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Abstract 18 

As large carnivores recover throughout Europe, there is a need to study their distribution to 19 

determine their conservation status and assess the potential for conflicts with human 20 

activities. However, efficient monitoring of many large carnivore species is challenging due 21 

to their rarity, elusive behavior and large home range size. In Europe, most current monitoring 22 

protocols rely on multiple detection methods, which can include opportunistic sightings from 23 

citizens in addition to designed surveys. Two types of detection errors may occur in such 24 

monitoring schemes; false negatives and false positives. When not accounted for, both can 25 

bias estimates from species distribution models (SDMs). False negative detections can be 26 

accounted for in SDMs that deal with imperfect detection. In contrast, false positive 27 

detections, due to species misidentification, have only rarely been accounted for in SDMs. 28 

Generally, researchers use ad hoc methods to avoid false positives through data filtering to 29 

discard ambiguous observations prior to analysis. These practices may discard valuable 30 

ecological information on the distribution of a species. Here, we investigated the costs and 31 

benefits of including data types that might include false positives rather than discard them for 32 

SDMs of large carnivores. We showcase a dynamic occupancy model that simultaneously 33 
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accounts for false negatives and positives to jointly analyze data that include both 34 

unambiguous detections and ambiguous detections. Using simulations, we show that the 35 

addition of ambiguous detections increases the precision of parameter estimates. The analysis 36 

of data on the Eurasian lynx (Lynx lynx) suggested that incorporating ambiguous detections 37 

produced more precise estimates of the ecological parameters and revealed additional 38 

occupied sites in areas where the species is likely expanding. Overall, our work shows that 39 

ambiguous data should be considered when studying the distribution of large carnivores, 40 

through the use of dynamic occupancy models accounting for misidentification.  41 

 42 

Introduction  43 

The distribution and abundance of large carnivores in many parts of the world has been 44 

declining for centuries because of habitat loss and human persecution (Ripple et al. 2014). 45 

Thanks to active conservation measures, several species of large carnivores have recently 46 

been expanding their ranges substantially in Europe. As a result, most European countries 47 

currently host at least one viable population of large predators (Chapron et al. 2014). This 48 

recent expansion led to the emergence of conflicts with humans (Ripple et al. 2014). In this 49 

context, accurate distribution mapping, i.e., species distribution models (SDMs; Elith & 50 

Leathwick 2009), is essential to determine the conservation status and recovery success 51 

(IUCN, 2012), to target potential areas of occurrence and understand large carnivores range 52 

dynamics, identify the possible areas where they might be recovering in the future (Chapron 53 

et al., 2014) and mitigate conflicts often associated with the recovery of large carnivores 54 

(Guillera-Arroita et al. 2015) like, e.g., livestock depredation related to wolves’ recolonization 55 

(Marucco & Mcintire, 2010). However, their rarity, elusive behavior and low density render 56 

efficient monitoring of large carnivores difficult (Ripple et al. 2014).  57 



The monitoring of large carnivores in Europe relies on several survey methods that are 58 

implemented by professionals and members of the public ("citizens"). Citizens in particular 59 

add to the ability to survey large spatial coverage over extended periods in time, which would 60 

be costly if done by professionals only (Molinari-Jobin et al. 2017). The practice of engaging 61 

the public in a project that produces reliable data and information usable by scientists and/or 62 

decision-makers is a primary goal of citizen science (CS; McKinley et al. 2017). CS is 63 

becoming an important tool in ecology to study the distribution, abundance and species 64 

richness of plants and animals (Silvertown 2009; Dickinson et al. 2012). However, CS-65 

generated data present potential quality issues especially when the goal is to build SDMs.  66 

Difficulty detecting large carnivores means that animals can be missed at sites where 67 

they are present (i.e., producing false negative observations). Occupancy models were 68 

developed to deal with false negative errors (Guillera-Arroita 2017) and are recommended for 69 

analyzing CS data (Isaac et al. 2014). While datasets produced by CS have been proven 70 

valuable (Kosmala et al. 2016), professionals may present a better expertise than citizens to 71 

detect or identify the species of interest, diminishing the risk of identification errors 72 

(Fitzpatrick et al. 2009). False positives can occur when the species of interest is "detected" at 73 

a site where it does not occur, resulting from misidentification (Miller et al. 2011). Recent 74 

studies have demonstrated the importance of accounting for misidentification for SDMs 75 

(Miller et al. 2011, 2013; Chambert et al. 2015). Ignoring misidentification may lead to 76 

overestimating species range (Royle & Link 2006; McClintock et al. 2010).  77 

Methods of observations typically used to survey large carnivores are based on 78 

indirect observation methods through signs of presence such as tracks, prey remains, camera-79 

trap photos, or scats (Molinari-Jobin et al. 2017). Observations then go through a filtering 80 

process performed by experts to assess the reliability of evidence of presence. Recent studies 81 

of the distribution of European large carnivores were based only on the reliable observations, 82 



i.e., those remaining after discarding ambiguous detections and validated by experts 83 

(Molinari-Jobin et al. 2017). This means that part of the observations may end up being 84 

discarded, even though they may contain relevant ecological information on the species 85 

distribution. This raises the question whether this information can somehow be extracted and 86 

made useful in the context of SDMs? 87 

Here, we investigated the pros and cons of removing ambiguous detections in SDMs 88 

of large carnivores versus keeping all records and formally accounting for misidentification. 89 

We showcase a dynamic occupancy model accounting for both false negative and false 90 

positive errors (Miller et al. 2011, 2013) to jointly analyze unambiguous and ambiguous 91 

detections. To assess the performance of this approach, we performed a simulation study 92 

which compares the analysis of unambiguous and ambiguous detections vs. using 93 

unambiguous detections only.  94 

We illustrate these methods in a case study with a SDM of the Eurasian lynx (Lynx 95 

lynx) throughout the European Alps (Molinari-Jobin et al. 2017). Observations differ in their 96 

reliability in terms of the likely incidence of false positives. Ambiguous detections, which are 97 

usually discarded, represent almost a third of all observations in the dataset and have a larger 98 

geographic range than unambiguous detections. We expected improved precision in 99 

ecological parameter estimates when all data were included in an analysis, despite having to 100 

accommodate additional nuisance parameters to deal with misidentification.  101 

 102 

Material and Methods 103 

1- Occupancy model accounting for misidentification 104 

Dynamic occupancy models allow the estimation of occupancy and its temporal dynamics as 105 

a function of local extinction and colonization probabilities, while accounting for imperfect 106 



species detection (MacKenzie et al. 2003). These models can be formulated as state-space 107 

models to separate the state process, whether a species is present or not at a site and how that 108 

changes through time, from the observational process, whether the species is observed at a 109 

site during a given period depending on whether or not it was actually present (Royle & Kéry 110 

2007). We define zi,1 as the initial latent occurrence state of site i (with z = 1 denoting 111 

presence and z = 0 absence), and zi,t the latent state for of site i at time t. The state process is 112 

initiated by the initial occupancy probability ψi,1 for site i, then governed by colonization 113 

probability γi,t (the probability that a site i that is not occupied at time t will become occupied 114 

at time t+1), and extinction probability εi,t (the probability that an occupied site i at time t will 115 

become unoccupied at time t+1). We model zi,1 as a draw from a Bernoulli distribution with 116 

probability ψi,1. All subsequent latent states zi,t for t > 1 are draws from another Bernoulli 117 

distribution that combines both possible extinction and colonization events: 118 

zi,t+1|zi,t ~ Bernoulli(zi,t(1 - εi,t)+(1- zi,t)γi,t). 119 

If a site is occupied in year (or season) t it will still be occupied with probability 1– εi,t or if it 120 

is unoccupied it will become occupied with probability γi,t. Each site is surveyed during 121 

secondary occasions (or survey) j within year (or season) t. Site occupancy models rely 122 

satisfying the site closure assumption, whereby the latent occurrence state of a site does not 123 

change within a sampling season, whereas occupancy dynamics (colonization, extinction) 124 

happen between years (or seasons). 125 

In addition to the state process, the observation process leads to the data yi,j,t : the 126 

observed state of site i during secondary occasion (or survey) j within year (or season) t. 127 

Hereafter, we drop the indices when possible to ease the reading. In our study, y = 0 denoted 128 

no detection, y = 1 an unambiguous detection and y = 2 an ambiguous detection. To account 129 

for unambiguous and ambiguous detections, we followed the formulation of Miller et al. 130 



(2013). We defined an additional parameter di,j,t which took the value of 1 if any detection 131 

(ambiguous or unambiguous) was made at site i during survey j within year t, and 0 if not. For 132 

occupied sites, by definition d = 1 denoted a true detection while for unoccupied sites, d = 1 133 

denoted a false positive detection. For both occupied and unoccupied sites, d = 0 meant no 134 

detection was made hence, y = 0. At an occupied site, the possible observations are: no 135 

detection (y = 0), unambiguous detection (y = 1| d = 1) or ambiguous detection (y = 2| d = 1). 136 

For occupied sites, the probability of a true detection (i.e. d = 1) during a secondary sampling 137 

occasion (or survey) is defined as P(d = 1| z = 1), hereafter written as p11. The probability that 138 

a true detection will be classified as unambiguous is given by the probability P(y = 1| d = 1) 139 

hereafter written as b. The probability of an unambiguous detection is p11b and the probability 140 

for an ambiguous detection (i.e. y=2) for an occupied site is p11(1-b). For unoccupied sites (i.e. 141 

z = 0), by definition, unambiguous detections (y = 1| d = 1) do not occur thus, only two 142 

possible observations can be made: an ambiguous detection (y = 2| d = 1), which in this case 143 

is a false positive, or no detection (y = 0). The probability of a false positive detection (i.e. d = 144 

1) occurring at an unoccupied site i during a secondary sampling occasion (or survey) j is 145 

P(d=1| z=0), hereafter written as p10. Then the probabilities, unconditional on state z of a site, 146 

of recording the three possible observed states (y) are: 147 

P(y = 0) = P(z = 1)P(d = 0| z = 1)+P(z = 0)P(d = 0| z = 0)  148 

= ψ(1 - p11)+(1 - ψ)(1 - p10) for no detection; 149 

P(y = 1) = P(z = 1)P(d = 1| z = 1)P(y = 1| d = 1) 150 

= ψp11b for unambiguous detection; 151 

P(y = 2) = P(z = 1)P(d = 1| z = 1)P(y = 2| d = 1) + P(z = 0)P(d = 1| z = 0) 152 

= ψp11(1-b)+(1- ψ)p10 for ambiguous detection. 153 



 154 

2- Simulations 155 

We conducted a simulation study to examine the performance of a dynamic occupancy model 156 

that also accounts for possible false positives (MUA – “Model Unambiguous/Ambiguous”) in 157 

comparison with the dynamic occupancy model that only accounts for false-negatives, i.e. 158 

fitted with unambiguous data only (MU – “Model Unambiguous”). To assess the ability of 159 

both models to estimate ecological parameters, we defined four scenarios in which parameters 160 

which control false positive detections and true detections varied (Table 1).  161 

[Table 1 about here] 162 

First, because the ecological parameters have an influence on the amount of detections 163 

produced, we chose two main situations in which the occupancy probability is either “high” 164 

or “low”. In the “high” occupancy scenario, we set the initial occupancy probability ψ1 at 0.8, 165 

the colonization probability γ at 0.4 and extinction probability at 0.1 to maintain a high 166 

occupancy probability. This scenario would correspond to a fairly well-established species 167 

reflected by its high occupancy probability across time. In the “low” occupancy scenario, we 168 

set the initial occupancy probability ψ1 at 0.1, the colonization probability γ at 0.1 and 169 

extinction probability at 0.1 to maintain a low occupancy probability. This scenario would 170 

correspond to a rare species with a low occupancy probability across time.  171 

The detection parameters also have an influence on the amount of false positive and true 172 

positive detections. First, true detections are controlled by the true detection probability p11 173 

and the probability to classify a true detection as unambiguous b. Therefore, in both “high” 174 

and “low” occupancy scenarios, we consider two situations in which b is either “high” (i.e. set 175 

at 0.8) or “low” (i.e. set at 0.5), leading to four scenarios. For all scenarios, we set p11 at 0.4. 176 

When b is equal to 0.8, most of the true detections are classified as unambiguous. This 177 



scenario would correspond to the monitoring of a species that is not easily mistaken for 178 

another one or done by people trained to recognize accurately the presence signs of the 179 

species. When b is equal to 0.5, a larger part of the true detections is classified as ambiguous. 180 

This scenario would correspond to the monitoring of a species that can easily be mistaken or 181 

done by untrained people, for instance from the general public. Second, the amount of false 182 

positive detections is controlled by the false positive detection probability p10. In all four 183 

scenarios, we looked at how the models performed under seven different values of p10, 184 

varying from 0.01 to 0.3, leading to twenty-eight different simulation scenarios. Finally, 185 

because our main objective was to assess the effect of accounting for ambiguous data, 186 

environmental variation was not included into our simulation study. 187 

For ease of reading, the “high” occupancy “high” b scenario will be referred to as HH; the 188 

“high” occupancy “low” b will be HL; the “low” occupancy “high” b will be LH; and the 189 

“low” occupancy “low” b will be LL.  190 

 In our simulations, we generated data for 100 sites over 5 years and 3 surveys. To 191 

remain realistic in the simulations, the number of surveys were chosen to mimic the case 192 

study characteristics. For each scenario, we simulated S = 500 datasets and we fitted both 193 

models to each dataset. For the initial occupancy probability ψ1, the colonization probability γ 194 

and the extinction probability ε in both models in each scenario, we calculated the relative 195 

bias and mean squared error (MSE). 196 

 197 

3- Case study: Eurasian lynx in the Alps 1995–2014 198 

After its total eradication in the Alps by around 1930, the Eurasian lynx (Lynx lynx) has been 199 

reintroduced multiple times between 1970 and today in Switzerland, Italy, Austria and 200 

Slovenia (Molinari-Jobin et al. 2017). In the 1990s, experts from the seven Alpine countries 201 



set up the international lynx monitoring program SCALP (Status and Conservation of the 202 

Alpine Lynx Population). The monitoring of the elusive lynx, relies on a network of > 1300 203 

trained experts (game wardens, hunters, and naturalists) covering seven Alpine countries. 204 

Signs of presence were classified into three reliability categories: C1 included “hard facts” 205 

data, e.g. dead lynx, lynx removed from the wild as young orphans and put into captivity, 206 

lynx photos and a few genetic samples, C2 are detections that were confirmed by a lynx 207 

expert, (all livestock killed by lynx that was compensated, verified wild prey remains, and 208 

tracks) and C3 are data that could not be verified by experts (unverified tracks and wild prey 209 

remains) and unverifiable data such as any sighting, scats and vocalizations. We treated C1 210 

and C2 data as unambiguous detections, assuming there were no false-positive detections in 211 

these data, while the C3 data were treated as ambiguous detections. From 1995 to 2014, 8415 212 

observations (67%) were classified as unambiguous detections and 3991 (33%) as ambiguous. 213 

If unambiguous and ambiguous detections occurred at a site, we accounted for the 214 

unambiguous detections only. Non-detections were obtained on the sites that were sampled 215 

but where no lynx presence was reported during a survey within a year. In Molinari-Jobin et 216 

al. (2017), a dynamic occupancy model was fitted using unambiguous detections only (i.e., 217 

using our model MU) to assess the effects of environmental covariates on different 218 

parameters of the model and to assess distribution-based population trends. A 10 x 10 km grid 219 

was used to define the distribution units which correspond to the approximate size of female 220 

lynx’ home-range in the Alps (Molinari-Jobin et al. 2017). Surveys were defined as three 221 

replicated two-month periods: November-December; January-February; and March-April. 222 

Here, we used the same data set as did Molinari-Jobin et al. (2017), but in addition we also 223 

used the C3 data and fitted a dynamic occupancy model that combined both unambiguous and 224 

ambiguous detections (MUA). In addition, we used the same covariates for the parameters 225 

that are in common in the models MU and MUA. We considered the effects of forest cover 226 



and distance to the release site on ψ1; the effects of year, forest cover, and number of observed 227 

occupied contiguous neighbors on ε; and the same effects plus that of human density and 228 

elevation on γ. 229 

For the new parameters in MUA, p11 and p10, we used the effect of elevation and forest 230 

cover and a random site-by-winter effect to accommodate unmodeled spatial heterogeneity in 231 

detection rates in every combination of site and winter. A “network” covariate was also 232 

included to account for heterogeneity in sampling effort in time and space. This covariate 233 

took the following values based on the amount of effort for the location and time period – 0: 234 

no information was available regarding the sampling effort in which case we assumed that it 235 

was small but never exactly null, owing to the large number of observers and organizations 236 

that collaborate in the Alpine lynx monitoring (Molinari-Jobin et al., 2012); 1: trained lynx 237 

monitoring network were present on the site; and 2: experienced lynx monitoring network 238 

members were actively searching for lynx signs. We also considered a linear year effect, i.e., 239 

an annual trend, on p10 to investigate whether this probability decreased as observers gained 240 

experience over time. Finally, we kept the probability b to classify a true positive detection as 241 

unambiguous constant. We considered the effect of a covariate as "significant" if its 95% 242 

credible interval (CRI) did not overlap 0.  243 

To evaluate the added value of incorporating the C3 data (ambiguous detections) into 244 

the analysis, we compared the maps of occupancy produced by the two models by calculating 245 

and mapping the difference in the site- and year-specific estimates of realized occurrence   i,t 246 

(MU) –   i,t (MUA). 247 

We provide the codes to run the simulations and fit the models described above in Appendix 248 

S1 and Appendix S2. 249 

 250 



Results  251 

1- Simulations  252 

When looking at the MSE, MUA performed better than MU in all 4 scenarios when the 253 

probability of false positive detection p10 was below or equal to 0.15 (Appendix S3). Above 254 

this value of p10 both models performed equally well except in one scenario and for one 255 

parameter when estimating the ecological parameters: MUA estimated the colonization 256 

probability γ less precisely than MU only in the HL scenario for values of p10 between 0.20 257 

and 0.30. MSE was at its highest value, varying between 0.04 and 0.25 in the HL scenario, 258 

then between 0.04 and 0.14 in the HH scenario. MSE was at its lowest value in the LH 259 

scenario, varying between 0.02 and 0.06, then between 0.02 and 0.11 in the LL scenario.  260 

Both models estimated the initial occupancy probability ψ1 and γ with biases below or equal 261 

to 5% in the three scenarios HH, HL, LH (Appendix S3). In the LL scenario, MU estimated 262 

ψ1 with a bias above 5% (up to 8%) and MUA had a lower bias than MU. Finally, for the 263 

extinction probability ε, MUA performed better or equivalently above 5% in terms of bias in 264 

the scenarios HH and HL, and worse or equivalently above 5% in the LH and LL scenarios.  265 

 266 

2- Lynx case study 267 

When we fitted the MUA with both unambiguous and ambiguous detections (i.e., for C1, 268 

C2 and C3 data), the true detection probability, p11, was higher on sites with a high forest 269 

cover, and appeared to vary according to the season and network (Table 2). Elevation had no 270 

effect on p11. The false positive detection probability, p10, was higher on sites with a high 271 

forest cover and varied according to network (Table 2). While elevation and season had no 272 

significant effect on p10, we found that this probability decreased with time (Table 2). Both 273 



models gave similar estimates for ψ1, ε and γ but MUA produced more precise estimates than 274 

MU (Appendix S4). 275 

The probability b of classifying a true detection as unambiguous was estimated at 0.81 276 

with high precision (CRI 0.79 - 0.83). At the beginning of the study period, in the winter 277 

1995/1996, we estimated the mean occupancy probability ψ over all sites at 0.04 (CRI 0.03- 278 

0.07), p11 was estimated on average at 0.11 (CRI 0.10 - 0.25) and p10 was estimated at 0.006 279 

(CRI 0.004- 0.01). For the end of the study period, the winter 2013/2014, we estimated the 280 

mean ψ at 0.1 (0.0899; 0.11), p11 was estimated on average at 0.17 (0.09; 0.24) and p10 at 281 

0.007 (0.003; 0.010). MUA estimated a few more occupied sites than MU for both winters 282 

1995/1996 and 2013/2014 (between 4 in 1995/1996 to 13 in 2013/2014, see Fig. 1, middle 283 

and bottom panel) and estimated occupied sites that were estimated occupied by MU too. The 284 

additional sites that were estimated occupied from MUA were sites where ambiguous 285 

detections had occurred (Fig. 1, top panel).  286 

 287 

[Table 2 about here] 288 

[Figure 1 about here] 289 

 290 

Discussion 291 

Assessing the distribution of large carnivores at large scales is a central information for 292 

assessing their conservation status, and abundance (IUCN, 2012; Jedrzejewski et al., 2018), 293 

target potential conflict areas (Marucco & Mcintire, 2010) and understand the mechanism of 294 

the distribution’s dynamics for successful management (Eriksson & Dalerum, 2018). 295 

Producing more precise and less biased estimates by adding ambiguous data with a model 296 

accounting for false positive detections can bring new insights into species’ distribution in 297 

places where getting unambiguous data is challenging. Due to the large areas involved, the 298 



monitoring of large carnivores in Europe relies on a large network of both professional and 299 

non-professional observers (Louvrier et al. 2018; Molinari-Jobin et al. 2017). While false-300 

negative detections have received much attention in the species distribution modeling 301 

literature with the rise of occupancy models (MacKenzie et al. 2003; Bailey et al. 2014), 302 

dealing with ambiguous detections has been studied much less (Miller et al. 2011; Chambert 303 

et al. 2015). Here, using simulations we demonstrate that jointly analyzing unambiguous and 304 

ambiguous detections with the appropriate dynamic occupancy models led to increased 305 

precision in the estimates of ecological parameters when p10 was low. When this probability 306 

was above 0.20, both models estimated ecological parameters with almost equivalent 307 

precision which varied between its highest values in the “high” occupancy scenarios and its 308 

lowest values in the “low” occupancy scenarios. Both models produced estimates of 309 

ecological parameters with low bias except for one ecological parameter in one specific 310 

scenario.  311 

When looking at the results of the lynx analysis, we found that adding ambiguous data 312 

helped produce more precise estimates and provided additional spatial information that 313 

improved inference in areas where the species likely occurred at very low density (e.g., at a 314 

colonization front).  315 

 316 

What did we learn from the simulation study? 317 

MUA performed better than MU in most of the scenarios. Two factors seemed to have an 318 

influence on models’ performances: the false-positive probability p10 and the occupancy 319 

probability. In terms of precision, MUA performed better when p10 was low and performed 320 

equivalently when p10 was high. In the case of a low occupancy probability, the estimates of 321 

extinction probability were found to be more biased positively under the MUA than the MU 322 



leading to an overestimation of ε and the distribution. For the other parameters and the other 323 

scenarios, MUA produced estimates with low biases. Whether a species is occurring at “high” 324 

or “low” occupancy probability can often be evaluated prior to the analyses based on the 325 

knowledge of the species ecology or on previous studies. Overall, we recommend always 326 

including ambiguous data, as in most of the scenarios MUA performed better than or 327 

equivalently to MU in terms of both precision and bias for the ecological parameter estimates. 328 

 329 

Shall we account for ambiguous data when studying the distribution of large 330 

carnivores? 331 

Using a model incorporating both unambiguous and ambiguous data, we estimated the effect 332 

of several covariates on the dynamics of Lynx occupancy in the entire range of the Alps. This 333 

SDM exercise allowed assessing trends in the distribution of the species, informing its 334 

conservation status (Guisan & Thuiller 2005). We found covariate effects to be similar in 335 

direction and magnitude to those estimated by Molinari-Jobin et al. (2017) who fitted the 336 

simpler MU to the lynx data with unambiguous detections only (Table 2). We refer the reader 337 

to their study for a detailed description of these effects and their possible biological 338 

interpretation. Our results showed that the probability to make a false positive detection 339 

decreased over time. This could be due to observers remaining in the network becoming less 340 

likely to make false positive detections with time as they became more experienced in 341 

recognizing the species (Jordan et al. 2012). This was corroborated by the fact that the 342 

number of ambiguous detections decreased over the duration of the study period (Molinari-343 

Jobin et al. 2012). Additionally, the use of camera trapping has increased over time, leading to 344 

an increasing amount of C1 detections and therefore diminishing the proportion of C3 in the 345 

datasets (Molinari-Jobin et al. 2017). The learning process of citizens in scientific monitoring 346 



programs has been studied in the past (Dickinson et al. 2012; Jordan et al. 2012) and it was 347 

found that the general public not only learned through participation but also became more 348 

aware of the general ecological issues and became more prone to understand scientific 349 

research (Bonney et al. 2009). We found that the probability to make a true detection was 350 

similar to the probability to detect the species in MU fitted by Molinari-Jobin et al. (2017). 351 

This makes sense because the probability to detect the species in MU is equal to the 352 

probability to make a true detection multiplied by the probability to classify a detection as 353 

unambiguous. We also found that there was a probability of 0.8 to classify a true detection as 354 

unambiguous. This may be due to the fact that observers in the network are highly competent 355 

at detecting the species and produce reliable data. This could also reflect that it is relatively 356 

easy to identify the signs of presence of lynx because there is almost no confusion possible 357 

with other species present in the area. Whenever the focus species can be mistaken for another 358 

one, if data quality is not sufficient (e.g. tracks in the snow for wolves which can be mistaken 359 

for dogs), true detections can be classified as ambiguous. There can also be false positive 360 

detections coming from misidentification when b is low. In this case, the amount of true 361 

detections in ambiguous data will be non-negligible. In a case where b is low and only 362 

unambiguous data is used, a large part of true presences can be missed and the resulting 363 

distribution will be underestimated (Miller et al. 2011).  364 

The occupancy estimates under both models agree to suggest that the lynx case study 365 

corresponds to the LH simulation scenario (compare Table 1 to Appendix S4). When 366 

inspecting the distribution maps produced by MUA, we saw that adding ambiguous detections 367 

brought new and useful information. Some sites were estimated as occupied by MUA, while 368 

these same sites were estimated as non-occupied by MU (Fig 1). Because of the low 369 

occupancy of the lynx and its elusive behavior, the number of times the species was detected 370 

was very low. Because the probability to classify a detection as unambiguous b was high, 371 



only few true detections were classified as ambiguous, which might explain why adding them 372 

did not change the parameter estimates but helped producing more precise estimates. In turn, 373 

it provides new insights in the context of managing a protected species (Guillera-Arroita et al. 374 

2015). The sites we found to be occupied thanks to the incorporation of ambiguous detections 375 

could likely represent areas where the species is currently expanding. These same sites also 376 

point to places where lynx have not occurred before and negative interactions might occur due 377 

to the novelty of lynx presence. Sites that appeared occupied after including ambiguous data 378 

can inform the prediction of location of potential conflicts. Finally, if the objective is mapping 379 

the colonization front to, e.g., mitigate conflicts, ambiguous data should be included.  380 

 381 

Recommendations 382 

Dynamic occupancy models in general provide a powerful and natural analytical framework 383 

for changing species distributions (Kéry et al. 2013). More specifically, dynamic occupancy 384 

models accounting for misidentification represent a powerful method to deal with detections 385 

that cannot be categorized as certain in species distribution modeling. We recommend careful 386 

categorization of field observations into unambiguous or ambiguous detections, for instance 387 

by using several experts to classify the detections and use a standardized filtering 388 

classification process, to avoid false positive detections mistakenly classified as reliable data. 389 

This filtering process also allows avoiding too many detections that cannot be verified by 390 

rejecting some of them. If some detections cannot be checked by experts for instance and 391 

cannot be classified as unambiguous, observers might need to visit the sites where these 392 

detections were made to get more reliable detections. Even though occupancy models can 393 

deal with ambiguity, efforts should be put in the survey design and data collection to avoid 394 

the production of false positive detections or at least reduce their proportion. In the case of 395 



analyzing data from citizen-science, models accounting for false-positive detections can be a 396 

good tool to assess species distribution if a classification of detections is made (e.g.: 397 

unambiguous vs ambiguous). In the case of a species occurring at low density such as the 398 

Eurasian lynx, additional information can bring new insights into the species distribution and 399 

help targeting specific sites where the species is likely to occur in the future.  400 

 401 
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Table 1: Parameters values for the simulation scenarios  486 

Scenarios Initial occupancy 

probability ψ1 

Colonization 

probability γ 

Probability to classify 

a true detection as 

unambiguous b 

False positive 

detection 

probability p10 

“high” occupancy 

“high” b (HH) 

0.8 0.4 0.8 0.01 

0.5 

0.10 

0.15 

0.20 

0.25 

0.30 

“high” occupancy 

“low” b (HL) 

0.8 0.4 0.5 0.01 

0.5 

0.10 

0.15 

0.20 

0.25 

0.30 

“low” occupancy  

“high” b (LH) 

0.1 0.1 0.8 0.01 

0.5 

0.10 

0.15 

0.20 

0.25 

0.30 

“low” occupancy 

“low” b (LL) 

0.1 0.1 0.5 0.01 

0.5 

0.10 

0.15 

0.20 

0.25 

0.30 

 487 
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Table 2: Parameters estimates for the detection probabilities from both dynamic occupancy models accounting for unambiguous data only and 491 

accounting for unambiguous and ambiguous data; the first column corresponds to the parameters estimates for the detection probability from the 492 
model with unambiguous data only, the second column correspond to the parameters estimates for the probability of correctly detecting the 493 

species given a site is occupied from the dynamic occupancy model accounting for unambiguous and ambiguous data, the last columns 494 
correspond to the parameters estimates for the probability of incorrectly detecting the species given a site is unoccupied; posterior means, 495 

standard deviation and the lower and upper bound of the 95% Bayesian credible interval are given. Effects with 95% Bayesian credible intervals 496 

that do not contain zero are in bold. 497 

  498 



Model with unambiguous data only (MU) Model with unambiguous and ambiguous data (MUA) Model with unambiguous and ambiguous data (MUA) 

Detection 

probability p 

mean sd 2.5% 97.5% 

true detection 

probability p11 

mean sd 2.5% 97.5% 

false positive detection 

probability p10 

mean sd 2.5% 97.5% 

Intercept -3.88 0.46 -4.88 -3.04 Intercept -3.14 0.47 -4.15 -2.33 Intercept -5.37 0.29 -5.96 -4.80 

Effect of elevation -0.11 0.05 -0.20 -0.01 Effect of elevation -0.07 0.04 -0.16 0.01 Effect of elevation -0.02 0.06 -0.13 0.09 

Effect of forest 0.63 0.07 0.50 0.75 Effect of forest 0.67 0.06 0.55 0.79 Effect of forest 0.37 0.06 0.26 0.49 

Effect of season 2 0.26 0.07 0.12 0.40 Effect of season 2 0.22 0.07 0.08 0.35 Effect of season 2 -0.14 0.12 -0.38 0.09 

Effect of season 3 0.42 0.07 0.28 0.57 Effect of season 3 0.42 0.07 0.29 0.56 Effect of season 3 -0.04 0.12 -0.25 0.19 

Effect of network 1 1.21 0.21 0.77 1.60 Effect of network 1 0.92 0.20 0.54 1.31 Effect of network 1 0.37 0.14 0.09 0.66 

Effect of network 2 2.37 0.23 1.93 2.84 Effect of network 2 1.95 0.22 1.53 2.40 Effect of network 2 2.63 0.30 2.02 3.20 

Residual effect 0.86 0.10 0.65 1.04 Residual effect 0.90 0.06 0.77 1.01 Residual effect 0.42 0.21 0.18 0.92 

Effect of country 

France 

-3.49 0.31 -4.09 -2.87 

Effect of country 

France 

-2.76 0.28 -3.32 -2.21 

Effect of country 

France 

-5.55 0.25 -6.05 -5.06 

Effect of country 

Italy 

-3.40 0.24 -3.86 -2.94 

Effect of country 

Italy 

-2.85 0.23 -3.31 -2.40 

Effect of country 

Italy 

-5.55 0.24 -6.01 -5.07 

Effect of country 

Switzerland 

-2.87 0.23 -3.32 -2.42 

Effect of country 

Switzerland 

-2.23 0.22 -2.68 -1.81 

Effect of country 

Switzerland 

-4.75 0.26 -5.25 -4.25 

Effect of country -4.00 0.25 -4.48 -3.51 Effect of country -3.25 0.21 -3.67 -2.84 Effect of country -5.62 0.23 -6.07 -5.16 



499 

Austria Austria Austria 

Effect of country 

Slovenia 

-4.54 0.35 -5.23 -3.86 

Effect of country 

Slovenia 

-3.83 0.34 -4.51 -3.19 

Effect of country 

Slovenia 

-4.62 0.28 -5.17 -4.05 

Effect of country 

Germany 

-4.99 1.39 -8.28 -2.65 

Effect of country 

Germany 

-3.93 1.52 -7.41 -1.51 

Effect of country 

Germany 

-6.11 0.49 -7.21 -5.23 

 

    

 

    

Effect of time in 

years 

-0.04 0.02 -0.09 -0.01 
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