 2012). Otherwise different interpolation methods exist to analytically discretize the 

transition function before running either of the two software packages (MDPSolve and 

MDPtoolbox). In the following section, we provide an application of SDP and solve the 
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associated decision problem using both MDPSolve and MDPtoolbox. Although we emphasize 

that this exercise does not represent a general introduction to these packages (we refer to the 

user’s guides instead), we hope it will be a good starting point. In addition to the use of these 

packages, we demonstrate that MDP problems can be implemented in program R and provide 

code that can be amended for one’s own purpose. 

 

Application to wolf culling 

In this section, we illustrate each step of SDP required to derive an optimal 

management strategy to control a population of wolves in Europe. We consider several 

decision models of increasing complexity for wolf culling. First, we build a deterministic 

model to keep things easy and illustrate the notation. Then, we illustrate how to make 

decisions when uncertainty exists. 

 

SETTING THE SCENE 

We go through the six steps of dynamic programming. First, the optimization 

objective is to maximize the population while providing that the population does not exceed 

250 individuals (Nmax) and remains above 50 individuals (Nmin). These thresholds are 

somewhat arbitrary from a biological perspective, but were selected to obtain results in a 

reasonable amount of time while scanning a relatively broad range of abundance states. 

Second, the state variable Xt is naturally population size Nt at time t, which ranges from 0 to K 

where K is an arbitrary upper bound on the state space. Third, the control variable At is the 

harvest rate Ht, a discrete variable ranging from 0% to 100% with an increment of 1/(K+1) 

therefore allowing as many possible actions as there are number of states. Fourth, regarding 
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the transition model describing population dynamics and the consequences of actions (harvest 

Ht) on the state variable (abundance Nt), we adopted an exponential growth (Fig 1), which is 

suitable to describe a population currently in a colonization phase. More precisely, we used: 

!!!! =   !!!     1− !!                                                                                                                                                                                             !"#. 8 

where λ is the population growth rate. The value of λ was extracted from the literature using 

the French population as an example (the estimate of λ is 1.25 with 95% confidence interval 

[1.14; 1.37]; Marescot et al. 2011). Fifth, utility is based on abundance and harvest rate 

bearing in mind the objective to keep a population size between Nmin and Nmax. We choose a 

utility function increasing linearly with abundance when the current state is within the 

objective range. In mathematical terms, we write: 

Ut = Nt  (1–Ht) αt                                                                                                Eqn.  9 

where !! takes the value 1 if Nmin ≤ Nt+1 ≤ Nmax and 0 otherwise. Given the current population 

size Nt and harvest rate Ht, if the future state is above the utility threshold Nmax or below Nmin, 

the penalty factor !! takes a null value so does the utility function. If, however, the future 

population size Nt+1 is in the target abundance range, then the utility of harvest level Ht in 

state Nt is the population size after harvest but before annual growth occurs (Fig 1.b). An 

alternative utility function could be defined only on the current abundance since no economic 

cost was considered here. Adopting the general formulation in which utility is defined as a 

function of current action would be useful to incorporate economic costs and payoffs. Sixth, 

we need to solve the Bellman equation using the value iteration or the policy iteration 

algorithm. 

 

DETERMINISTIC CASE 
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We first ran a deterministic model over an infinite time horizon using both value iteration and 

policy iteration algorithms.  

There was also an analytic solution to this deterministic MDP, which enables us to validate 

the approach. With an objective of keeping a population between Nmin and Nmax, the optimal 

action for a state n is a harvest rate of the maximum between 0 and 1 – Nmax / (λ × n).  The 

three different methods provided the same optimal harvest rates (Fig. 3). The strategy of no 

culling remained the best strategy until population reached 200 individuals. Above 200 

individuals, expected population size reached the utility threshold Nmax (200 x 1.25 = 250). 

From there, optimal harvest rate increased from 0.8 % up to 20%. The highest harvest rate 

was reached at the utility abundance threshold of 250 individuals (Fig. 3). We provide R code 

to implement the resolution of this MDP (Appendices S1 and S2). This example was also run 

in MDPSolve and MDPtoolbox (Appendix S3 for the scripts and S4 for the numeric values).  

The solution demonstrates the tradeoff between current and future utility inherent in 

dynamic programming problems. Here there is no reason to cull unless the population will 

exceed Nmax in the next period. If the population is high enough, however, it is optimal to 

forgo current utility by culling enough to ensure that utility is obtained in the next period. 

 

COPING WITH UNCERTAINTY 

Besides the deterministic model, we consider models with demographic stochasticity that 

generates variability in population growth rates arising from random differences among 

individuals in survival and reproduction within a season or a year (Lande 1993). R code is 

provided to run this additional example (Appendix S5). 

We assume that the state variable is distributed according to a Poisson distribution: 
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                                !!!!~!"#$   !  !!   1− !!                                                                                Eqn. 10 

                                                                       

with mean value E(!!!!) =   !  !!   1− !!  equal to its deterministic counterpart (Appendix S 

1 and 2).  The transition probabilities are now changing across the different states according 

to a Poisson distribution:  

          ! !!!!   = !!!!  |  !! = !! ,!! = ℎ! = ! !  !!!(!!!! )   
!!!(1− ℎ!) !!!!

!!!!!
              !"#. 11	  

	  

We found that harvesting was not recommended as long as population was below 200 

individuals. As in the deterministic model, above this abundance threshold, harvesting 

increased from 0.8% to 20 % of population size (Fig. 4). When population was already at the 

upper objective limit Nmax, 50 individuals were to be removed. 

 

Discussion  

	   Stochastic dynamic programming is a valuable tool for solving complex decision 

making problems that has numerous applications in conservation biology, behavioral ecology, 

forestry and fisheries sciences. It provides an optimal decision that is the most likely to fulfill 

an objective despite the various sources of uncertainty impeding the study of natural 

biological systems. The formalization of objectives of any Markov decision problem is given 

by the utility function that allows prioritizing the preferences of the ones who make the 

decisions (decision maker, manager, specimen…). As opposed to the dynamic model, the 

representation of utility is subjective and hence can be difficult to define. 
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DIFFERENT WAY OF DEFINING A UTILITY FUNCTION 

The use of dynamic programming implies a particular formalization of the objective 

into a utility function. The utility is a function of one or more decision variables, themselves 

defined on the system states and actions. Utility is a sometimes defined with constraints that 

can reflect different decision rules (Williams et al. 2002).   

 Problems in resource management often deal with tradeoffs not only between current 

and future objectives but also tradeoff between multiple current objectives. For example, one 

tradeoff objective is to control and protect a predator that is potentially threatened. Other 

objectives can be to restore natural habitat while minimizing action cost and allowing some 

recreational activities. When multiple objectives are involved, different decision variables can 

be considered. The objective can be to find a relevant utility optimum reflecting the tradeoff  

between the different decision variables (for instance the habitat quality and the intensity of 

recreational activity) which can respond differently to decisions (restoration). In such cases 

some weighting scheme must be used to express the different decision variables in common 

units. For example, suppose that E is an environmental performance of variable and B is the 

benefits from recreation activities and C is the financial cost of an action. Utility can be define 

as a weighted sum of decision variable U=wE+B-C where w is a weight that assigns a 

monetary value to environmental variable. 

 An alternative to using weighted sums is to use a multiplicative functional form such 

as U=EaBb. The parameters a and b serve two functions. First, if a and b are both positive and 

if a > b, it implies that environmental variable is more important than the recreation variable. 

The relative value of a to b changes the weight that is placed on E versus B.  Second, if a or b 

value is less than 1 in absolute value, it implies that the marginal contribution of an additional 

unit is smaller for larger values of the variable than for smaller one. This representation is also 
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appropriate when it is deemed more important to save an additional individual of a protected 

species such as the wolf in France when there are very few remaining than when the 

population is more abundant. Note that, unlike the additive utility form, this multiplicative 

form is not affected by the scale of either variable. 

 Another approach is to convert one decision variable into a constraint or to use a 

penalty function for failure to meet the target. This approach simplifies the multiple objectives 

into a single constrained objective (Converse et al. 2012). For instance one objective can be to 

improve habitat quality given a limited budget of $50000, while allowing a minimum of 100 

h/year of recreational activities. For example U= E if (B≥100h/year) and if (C< $50000) 

otherwise U = 0 otherwise. Here the decision variable is the intensity of recreation and action 

cost has been converted into a constraint. This avoids the need to make comparisons between 

variables of different types but it also has implications that an analyst should be aware of. 

First, if the system never reaches the threshold implies by the two constraints (100h/year of 

recreation and a budget of $50000) it means that both B and C are irrelevant. Second, it 

implies that once one threshold is reached further increases in C or further decreases in B are 

irrelevant. Finally it should be noted that this utility is not the same as optimizing with respect 

to E subject to a long run expectation that the thresholds are satisfied. 

LIMITS OF DYNAMIC PROGRAMMING: CURSE OF DIMENSIONALITY 

Despite the flexibility of dynamic programming, one has to find a trade-off between 

biological realism and model complexity when tackling an optimization problem. Indeed, DP 

methods often face the issue known as ‘the curse of dimensionality’ which states that, when 

more state variables are added in the model, the size of the DP problem increases 

exponentially (Walters & Hilborn 1978; Schapaugh & Tyre 2012). To overcome this 

computational complexity, approximate optimization methods can be used such as heuristic 
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sampling algorithms that proved efficient for models with several variables (Nicol & Chadès 

2011). These methods approximate the optimal solution given the starting state by simulating 

the possible future states the more likely to occur. Simulating only possible future states 

lightens the computational calculation in comparison to the value or policy iteration procedure 

in which values are computed for all possible states. 

PERSPECTIVES FOR WOLF POPULATION MANAGEMENT 

 The aim of this paper was to demonstrate the usefulness and relative ease of SDP. We 

hope that this paper can serve as an entry point into the extensive literature and potential 

applications of SDP in ecology. For the sake of clarity, we made assumptions to keep the 

illustration simple, but SDP can accommodate several useful extensions. For example, we did 

not include socio-economic constraints in the modeling process. However, SDP allows the 

incorporation of such factors by maximizing several objectives simultaneously using complex 

tradeoffs in the utility function (Walters & Hilborn 1978; Milner-Gulland 1997; Runge & 

Johnson 2002). In our example, economic constraints could be incorporated via a trade-off 

between monetary loss from livestock depredation, impact of wolves on game abundance and 

indirectly on hunting activity, the receipts from ecotourism and the cost of wolf culling (e.g. 

Milner-Gulland 1997). Second, the lower abundance limit could also be refined based on an 

ecological threshold that once reached is irreversible (Holling 1973; Bodin & Wiman 2007). 

Using such thresholds would be relevant for a protected species since it would insure 

population viability without necessarily changing the optimal policy (Martin et al. 2009). 

Additionally, further work is needed to compare optimal strategies obtained with alternative 

population dynamic models. Indeed the choice of exponential growth is an adequate model 

for a colonizing population but when a population is established and the habitat saturated this 

model becomes inappropriate. Instead of considering exponential growth, one could use a 

logistic growth with density-dependent effects such as an Allee effect which has been shown 



24	  
	  

in social species with few breeding units like African wild dogs (Lycaon pictus) (Stephens & 

Sutherland 1999). 

 

PERSPECTIVES FOR ADAPTIVE MANAGEMENT 

 Structural uncertainty can be defined as the noise arising from our lack of knowledge 

about system behavior and can be reduced through comparison of multiple models (Walters 

1986; Punt & Hilborn 1997; Williams et al. 2002; Dorazio & Johnson 2003). For example, 

one could also assess the impact of accounting versus neglecting poaching on the final 

optimal action (Millner-Gulland 1997) or the impact of additive versus compensatory effects 

of harvesting on annual mortality (Runge & Johnson 2002). Reducing structural uncertainty is 

essential for conducting a conservation program, especially when the resulting optimal policy 

is highly sensitive to models structure and assumptions. In such case, one needs the most 

accurate predictions in order to optimize future allocation of monitoring and management 

effort (Williams et al. 2002; Conroy et al. 2008). Adaptive management is a sequential action 

process, specifically designed for conservation problems dealing with structural uncertainty 

(Runge et al. 2011). It is an integrated part of decision making that deals simultaneously with 

predictions on future states and updated beliefs from monitoring (Walters 1986). Using SDP 

in an adaptive management framework aims at seeking the optimal management strategy 

while reducing structural uncertainty so better knowledge leads to better actions (Martin et al. 

2009). However the real interest of adaptive management in conservation biology is not really 

to reduce structural uncertainty that sometimes doesn’t affect the optimal solution but more to 

drive a learning process to improve decision given management objectives (Runge et al. 

2011).   
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  One common assumption in conservation biology is that a system must be well 

understood before making any management decision. Monitoring efforts tend to be oriented 

towards the perspective of understanding system functions more than in the perspective of 

establishing good decision rules. This leads sometimes to inefficient outlays of conservation 

funds (Caughlan & Oakley 2001; Field & Possingham 2005; Chadès et al. 2008). Considering 

the environmental issues currently at stake, we agree with Nichols and Williams (2006) that 

active conservation action should be initiated even when the causes of the problem are not 

fully identified. SDP is a relevant optimization method for making decisions while conducting 

monitoring. Biologists studying ecological systems are often facing uncertainty, noise and 

disturbance. Adaptive management is a further natural extension of SDP and should be the 

preferred approach undertaken whenever a management action is planned. 
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Table 1: Notation used in dynamic programming  

 
Variable Notation Nature 

   

State Variable Xt Vector indexed by time 

Control action At Vector indexed by time 

Time t Index 

Optimal action π* Vector of length the number of states at time t 

Utility U(Xt, At) Function of the states and actions 

Transition probability P(Xt+1|Xt , At) Matrix (number of states at t, number of states at t+1) 

Value V(Xt) Vector of length the number of states at t 

Discount factor Β Real number between 0 and 1 

 

  



35	  
	  

Table 2: Non-exhaustive list of studies using stochastic dynamic programming. 
 
 
 
 
  

Study State variable Objective Actions Utility function 
 
Shea & 
Possingham 
(2000) 

 
Site level of colonization: 
empty, insecure, established  

 
Bio-control agent colonizing as many 
sites and as quickly as possible 

	  
Many agents released in 
small patches	  
Few agents in several 
patches 	  
Mix of both strategies	  

 
Number of established sites	  

 
Venner et al. 
(2006) 

 
Energy supply of the orb-
weaving spider 

 
Optimize fitness by maximizing the 
energy brought by  breeding and 
foraging  while minimizing predation 
and starvation risks	  

 
Web building choice  
possible web size.	  

 
Balance between energy 
gained from eggs laid and 
prey caught on the web and 
energy cost from starvation 
and from predation risks.	  

 
Runge & 
Johnson 
(2002) 

 
Pre-breeding abundance of 
ducks 

 
Find the optimal harvest rate given 
several recruitment and survival 
functions 

 
Harvest rate 

 
Total number of harvest 
accumulated through time 

 
Martin et al. 
(2010) 

 
Female raccoon abundance 
Oyster productivity 
 

 
Maintain Oystercatcher productivity 
above a level necessary for 
population recovery 
while minimizing raccoon removal. 

 
Harvest rate in each age 
class 

 
Total number of raccoons 
after harvest with a penalty 
factor when oyster 
productivity goes below a 
threshold  

 
Millner- 
Gulland 
(1997) 

 
Saiga antilope abundance 
Proportion of males and 
females 

 
Maximize monetary yield while 
preserving the saiga population 
already threatened by drought  

 
Harvest rate 
Proportion of males in 
the harvest  
 

 
Annual monetary yield 
from game hunting, given 
the price of the meat, the 
horn and management costs 
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Study Dynamic model Optimization  Last value Uncertainty 
 
Shea & 
Possingham 
(2000) 
 

 
Colonization, extinction, establishment 
in insecure sites  

 
Backward iteration  
T=10 	  

 
Unknown 

 
Probability of establishment 
and of local extinction 	  

Venner et al. 
(2006) 

Discrete Markov model describing the 
transition energy state of a spider from t 
to t+1 given the choice of web building 
of individuals. 

Value iteration over an 
infinite time horizon 
	  

Lifetime fitness given its energy 
state time horizon is expected to 
be 1	  

Probability to catch a prey and 
predation risks 

 
Runge & 
Johnson 
(2002) 

 
Reproduction 
Harvest 
Natural mortality 

 
Value iteration 
Infinite time horizon 
(convergence criterion 
was no change of state-
dependent policy for more 
than 4 years ) 
No discount rate	  

 
No values were assigned to the 
terminal state of the process 
V(XT)=0  	  

 
Structural uncertainty  
Recruitment functions (linear, 
exponential, hyperbolic)  
Survival functions (constant, 
logistic, compensatory) 

 
Martin et al. 
(2010) 

 
Model structured in 3 age classes 
(raccoon population) 
Log linear relationship between oyster 
productivity and total number of 
raccoons. 
 

 
Backward iteration over 
an infinite horizon    
 

 
The expected abundance range 
of raccoon  
	  

 
Environmental stochasticity 
Parameter uncertainty 

 
Millner- 
Gulland 
(1997) 

 
Model structure in age and sex classes 
with density dependent effects on 
survival 

 
Value iteration 
 infinite horizon  

 
Expected future yield at time 
horizon is 1 

 
Environmental stochasticity 
and partial controllability 
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Table 3: Main features of software packages implementing dynamic programming. MDPSolve 

(https://sites.google.com/site/mdpsolve/) and MDPToolbox (http://www.inra.fr/mia/T/MDPtoolbox/) 

are considered. MDP is for Markov decision process, POMDP for partially-observed Markov decision 

process and AM for adaptive management. 

 MDPSolve MDPtoolbox 

Management uncertainty Yes (infinite/finite); Value, 

policy, backward iteration 

Yes (infinite/finite); Value, 

policy, backward iteration 

 

Comments 

 

f2p and g2p functions compute 

the transition matrix 

 

Need to build transition matrix 

Unknown management 
uncertainty 

(reinforcement learning) 

No Yes (on Infinite horizon) 

 

Comments 

  

Q-learning 

Observation uncertainty 

(POMDP) 

  

 

Comments 

 

Infinite or finite horizon 

 

Model uncertainty (AM) Yes No 

 

Comments 

 

Passive and Active 

 

Passive AM to be included in 

future release 

 



 

 

 

 

States Values
• 1	  	  	  	  	  	  0
• 43	  	  	  0
• 49	  	  	  0
• 50	  	   50
• 51	  	  	  51
• 52	  	  	  52
• 53	  	   53
• 54	  	   54
• 55	  	   55
• 56	  	   56
• 57	  	   57
• 58	  	  	  58
• 59	   59
• 60	  	  	  60
• 67	  	  	  	  0
• 75	  	  	  	  0
• 315	  	  0

Tmax

…

…

…

 

 

 

  

a) 



 

• 1
• 43
• 48	  	  
• 49
• 50	  	  101
• 51
• 52	  	  
• 53
• 54
• 55	  	  
• 56	  	  
• 57
• 58
• 59
• 60	  108
• 62
• 67	  
• 75	  

• 1	  	  	  	   0
• 43	  	  	  0
• 48	  	  	  0
• 49	  	  	  0
• 50	  	   50
• 51	  	  	  51
• 52	  	  	  52
• 53	  	   53
• 54	  	   54
• 55	  	   55
• 56	  	   56
• 57	  	   57
• 58	  	  	  58
• 59	   59
• 60	  	  	  60
• 62	  	  	  0
• 67	  	  	  0
• 75	  	   0

30

0

TmaxTmax-1

10

20

…

0
10
20

30

…  

  

b) 



 

 

• 1	  	  	  	   0
• 40	  	  	  0
• 43	  	  	  0
• 48	  	  	  0
• 50	  	   50
• 51	  	  	  51
• 52	  	  	  52
• 53	  	   53
• 54	  	   54
• 55	  	   55
• 56	  	   56
• 57	  	   57
• 58	  	  	  58
• 59	   59
• 60	  	  	  60
• 62	  	  	  0
• 67	  	  	  0
• 250	  0

• 1	  	  	   0
• 40	  	  0
• 43	  	  0
• 48	  	  0
• 50	  	  101
• 51	  	  103
• 52	  	  105
• 53	  	  108
• 54	  	  97
• 55	  	  99
• 56	  	  101
• 57	  	  103
• 58	  	  104
• 59	  	  106
• 60	  108
• 62	  0
• 67	  0
• 75	  0

• 1	  	  	  	  0
• 40	  	  0
• 43	  	  0
• 48	  	  0
• 50	  145
• 51	  149
• 52	  153
• 53	  	  156
• 54	  	  140
• 55	  	  143
• 56	  	  	  146
• 57	  	  149
• 58	  	  	  151
• 59	  	  	  153
• 60	  	  156
• 62	  	  	  0
• 67	  	  	  0
• 75	  	  	  0

101

10

10 0

20

10

30

TmaxTmax-1

20

0

20

30

Tmax-2

…

…
……  

 

 

 

 

 

c) 



20

10
10

• 1
• 43
• 45
• 50
• 51
• 52
• 53
• 54
• 55
• 56
• 57
• 58
• 59
• 60
• 62
• 67
• 75

• 1
• 43	  	  0
• 45
• 50	  145
• 51
• 52	  156
• 53
• 54
• 55
• 56	  	  	  146
• 57
• 58
• 59
• 60	  	  156
• 62
• 67	  
• 75

• 1	  	  	  	  0
• 43	  	  0
• 48	  	  	  0
• 50	  	  101
• 51	  	  	  103
• 52	  	  105
• 53	  	  108
• 54	  	  	  97
• 55	  	  	  99
• 56	  	  101
• 57	   103
• 58	  	  	  104
• 59	  	  	  106
• 60	  108
• 62	  	  0
• 67	  0
• 75	  0

• 1	  	  	  	  	  	  0
• 4 3	  	  	  0
• 48	  	  	  	  0
• 50	  	   50
• 51	  	  	  51
• 52	  	  	  52
• 53	  	   53
• 54	  	   54
• 55	  	   55
• 56	  	   56
• 57	  	   57
• 58	  	  	  58
• 59	   59
• 60	  	  	  60
• 62	  	  	  0
• 67	  	  	  0
• 250	   0

Time  0	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  … TmaxTmax-1

…

20
2020

0
10

30

0

10

30

Tmax-2

…
………  

 

Fig. 1: The backward iteration showing successive transition states and the best harvest 

strategy (in %). 

a) First step shows all realizations of state variable X standing for population size, varying 

from 1 to 250 individuals and the associated values V(Xt) (bold column) at horizon time T. For 

convenience, we shorten the objective to maintaining an abundance range of Nmin = 50 and 

Nmax = 60 so that the values at the endpoint T worth 0 from state 1 to state Nmin - 1 and then 

take the value of the states from Nmin to Nmax. Beyond Nmax, values are again set to 0.  

b) We proceed backward in time and define possible realizations for states at time T-1. In this 

example the state space remains the same across the horizon time. Here we only looked at 

four potential actions: do nothing, harvest 10, 20 and 30 % of the population. The arrows 

illustrate the deterministic dynamic of the system, and represent the exponential growth from 

one year to another (with λ=1.25), the transition states given the harvest strategies and the 

current state Nmin (blue) Nmax (green). The best strategy is framed in blue (for Nmin) and in 

d) 



green (for Nmax), and it stands for the action that maximizes the values at T also framed in 

colored squares. From there, we can update the value for the states at  

T-1. For instance V(50)T-1 = 50*(1-0.10)+56 = 101 

c) At T-2, we look again at the transition states for Nmin and Nmax given the potential actions 

and we choose the strategy that leads to the next state (at T-1) showing the highest value.  

d) At time 0, we look one last time at the transition states for Nmin and Nmax given the potential 
actions and the strategy that leads to the highest value that is then the optimal solution. So in 
the backward iteration, optimal action is reached when the procedure reaches the initial time 
0.      

  



 

• 38
• 44
• 45
• 50
• 51
• 52
• 53
• 54
• 55
• 56
• 57
• 58
• 59
• 60
• 62
• 65
• 68

• 1	  	  	  	  0
• 43	  	  0
• 48	  	  0
• 50	  145
• 51	  149
• 52	  153
• 53	  	  156
• 54	  	  140
• 55	  	  143
• 56	  	  	  146
• 57	  	  149
• 58	  	  	  151
• 59	  	  	  153
• 60	  	  156
• 62	  0
• 67	  0
• 75	  0

Tmax-1
• 40	  	  0
• 43	  	  0
• 48	  	  0
• 50	  	  101
• 51	  	  103
• 52	  	  105
• 53	  	  108
• 54	  	  97
• 55	  	  99
• 56	  	  101
• 57	  	  103
• 58	  	  104
• 59	  	  106
• 60	  108
• 62	  0
• 67	  0
• 75	  0

• 1	  	  	  	  	  0
• 48	  	  	  0
• 49	  	  	  0
• 50	  	   50
• 51	  	  	  51
• 52	  	  	  52
• 53	  	   53
• 54	  	   54
• 55	  	   55
• 56	  	   56
• 57	  	   57
• 58	  	  	  58
• 59	   59
• 60	  	  	  60
• 62	  	  	  0
• 67	  	  	  0
• 75	  	   0

Time  0 … TmaxTmax-2

…

202020

20 20

10

30

20

0

20
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Fig. 2:  End of the backward iteration and time sequence of actions for four initial states. 

Here, we display the time sequence of actions standing for the trajectory that leads from any 

initial state to the final objective that is to keep a population between Nmin and Nmax while 

harvesting as few individuals as possible. In the example, the recursion starts from the end 

and goes backward in time. Once values of all states are obtained across the time horizon, we 

can decide which actions to take across the successive transition states. Here, we look at the 

best trajectory for four initial states N=38, 50, 60 and 65 individuals.  

 



 

 

 

Fig. 3:  Validation of the deterministic model. Optimal harvest rate obtained with the 

deterministic model implemented under a value iteration algorithm and a policy iteration 

algorithm ran over a infinite time horizon  (circles). The results were compared with the ones 

obtained with MDPSolve (circles) and MDPtoolbox (cross). The function solution for this 

particular example was analytically calculated (black line). We obtained exactly the same 

optimal solution either we used R code (under value or policy iteration), MDPtoolbox and 

MDPSolve when solving the optimal harvest rate as a function of population size. We 
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acknowledge that dynamic programming is a discrete optimization algorithm, hence not all 

possible harvest rates can be continuously explored. However, the difference between the 

solutions obtained by dynamic programming and the analytic solution were never larger than 

10-3. 

  



 

	  

 
 
	  

 
 

Fig. 4:  Optimal harvest obtained from a model incorporating demographic 

stochasticity. Demographic stochasticity stands for individual variability in vital rates. The 

SDP was run over a finite time horizon (150 years) with the backward iteration procedure. 

The transition probabilities are changing across the different states according to a specific 

density function, here that of a Poisson distribution of parameter the next population states. 
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