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A variational model of quasistatic crack evolution is proposed[ Although close in spirit to Gri.th|s theory 
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quanti_ed\ as demonstrated on explicitly computable examples[ Furthermore the model lends itself to 
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0[ INTRODUCTION

Surface energy and energy release rate\ the two pillars of brittle fracture theory\ stand
_rm in the landscape of contemporary continuum mechanics[ Gri.th "0819#\ their
brilliant architect\ linked the existence of cracks to surface energy\ the macroscopic
manifestation of lattice debonding\ and the propagation of cracks to the competition
between that surface energy and the restitution of bulk energy during an in_nitesimal
increase of the crack length[ Pretty soon\ the structure was completed "cf Sih and
Liebowitz\ 0857# and became a rather formidable citadel[

The fundamental quantities are the toughness "surface energy density#\ denoted by
Gc "or 1g#\ and by k in the present study\ and the energy release rate usually denoted
by G[ Propagation will take place if G�Gc\ and will not if G³Gc[ The literature is
of various opinion as to what happens wheneverG×Gc ^ in any case\ the propagation
is then labeled unstable\ see Nguyen "0876#[ In the present paper\ we will remain
focused on one simple task\ the capacity for Gri.th|s theory to predict crack growth[
We claim that it is a somewhat unreliable instrument on three grounds ]

"i# Crack initiation\
"ii# Crack path\
"iii# Crack jumps along the crack path[

Let us brie~y illustrate the above mentioned shortcomings and discuss the merits
of available additional tools[
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To illustrate "i# we consider a two!dimensional "1!D# domain _lled with a homo!
geneous\ isotropic and linearly elastic material\ and containing a straight crack\ of
length l[ A mode I excitation of the sample is produced by a load of intensity t[ For
a small crack in a neighborhood of a regular point\ the stress intensity factor KI is of
the order of tzl and Irwin|s formula yields an energy release rate G of the order of
t1l[ Gri.th|s criterion will permit propagation for intensities of the order of 0:zl[
Letting l tend to 9\ we conclude that no crack can appear without an initial crack[ Of
course\ this has to be tempered by the possible presence of singularities in the solution
to the crackless elasticity problem ^ see Subsection 3[3[

The inadequacy of the theory to predict crack path ðitem "ii# in our three!pronged
listŁ is easily evidenced[ In a 1!D setting\ the crack tip is parameterized by two
functions of time\ while Gri.th|s criterion at best provides one constraint[ Additional
tests have to be devised so as to determine the proper branching o} of the crack\ and\
to our knowledge\ the issue is far from settled\ see Amestoy "0876#\ Leblond "0878#
or Amestoy and Leblond "0878# for an insightful analysis of branching in the 1!D\
isotropic and homogeneous case[ In any case\ these analyses bring in extraneous
ingredients\ which are furthermore limited in scope to very speci_c classes of cracks\
essentially piecewise C

0 curves[ We will propose a theory that does not a priori
constrain the topology of the cracking process\ even if some regularity properties of
the crack may be obviated a posteriori\ although this is\ as of yet\ a largely open
question[

To illustrate "iii#\ we consider\ once again\ the example of a 1!D domain _lled with
a homogeneous\ isotropic\ and linearly elastic material\ and containing a straight
initial crack[ A mode I excitation of the sample is produced by a load of intensity t
and we assume that the crack path will remain straight[ If the potential energy is a
concave function of the crack length\ then Gri.th|s criterion predicts that the crack
will start growing at some time t9\ but\ since G"t#× k when t× t9\ the criterion does
not permit further determination of the crack length after t9[ The crack is then called
unstable\ and the analysis is subsequently interrupted[ Our formulation however
investigates non!smooth crack evolutions and will not stall in such a setting\ but will
follow up on the crack trajectory after a critical time which may di}er from that
predicted through Gri.th|s criterion[

Formulated in and only in a quasistatic setting\ the method suggested in Section 1
frees itself of the usual constraints of Gri.th|s theory\ a preexisting crack and a well!
de_ned crack path\ but\ of course it does so at a price\ because it presupposes utter
faith in an unsubstantiated postulate\ that of global energy minimization for real
evolutions[ In other words\ it is assumed that\ as each time\ the loaded sample wants
to minimize the sum of its bulk and surface energies[ Such a postulate is a rather
common occurrence in contemporary material science ^ see e[g[ the references at the
beginning of Subsection 1[1[ But consensus is no guarantee of truth\ and the reader
should ponder the fairness of such a criterion which further provides no clue as to the
ultimate challenge to the citadel\ i[e[\ the dynamic case[ On a more personal note\ we
follow\ in our own footsteps\ prior work in a similar vein by Francfort and Marigo
"0882# or by Fonseca and Francfort "0884#[ Note also that the seeds of such an
approach are present in Ehrlacher and Fedelich "0878#[

As will be demonstrated in Subsection 4[1\ the proposed formulation can only
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handle\ thus far\ imposed boundary displacements\ but it does so with some degree
of generality and e.ciency[ It applies to any dimension\ and any elastic material[ It
takes into account the whole lifespan of the cracking process from inception to
complete failure[ It also applies to settings such as delamination\ _ber debonding and
surface cracks[ It is open to non!interpenetration\ although the present study is mostly
devoted to the no!contact case for the crack lips[ The model is presented in Section
1[ Section 2 investigates explicit solutions in two model problems[ Section 3 examines
the general properties of the proposed model ^ Subsection 3[0 focuses on initiation
and failure ^ Subsection 3[1 compares it to Gri.th|s theory ^ Subsection 3[2 is a
continuation of that comparison and studies in a detailed manner the brutal vs
progressive character of crack growth ^ Subsection 3[3 revisits the role of singularities
in our framework[ Section 4 is the problem child ] Subsection 4[0 points to possible
extensions of the model\ while Subsection 4[1 reviews its drawbacks\ and suggests
hopeful "but not yet operative# remedies[ Finally\ the short Section 5 glides over the
mathematical and numerical questions pertaining to the proposed model ^ it is not an
attempt to o}er any kind of mathematical analysis of the proposed model\ but rather
a brief overview of possible mathematical and numerical venues\ together with a
partial list of connected open problems ^ consequently the mathematically inclined
reader is urged to consult the references provided there so as to attain amore thorough
understanding of the challenges at hand[

1[ A VARIATIONAL FORMULATION OF BRITTLE FRACTURE

Throughout the paper\ V denotes a bounded connected open domain of R
N\

0¾N¾ 2\ with smooth boundary 1V and such that V is the interior of VÞ[ As such V
represents the crack!free reference con_guration of an elastic body[

In a _rst subsection the various ingredients of the formulation are introduced ^ the
ensuing evolution problem is described in the second subsection[

1[0[ The in`redients

Our main partner in this analysis is the crack itself\ or rather the family of possible
cracked states[ In classical fracture mechanics\ the family members are very few and
pretty much homothetic clones of one another ^ by contrast\ our family is rather
extended\ since it is made up of all closed subdomains of VÞ\ independently of their
shape[ Our family has thin members like lines in 1!D or surfaces in 2!D ^ it admits
weird members like clouds of points\ and marginal members like edge cracks ^ it is
however somewhat prejudiced against fat members\ i[e[\ sets of dimension greater
than 0 in 1!D or 1 in 2!D\ because those\ as will be seen below\ do consume too much
energy[

An energy is assigned to each member of the family[ In the spirit of Gri.th\ that
energy is surface!like and it consists of an average over the crack of the toughness of
the material\ which is assumed to be a characteristic feature of that material[ In other
words\ if k"x# represents the energy required to create an {{in_nitesimal|| crack at the
point x of VÞ\ then the surface energy associated to the crack GWVÞ is given by
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Es"G#� gG k"x# dHN−0"x#\ "0#

where H
N−0 denotes the N−0!D Hausdor} measure "a {{surface|| measure which

amounts to the usual surface measure for smooth enough hypersurfaces\ see Evans
and Gariepy\ 0881#[

Remark 1[0[ The energy density k"x#\ the toughness of the given material\ is assumed
to be strictly positive "and even bounded away from 9#\ so that energy is created
by introducing additional cracks[ Furthermore k"x# can take the value �\ which
corresponds to a material that would not be breakable at the given point x[ This will
prove useful when analyzing debonding in a composite material[

Remark 1[1[ In Subsection 4[0 we will discuss a variant of "0# which departs from
Gri.th|s model ^ most notably we will introduce a possible dependence of k upon the
normal vector to the crack or the jump of the displacement _eld across the crack ^ of
course\ we will then have to be somewhat more restrictive in the criteria that de_ne
our family of cracks so as to lend a meaning to objects such as the normal vector[

Remark 1[2[ The reader will not have failed to note that closed subsets of VÞ with
Hausdor} dimension strictly greater than N−0 cannot be created unless an in_nite
amount of energy is spent on their behalf[ As will be seen shortly\ such a feature
prohibits their presence[

We now describe the possible loadings that the sample can undergo[ It will become
apparent in Subsection 4[1 that the model does not know\ as of yet\ how to handle
forces[ This rather unfortunate situation will be elaborated upon in Subsection 4[1 ^
there\ we will do our best to minimize the signi_cance of such a restriction upon the
validity of our model[ Consequently\ boundary displacements U on all or part 1dV of
the boundary are the only admissible type of loadings[ Speci_cally\ let G be the actual
crack at a given time\ the boundary condition is then expressed formally as follows ]

"i# on 1dV:G\ v�U\ for all kinematically admissible displacement _elds\ where U is
the displacement _eld which is applied to 1dV\

"ii# on 1dVKG and on GKV no displacement is imposed and no boundary con!
ditions are imposed on the kinematically admissible displacement _elds\

"iii# on 1V:1dV no displacement is imposed and no boundary conditions are imposed
on the kinematically admissible displacement _elds[

We should emphasize that we have expressed our boundary conditions as "absence
of# restrictions on the kinematically admissible displacement _elds rather than as
restrictions on the actual displacement _eld and\ correspondingly\ on the Cauchy
stress "i[e[\ s = n�9 where no forces or displacements are applied#[ This is so because
our formulation will be variational and it is not clear that the ensuing crack possesses
enough regularity to lend a meaning to Cauchy stresses[

Remark 1[3[ The second item on the above list of possible boundary conditions
expresses a no!contact condition on the {{lips|| of the crack[ In the spirit of Remark
1[1 more realistic conditions such as unilateral contact "with or without friction# can

4



be imposed at the expense of restricting the class of admissible cracks "cf Subsection
4[0#[ From now onward\ we refer to the adopted setting as the no!contact case[

In conclusion\ the kinematically admissible set of displacement _elds is a function
of both the loading U and the crack G[ Its precise de_nition requires a bit of care
because\ in the absence of smoothness of V:G\ the notion of trace of a displacement
_eld on 1"V:G# is debatable[ We assume that 1dV is such that there exists a smooth
domain Vd containing V such that VdK 1V� 1dV[ We also assume that U can be
extended to an element Ud of H

0"Vd ^R
N#*the usual Sobolev space of functions of

L1"Vd ^R
N# with weak derivatives in L1"Vd ^R

N#*so that Ud=1dV �U[ We then de_ne
the set of kinematically admissible displacement _elds as

C"G\U#� "v $H0"Vd:G ^RN# = v�Ud in Vd:VÞ#[ "1#

Remark 1[4[ The above de_nition implicitly forces the admissible displacements to
take the value U on 1dV:G\ provided that such a trace makes sense[

The third ingredient on our agenda is material behavior[ In all that follows the
material is assumed to behave elastically and to only undergo in_nitesimal trans!
formations[ Note that the extension to _nite elasticity is easily performed in the
variational framework proposed below ^ we will not dwell any further on _nite trans!
formations but refer the interested reader to Fonseca and Francfort "0884# for a
mathematical study of a "hopefully# closely related model within that framework[
The extension to inelastic behavior however should be considered well beyond the
scope of the model[

If o"v# denotes the symmetrized gradient of v\ an elastic energy densityW"x\ o"v#"x##
is thus given at each point x of V:G[ We further assume the following properties for
W ]

"i# W"x\ j# is a Carathe�odory function*i[e[\ measurable in x and continuous in j

for almost all x*strictly convex and homogeneous of degree p\ p× 0\ in j\
"ii# a=j=p¾W"x\ j#¾b=j=p¦0#\ a\ b× 9\ j symmetric[

In fact we will mostly devote our attention to linearized elasticity whereupon "i#\
"ii# are replaced by

W"x\ j#� 0

1
A"x#j = j\ "2#

with

A"x# symmetric and s[t[ aI¾A"x#¾bI for a[e[ x $V[

Note however that all obtained results are immediately generalizable to the non!
linear "but convex and p!homogeneous# setting[

We accordingly de_ne the bulk energy as

Ed"G\U#� inf
v$C"G\U# gVG

W"x\ o"v#"x## dx[ "3#

Remark 1[5[Note that the bulk energy is de_ned as an in_mum\ and not a minimum ^
in the absence of regularity properties for 1V:G\ it is not clear that the in_mum is
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attained because Korn|s inequality may not hold on such a domain[ Of course\ when
the elastic equilibrium of VG�V:G is achieved by a displacement _eld u $C"G\U#\
then the bulk energy is ÐVG

W"x\ o"u#"x## dx[
Note also that the independence of Ed"G\U# upon the choice of the extended

domain Vd remains to be established[

Remark 1[6[ The energies Ed and Es satisfy the following elementary properties ]

"i# Es is strictly monotonically increasing in G\
"ii# Ed is monotonically decreasing in G for any _xed U\
"iii# whenever "2# is satis_ed\ Ed is positively homogeneous of degree 1 in U[

The total energy of the body for a given crack G and a given loading U is then
given by

E"G\U#�Ed"G\U#¦Es"G#[ "4#

1[1[ The evolution law

We now propose to follow the response of the body to a time!dependent loading[
To this e}ect a time!parameterized loading U"t# is applied to 1dV[ Assume that a
"maybe empty# initial crack G9 is present in the body at the onset of the loading
process[ Our goal is to determine the evolution of the crack"s# during the loading\
i[e[\ to obtain the time!parameterized mapping G"t#[ The basic idea is as follows[ At
a given time t\ and for the corresponding loadingU"t# the crack G"t# will be the closed
subset ofVÞ which minimizes E"G\U"t## among all cracks Gwhich contain all previous
G"s#\ s³ t[

There are two important features in this formulation[ On the one hand\ the driving
principle is global energy minimization[ Such a principle is not dictated by any known
thermodynamical argument ^ it is rather a convenient postulate which provides for
useful insight into a variety of behaviors ranging from martensiticÐaustenitic phase
transitions\ see Ball and James "0876#\ to damage\ see Francfort and Marigo "0882#\
or magnetostriction\ see James andKinderlehrer "0882#[ [ [ [ Amore realistic approach
that would investigate local minimizers is doomed for want of the necessary math!
ematical apparatus[ On the other hand\ the geometry and size of the crack is limited
by its predecessors ^ this is an attempt at expressing the irreversibility of the cracking
process\ and the absence of healing[

If the conceptual principle is fairly clear\ its precise formulation is not so easily laid
out[ We proceed in two steps\ the _rst of which addresses time!discretized evolutions\
while the second pertains to time!continuous evolutions\ albeit for a speci_c subclass
of all possible loadings[

Law 1[7 Discrete evolutions ]

Assume that G9 is given[ Let Ui\ 0¾ i¾ p be a sequence of loadings[ Then\ the
corresponding cracks Gi have to satisfy

Gi wGi−0\ E"Gi\Ui#¾E"G\Ui# for every GwGi−0[

As such\ the evolution is discretization!dependent[ The real evolution should be
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construed as a limit of the discrete evolution as the time!step tends to 9[ It is not so
clear to us that a precise limit can then be derived for all loading scenarios and we
will not venture down such a path\ but rather will investigate a subclass of loadings for
which the limit process is "at least formally# sound\ that of monotonically increasing
loadings henceforth labeled {{MIL||[ Assume therefore that the loading is of the form

U"x\ t#� 6tU9"x#\ t− 9\

9 t³ 9\

for all x|s on 1dV[
There is nothing remarkable about the linear dependence of U upon t\ and any

increasing function f"t# of t would equally do[

Law 1[8 Continuous monotone evolutions ]

Let U"t# be a MIL[ Then\ the corresponding cracks G"t# have to satisfy

"i# G"t#Wwith t\ and G"t# �G9\ t³ 9\
"ii# E"G"t#\U"t##¾E"G\U"t##\ for all Gwks³tG"s#\
"iii# E"G"t#\U"t##¾E"G"s#\U"t##\ for all s³ t[

The above Law immediately calls for a few comments[ The _rst condition is merely
the requirement that the crack increases with time from its original state G9[ We will
actually show in Remark 1[09 below that G"9# �G9[ That the energy should be
minimumamong all possible cracks at a given time is expressed in the second condition
which can be formally derived from Law 1[7 upon replacing ti by t and Gi−0 by
ks³tG"s#[ The third condition is somewhat more mysterious and\ if comparing Law
1[8 to Law 1[7\ does not seem to stem from the discrete evolution law[When condition
"iii# is removed from Law 1[8\ the evolution is under!constrained and may generate
too many solutions as shown in Remark 3[07 below[ It is shown in Remark 1[00
below to be a " formal# consequence of Law 1[7 in the case of MIL|s[

Remark 1[09[ According to condition "i#\ G"9#wG9\ thus\ Es"G"9##−Es"G9#[ But
according to condition "ii#\ E"G"9#\ 9# �Es"G"9##¾E"G9\ 9# �Es"G9#\ thus\
Es"G"9## �Es"G9#\ which implies\ in view of Remark 1[0\ that G"9# �G9[

Remark 1[00[ If U"t# is a MIL\ then\

G?wG and E"G?\U"t##¾E"G\U"t##cE"G?\U"s##¾E"G\U"s##\ s− t[ "5#

Indeed\ according to Remark 1[6\

E"G\U"s##−E"G?\U"s##�E"G\U"t##−E"G?\U"t##

¦"s1−t1#"Ed"G\U9#−Ed"G?\U9##−E"G\U"t##−E"G?\U"t##[

Then\ if Gi is a solution to the discrete evolution problem for Ui\ a discretized MIL\
"5# implies that E"Gi\U"t##¾E"Gi−0\U"t##\ for all t− ti\ from which it is immediately
deduced that E"Gi\Ui#¾E"Gj\Ui#\ j¾ i[

Condition "iii# in Law 1[8 is then formally obtained upon replacing ti by t and Gk\
k¾ i\ by G"s#\ s¾ t[
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2[ A FEW ANALYTIC SOLUTIONS

As a _rst test of the proposed formulation\ two examples for which exact solutions
can be computed are presented below ] that of a three!dimensional "2!D# cylinder
under uniaxial tension\ and that of the tearing of a reinforcement in a cylindrical
domain[ The canonical one!dimensional "0!D# case is not discussed here ^ see
Francfort and Marigo "to appear#[

In both settings the loadings are assumed to be MIL|s[

2[0[ Uniaxial tension of a 2!D cylinder

Assume that V�S×"9\L#\ with S a smooth open connected domain of R1\ that
the material is isotropic and homogeneous with Young|s modulus E\ Poisson|s ratio
n\ and fracture toughness k"x# �k[ Assume also that G9�/\ and that u2�9 on
S×"9# while u2� t on S×"L#[ In other words\ the boundary conditions look\ a
priori formally\ like ]

8
u2 � 9 and s02 �s12 � 9 on S×"9#\

u2 �t and s02 �s12 � 9 on S×"L#\

s = n� 9 on 1S×"9\L#[

Correspondingly\ upon de_ningVd�S×"−d\L¦d#\C"G\ t# � "v $H0"Vd:G ^R2# ^
v2�9 in S×"−d\ 9#\ v2� t in S×"L\L¦d##[

An easy computation would show that

u"/\ t#"x#�−0ntx0

L
¦a01 e0−0vt x1

L
¦a11 e1¦t

x2

L
e2\

s"/\ t#"x#�E
t
L
e2 & e2\

where a0 and a1 are two arbitrary constants that characterize the rigid transverse
translations of the cylinder[ The corresponding energies are

Es"/#� 9\ E"/\ t#�Ed"/\ t#�
0

1
E
t1

L
=S=[ "6#

Let G be an arbitrary crack and denote by P"G# its projection onto S ^ P"G# is H1!
measurable because it is compact ^ de_ne U"G# �H

1"P"G##:=S=[ The energy of the
body in an arbitrary cracked state is not explicitly computable but an estimate from
below will prove su.cient for our purpose[ This is the object of the following

Proposition 2[0[ E"G\ t#−"0−U"G##E"/\ t#¦U"G#k=S=[

Proof[ Firstly\

Es"G\ t#−U"G#k=S=\ "7#

the inequality being strict unless H1"P"G## �H
1"G#\ that is unless G is transverse[ If

U"G# �0\ "7# implies the proposition while\ if not\ i[e[\ if P"G#�S\

8



Ed"/\ t#−Ed"G\ t#

� inf
v$C"G\t#

0

1 gVG

Ao"v# = o"v# dx

� inf
v$C"G\t#

sup
t$ðL1 "VG#Ł

8
s
gVG
0t = o"v#− 0

1
A−0t = t1dx

− sup
t$ðL1 "VG#Ł

8
s

inf
v$C"G\t# gVG

0t = o"v#− 0

1
A−0t = t1dx

− inf
v$C"G\t# gVG

0s"t# = o"v#− 0

1
A−0s"t# =s"t#1dx\ "8#

where

s"t#� 69\ if x $P"G#×"9\L#\

s"/\ t#\ otherwise\

is an admissible stress _eld[ Now each element of C"G\ t# has a third component with
a well!de_ned trace on S:P"G#×"9 "resp[ L##\ namely 9 "resp[ t#[ Thus\ since the only
non!zero component of s"t# is its 2×2 component\

gVG

s"t# = o"v# dx� gVG

s22"t# =
1v2
1x2

dx

� gS�P"G#×"9\L#

s22"/\ t# =
1u2"/\ t#

1x2

dx

� gS�P"G#×"9\L#

s"/\ t# = o"u"/\ t## dx[

Thus\

Ed"G\ t#− gS�P"G#×"9\L#

s"/\ t# = o"u"/\ t##−0:1A−0s"/\ t# =s"/\ t## dx

� "0−U"G##E"/\ t#\ "09#

which\ together with "7#\ proves the proposition[ '

We are now in a position to prove the following

Proposition 2[1[ The cylinder remains crack!free as long as the loading parameter t
remains strictly less than tr � ðz1"kL:E#Ł[ For t× tr\ a solution!crack consists in
cutting the cylinder into two pieces along an arbitrary transverse section[

Furthermore this is the only type of solution in the class of cracks for which the
in_mum in "3# is attained[

Proof[ According to "6#\ E"/\ t#³k=S=\ as long as t³ tr\ so that\ by virtue of
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Proposition 2[0\ E"G\ t#×E"/\ t# for such times\ except if U"G# �9[ But then\
according to "8#\ "09#\ Ed"G\ t# �Ed"/\ t#\ hence\ if H1"G#� 9\ E"G\ t#×E"/\ t#[
Whenever t× tr\ E"/\ t#×k=S=\ so that the same proposition implies that
E"G\ t#×k=S= except if P"G# �S\ H1"G# � =S=\ and Ed"G\ t# �9[ But then the dis!
placement _eld that minimizes "3#\ when it exists\ is necessarily a rigid body dis!
placement "o"u# �9 on Vd:G# which also lies in C"G\ t# ^ this is impossible unless
G�SÞ×"z#\ z $ ð9\LŁ[ '

Remark 2[2[ We do not know whether there might be solutions for t× tr which
should be {{spurious transverse cracks|| without bulk energy such that P"G# �S and
H

1"G# � =S=\ but for which the in_mum 9 in "3# is not achieved by any admissible
displacement _eld[

2[1[ Tearin` of a reinforcement

A 2!D cylinder V�S×"9\L# is investigated ^ its cross!section S is an annulus of
inner "resp[ outer# radius Ri "resp[ R9# ^ it is made of a homogeneous\ isotropic
elastic material with Lame� coe.cients l\ m and toughness k[ A rigid\ unbreakable
reinforcement is bonded to the inner surface Si of the cylinder[ Assume that the
cylinder is initially crack!free "G"t# �9\ t³ 9#\ and that the followingMIL is applied ]

u0 �u1 �s22 � 9 on S×"9#\S×"L# ^ u� 9 on S9 ^ u� te2 on Si\

where S9 denotes the outer surface of the cylinder[ Once again these boundary
conditions are formal and they have to be rewritten in terms of a set of kinematically
admissible displacement _elds

C"G\ t#� "v $H0""SkS9"d#kSi"d##×"−d\L¦d# ^R2# ^

v0 �v1 � 9 on "SkS9"d#kSi"d##×""−d\ 9#k"L\L¦d##\

v� 9 on S9"d#×"9\L#\ v� te2 on Si"d#×"9\L##\

where Si"d# is the annulus of inner radius Ri−d and outer radius Ri and S9"d# is the
annulus with inner radius R9 and outer radius R9¦d[

The result is the following

Proposition 2[3[ The cylinder remains crack!free as long as

t³ tr 0X 1
kRi

m
log 0R9

Ri 1\
while there is total debonding of the reinforcement from the inner surface of the
cylinder as soon as t× tr[

Proof[ The proof is very similar to that of Proposition 2[1 ^ it is sketched below[

The crack!free equilibrium _elds are
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u"/\ t#�
log"r:R9#

log"Ri:R9#
te2\ s"/\ t#�

tm
1r log"Ri:R9#

"er & e2¦e2 & er#\

with corresponding energies

E"/\ t#�Ed"/\ t#�pmL
t1

log"R9:Ri#
[

A lower bound on the energy E"G\ t# is established by projecting G onto the cylinder
with radius Ri ^ if that projection is denoted by P"G#\ we obtain
E"G\ t#−"0−U"G##E"/\ t#¦U"G#k=Si=\ where U"G# �H

1"P"G##:=Si=[
The result is then obtained through an argument identical to that developed in the

proof of Proposition 2[1[ '

3[ GENERAL PROPERTIES OF THE PROPOSED MODEL

This section investigates various characteristics of the crack evolution as predicted
by the model and compares them with those foreseen by Gri.th|s theory of brittle
fracture[ Our analysis is\ once again\ restricted to MIL|s\ i[e[\ to boundary loadings
of the form

U"x\ t#� 6tU9"x#\ t− 9\

9\ t³ 9[

3[0[ Crack initiation and failure of the sample

We propose to demonstrate in this subsection that the model predicts crack
initiation in a crack!free environment\ in striking contrast with Gri.th|s theory ^ we
also evidence eventual mechanical failure under ever!increasing loadings[ Although
our main setting "the only one we discussed as of yet# is the no!contact case\ we will\
in this subsection\ express our results independently of the no!contact hypothesis\ so
as to demonstrate their applicability to the more general settings alluded to in Sub!
section 4[0[

To this e}ect we introduce the set of bulk!free states for a given loading U\ namely

F"U#� "G ^Ed"G\U9#� 9#[ "00#

Note that\ if G is an element ofF"U#\ then any G?wG is also an element ofF"U#[

Remark 3[0[ There are many examples of sets in F"U#[ For example\

"i# 1dV belongs to F"U#\ since\ in such a case\ u�9 is a kinematically admissible
_eld\

"ii# Any Gw 1dV belongs to F"U#\
"iii# In the 2!D traction problem investigated in Subsection 2[0\ any crack that splits

the cylinder into connected components such that S×"9# and S×"L# do not
live in the closure of the same component belongs to F"U#[

Note however that\ if unilateral conditions are to replace the no!contact condition
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adopted in most of this study "cf Remark 1[3 and Subsection 4[0 below#\ then F"U#
might be empty[

Let us denote by ti the initiation time\ i[e[\ the time when the crack _rst expands
from its original site\

ti � sup "t ^G"t#�G9#[

Recall that G9 may be empty[ If ti�9\ the sample experiences crack expansion as
soon as it is loaded\ while\ if ti��\ no further cracking will appear throughout the
loading history[ The following simple remark holds true ]

Proposition 3[1[Assume thatF"U#�/ "which is true in the no!contact case#[ Then\

ti �� iffG9 $F"U#[

Proof[ If G9 $F"U#\ then G"t#"wG9# $F"U#\ thus\ Ed"G"t#\U9# �9[ According to "iii#
in Law 1[8\ Es"G"t##¾Es"G9#[ Since however G"t#wG9\ the surface energies are equal
and\ recalling Remark 1[0\ G"t# �G9[

Conversely\ if ti��\ then G"t# �G9\ t× 9\ thus\ by virtue of "ii# in Law 1[8\

t1Ed"G9\U9#¦Es"G9#¾ t1Ed"G\U9#¦Es"G#\ for all GwG9[

Take G�G9kG? with G? $F"U#\ so that G $F"U#[ Then

t1Ed"G9\U9#¦Es"G9#¾Es"G#\t− 9\

which is only possible if Ed"G9\U9# �9[ '

Remark 3[2[ An immediate consequence of the above proposition is that\ if\ in the
no!contact case\ G9�/ "no preexisting crack# and U9 is not a rigid displacement\ a
crack will always appear in _nite time[ The reader is\ once again\ reminded that crack
initiation is a sore point in the classical theories of brittle fracture[

We now investigate the asymptotics of fracture[ De_ne the state of least bulk
energy\

Emin
d � inf "Ed"G\U9# ^GwG9#\ "01#

and recall that\ if F"U#�/\ Emin
d � 9 "the no!contact case#[ Then\

Proposition 3[3[

"i# limt:� Ed"G"t#\U9#�Emin
d \

"ii# If there exists a _nite _rst time tf such that Ed"G"tf#\U9#�Emin
d \ then G"t# �G"tf#\

t− tf[

The time tf is referred to as the failure time for the sample[

Proof[ If "Gn#n is a minimizing sequence for "01#\ "GnkG"t##n\ t− 9 is one as well in
view of "ii# in Remark 1[6[ Therefore\ "ii# in Law 1[8 implies that

t1Ed"G"t#\U9#¦Es"G"t##¾ t1Ed"Gn kG"t#\U9#¦Es"Gn kG"t##

¾ t1Ed"Gn\U9#¦Es"Gn#¦Es"G"t##[

Thus\ dividing by t1 in the above inequality\ then letting t and n tend to� yields "i#[
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If Ed"G"tf#\U9#�Emin
d for some tf\ then "iii# in Law 1[8 implies that Es"G"t##

¾Es"G"tf##\ t− tf\ and\ since G"t#wG"tf#\ t− tf\ "ii# is established[ '

Remark 3[4[ In the no!contact case\ the previous result demonstrates that\ under ever!
increasing loadings\ the crack will expand until a bulk!free state is reached "a state
without elastic energy#\ which we will view as synonymous to a state of mechanical
failure[ This\ together with Remark 3[2\ provides a rather complete picture of crack
evolution in our main setting\ namely that of no!contact ] a crack will appear in _nite
time and will expand until mechanical failure in _nite or in_nite time[

Actually\ an estimate of times ti and tf can be derived[

Proposition 3[5[ If F"U#�/ and if G9 (F"U#\ then

9¾ ti ¾X inf "Es"G:G9# ^GwG9\G $F"U##
Ed"G9\U9#

¾ tf ¾�[

Proof[ Take GwG9\ G $F"U#[ Then\ for every t³ ti\ "ii# of Law 1[8 implies that

t1Ed"G9\U9#¾Es"G#−Es"G9#�Es"G:G9#\

hence the _rst inequality upon letting t tend to ti and in_mizing in G[
If tf�� the second inequality is trivial\ while otherwise\ for t× tf\ "iii# of Law 1[8

yields

Es"G"t##¾ t1Ed"G9\U9#¦Es"G9#[

But then G"t# $F"U# and G"t#wG9\ so

inf "Es"G:G9 ^GwG9\G $F"U##¾Es"G"t##−Es"G9#¾ t1Ed"G9\U9#\

and the result is obtained upon letting t tend to tf[ '

Remark 3[6[

"i# Although G"9# �G9\ it is possible for ti to be 9 "see Section 3[3 below#\
"ii# Whenever 9³ ti� tf³� the crack evolution is as follows ]

G"t#� 6G9 if t³ ti �tf\

Gf if t× ti �tf\

where Gf is an element such that Emin
d �Ed"Gf\U9#[ Such is the case in the two

examples developed in Section 2\
"iii# We do not know of any case where ti³ tf��[

3[1[ Grif_th vs ener`y minimization

This subsection is devoted to a comparison between Gri.th|s theory and our
model[ The framework is that of no!contact 1!D elasticity[ The following is assumed
throughout this subsection as well as the next one ]

Prede_ned crack path ] During a MIL\ the crack path is a recti_able curve G of the
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_nite length L with origin x9 and end point xL[ It is parameterized by its arc!length
x"s# with x"9# �x9[ De_ne

G"l#0G9 k "x"s# ^ 9¾ s¾ l#[

Then the bulk and surface energies become functions of l\ namely\

F"l#0Ed"G"l#\U9#\

H"l#0Es"G"l##−Es"G9#[ "02#

These functions are\ respectively\ monotonically decreasing and increasing with
respect to l ^ we also assume that they are as smooth as needed[ Finally we denote by
L9 the length of G9[
It now remains to investigate the trajectory of the crack along its path\ i[e[\ the

function t: l"t#[ The _rst result concerns progressive crack evolution[

Proposition 3[7[ If l"t# is an absolutely continuous function of t\ then Gri.th|s law of
crack evolution is satis_ed[ In other words\

"i# l"9# �9\
"ii# l¾"t#− 9\
"iii# −t1"dF:dl#"l"t##¾ k"x"l"t###\
"iv# l¾"t# �9 if the inequality is strict in "iii#[

Proof[ Items "i# and "ii# are obvious[ Item "iii# is obtained by applying "ii# of Law 1[8
at time t\ with G"l"t#¦h#\ h− 9 as test crack\ while item "iv# is obtained by applying
"iii# of Law 1[8 at time t with s� t−h[ '

Remark 3[8[ Item "iii# in the above proposition is precisely Gri.th|s criterion\ since
−t1"dF:dl#"l"t## represents the energy release rate[ Item "iv# is the classical assumption
that propagation will not take place unless the energy release rate becomes critical[

If now l"t# experiences a jump at time t9\ the following proposition holds ]

Proposition 3[09[ If at time t9\ l
−"t9#� l¦"t9#\ then\

−t19"F"l
¦"t9##−F"l−"t9###�H"l¦"t9##−H"l−"t9##[

Proof[ Apply "ii# of Law 1[8 to time t9−h with G"l"t9¦h## as test crack ^ then\

"t9−h#1F"l"t9−h##¦H"l"t9−h##¾"t9−h#1F"l"t9¦h##¦H"l"t9¦h##\

and passing to limit in h yields one inequality[ The other inequality is obtained by
applying "iii# of Law 1[8 to t� t9¦h\ taking as previous instant t� t9−h\ so that

"t9¦h#1F"l"t9¦h##¦H"l"t9¦h##¾"t9¦h#1F"l"t9−h##¦H"l"t9−h##\

which yields the result upon passing to the limit in h[ '

Remark 3[00[ The above condition\ reminiscent of RankineÐHugoniot conditions
across a shock in conservation laws\ or rather of a kind of Maxwell condition in the
theory of phase transition\ merely expresses global energy conservation during a
brutal crack jump[ It can be reinterpreted\ in a homogeneous medium\ as a propa!
gation criterion for the mean energy release rate\ i[e[\
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−t19
l¦"t9#−l−"t9# g

l¦ "t9#

l− "t9#

dF
dl

"l# dl�k[

Remark 3[01[ In Hashin "0885#\ the jump condition is a priori postulated as a gen!
eralized Gri.th|s law[ It cannot however be su.cient as such to predict when and
how such a jump will occur\ which\ by contrast\ is within reach of our formulation[

3[2[ Pro`ressive evolution or brutal evolution

In this subsection\ we investigate the circumstances that preside over the brutal vs
progressive character of crack growth[ We remind the reader of our assumption of
{{prede_ned crack path||\ as detailed in the previous subsection[ To this end\ we
reparameterize the crack path in terms of its surface energy by setting

l�H"l#\ F�"l#�F"H−0"l## ^

such a change is licit since\ in view of Remark 1[0\H is a continuous strictly increasing
function of l[ Note that F� is a monotonically decreasing function of l in view of "02#[

In the present context the evolution law described in Law 1[8 "partially# translates
into

Law 3[02[ The crack trajectory t: l"t# must be such that

"i# l"t# is a monotonically increasing function of t\
"ii# t1F�"l"t##¦l"t#¾ t1F�"l#¦l\ l− l−"t#\
"iii# t1F�"l"t##¦l"t#¾ t1F�"l"s##¦l"s#\ s¾t[

Note that item "ii# in the above law is a rather degenerate o}spring of its parent in
Law 1[8 because it only envisions crack evolutions along the prede_ned crack path[

The brutal vs progressive character of crack growth is then intimately linked to the
convexity properties of F�[ Speci_cally\ we obtain the following

Proposition 3[03[ If F� is continuous\ then l"t# lives\ for each t\ among the minimizers
of t1F�"l#¦l on ð9\H"L#Ł[

Proof[ We de_ne l"t# as "one of# the minimizer"s# of t1F�"l#¦l on ð9\H"L#Ł[ Note
that the minimizers increase with t so that l"t# increases with t[ At time t�9\ l"9# �9[
Conditions "ii# and "iii# in Law 3[02 are trivially met[ Thus\ such a l"t# is always a
solution[

Conversely\ if l"t# is a solution\ then

t1F�"l"t##¦l"t#¾ t1F�"l#¦l\ l− l−"t#\

according to "ii# in Law 3[02[ Thus\ it su.ces to extend this inequality to the interval
ð9\ l−"t#Ł[ Now l"t# has\ at most\ a countable number of discontinuities on ð9\ l−"t#Ł ^
label them "tp# and the corresponding jumps ðl−p \ l

¦
p Ł "so that l"tp# lives somewhere

within ðl−p \ l
¦
p Ł#[ For l (kp ðl

−
p \ l

¦
p Ł\ the inequality is satis_ed by virtue of condition

"iii# in Law 3[02[ Take t� tp¦h\ h× 9[ Then\ passing to the limit as h tends to 9 in
"iii# of Law 3[02\ we obtain the inequality for l� l¦p [ Recalling Proposition 3[09
which remains valid at any jump of l\ as well as "ii# of Law 3[02\ we obtain
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t1pF�"l
−
p #¦l−p �t1pF�"l

¦
p #¦l¦p ¾ t1pF�"l#¦l\ l− l−p [

Then\ by virtue of the decreasing character of F�\ we obtain\ for any l $ ðl−p \ l
¦
p Ł\

t1F�"l¦p #¦l¦p �t1pF�"l
¦
p #¦l¦p ¦"t1−t1p #F�"l

¦
p #

¾ t1pF�"l
¦
p #¦l¦p ¦"t1−t1p #F�"l#

¾ t1pF�"l#¦l¦"t1−t1p #F�"l#

�t1F�"l#¦l

which proves the inequality for l $ ðl−p \ l
¦
p Ł[ '

Whenever F� exhibits decent convexity properties\ the previous proposition permits
to precisely determine the evolution of the crack\ i[e[\ l"t#[ We obtain the following

Corollary 3[04[

"i# If F� is C0 and strictly convex\ then l"t# is given by

l"t#�

F
G
j
J
G
f

9 if 9¾ t¾ ti\

F�?−0 0− 0

t11 if ti ¾ t¾ tL\

H"L# if tL ¾ t\

with

ti �z0:"−F�?"9##\

tL �z0:"−F�?"H"L### ^

in other words\ the crack growth is progressive\
"ii# If F� is concave\ then l"t# is given by

l"t#� 69 if 9¾ t³ ti �tL\

H"L# if ti �tL ³ t\

with

tL 0zH"L#:"F�"9#−F�"H"L### ^

in other words\ the crack growth is brutal[

Proof[ If F� is convex and C
0\ t1F�"l#¦l attains its minimum at l�9 if t1F�?"9#¦0− 9\

atH"L# if t1F�?"H"L##¦0¾ 9\ and otherwise at l such that t1F�?"l#¦0�9 ^ application
of Proposition 3[03 then yields "i#[ If however F� is concave\ t1F�"l#¦l can only attain
its minimum at l�9 if t³ tL\ and at l�H"L# if t× tL ^ application of Proposition
3[03 then yields "ii#[ '

Remark 3[05[ Whenever F� is convex but grows linearyly on\ say ðl0\ l1Ł\ the crack will
experience a jump at time t�z0:F�?"l0#�z0:F�"l1#[
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Remark 3[06[ Whenever F� is not convex\ the minima of t1F�"l#¦l will be those of
t1F���"l#¦l\ where F��� denotes the convexi_cation of F�[ Thus\ the crack evolution
will be progressive on the strictly convex parts of the graph of F��� and brutal on the
linear parts of that graph[

Remark 3[07[Assume that "iii# of Law 3[02 ðor a fortiori "iii# of Law 1[8Ł is abandoned[
Assume that F� is strictly convex and consider a time t $"ti\ tL# "cf corollary 3[04#[
Then\ if l $ ð9\ l"t#Ł\ l satis_es "ii# of Law 3[02\ andwe can choosemanymonotonically
increasing trajectories l"t# that satisfy "ii# besides l"t#[ Thus "iii# can be viewed as a
selection criterion among all those trajectories that will force the minimal trajectory
l"t#[

If comparing the above results to those yielded by Gri.th|s theory\ it is easily seen
that\ in the strictly convex case\ the results are identical\ but that\ in the concave case\
Gri.th|s criterion will actually predict initiation at time tG �z0:"−F�?"9## "cf "iv# of
Proposition 3[7#\ but then\ the criterion will not be met for t× tG by any l[ The crack
is then baptized {{unstable|| and henceforth untractable[ Note also that the predicted
initiation time tG is longer than that\ namely tL\ obtained through our formulation[
If\ in general\ F�?"9# �9\ Gri.th|s theory will not permit crack initiation "cf "iv# of
Proposition 3[7#\ whereas ours will generate brutal growth\ as is immediately deduced
from the preceding results[

3[3[ The role played by sin`ularities ^ the 1!D case

In Gri.th|s theory\ displacement and stress singularities play an essential role ^ in
a 1!D setting\ thezr!singularity of the displacement _eld ensures the _niteness of the
energy release rate G\ while Irwin|s formula permits the computation of G in terms
of the stress intensity factors[ As will be seen below\ singularities do play an important
role in our formulation as well[

We assume throughout this subsection that\ if G9 is the initial crack "maybe empty#\
then the displacement _eld u90 u"G9\U9#\ corresponding to elastic equilibrium on
V:G9 for the loading U9\ is of the form

u9"x#� s
n

p�0

rapp vp"up#¦u¼ "x#\

where the "rp\ up# are polar coordinates with poles "xp#p�0\n\ the singular points of u9\
and 9³ ap³ 0[ We also assume that the toughness is constant\ equal to kp in a
neighborhood of xp[ Note that the restriction on ap ensures the _niteness of the bulk
energy and the singular character of u9\ that is u9 (H

1\ or\ in other words\ its second
order derivatives are not square integrable[ The points xp could be crack tips\ points
on the boundary that experience a change in boundary condition type\ or non!smooth
points of the boundary[

We _nally assume\ when needed\ the following restriction on crack paths ]

Prede_ned incremental crack path "PICP# ] Crack growth for small times only takes
place along n¦0 recti_able curves "Glp

#p�0\n¦0 of _nite length lp\ where Glp
\p¾ n is
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located within a small neighborhood of the corresponding singular point xp\ and
Gln¦0

is located within a small neighborhood of a non!singular point[

We propose to investigate the brutal:progressive character of the crack growth at
initiation time ti[ To this e}ect\ it is imperative to know an expansion of the bulk
energy in terms of the length of a small add!defect[ In Leguillon "0889a#\ an asymptotic
expansion of that energy in terms of the added length is proposed\ provided that
Ed"G9\U9#× 9\ namely\

Ed"G9 kGl\U9#�Ed"G9\U9#− s
n¦0

p�0

"Kpl
1ap
p ¦o"l1app ##\ "03#

where Kp is a positive "except maybe Kn¦0 which may take the value 9# factor which
depends on the shape of the defect\ on the strength of the singularity at xp\ but not
on the length lp of the defect Glp

"Gl �kn¦0
p�0 Glp

#[ In "03# the add!crack is assumed to
be living in a neighborhood of the singular point xp ^ _nally this expansion remains
valid for the add!crack Gln¦0

with an¦0�0[
We are now in a position to establish the following

Proposition 3[08[ In the above described context\

"i# If at least one xp exhibits a strong singularity "ap³ 0:1#\ then the crack growth
will be progressive\ with zero initiation time\ and\ under the PICP hypothesis\
the length of the add!crack corresponding to xp grows like t

1:"0−1ap#\
"ii# If\ under the PICP hypothesis\ all points xp exhibit a weak singularity "ap× 0:1#\

then the crack growth will be brutal with a non!zero\ _nite initiation time\
"iii# If\ under the PICP hypothesis\ the most singular points exhibit azr!singularity\

then the crack growth will have a non!zero\ _nite initiation time\
"iv# If\ under the PICP hypothesis\ there are no singular points\ then\ either there is

no crack growth\ or the crack growth will be brutal with a non!zero\ _nite
initiation time[

Proof[ To prove "i#\ assume that ti× 9[ Take 9³ t³ ti\ and consider\ near xp\ an add!
crack of length l¹p"t#\ with

l¹p"t#�"1apKpt
1:kp#

0

0−1ap [ "04#

Then\ by virtue of "03#\

E"G9 kGl¹p "t#
\ tU9#�E"G9\ tU9#−0 0

1ap
−01kpl¹p"t#¦o"l¹p"t##³E"G9\ tU9#\

if t is small enough\ which contradicts "ii# of Law 1[8[ Thus\ ti�9[ Now\ from "iii#
of that law\ Ed"G"t#\ tU9#¦Es"G"t##¾Ed"G9\ tU9#¦Es"G9#\ and\ upon letting t tend to
9\ this inequality yields Es"Kt×9G"t##¾Es"G9#\ which\ since Kt×9G"t#wG9 implies
that G"t#wG9 as t tends to 9[ Now\ under the PICP hypothesis\ the crack for small t
is of the form G"t#:G9 �kn¦0

p�0 Glp "t#
\ where Glp "t#

WGlp
[ Setting an¦0�0\ we get\ in

view of "03#\
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E"G"t#\ tU9#�E"G9\ tU9#¦ s
n¦0

p�0

ð−t1Kpl
1ap
p "t#¦kplp"t#¦o"lp"t##Ł[

On the one hand\ since G"t#wG9 as t tends to 9\ lp"t#w 9 as well[ On the other
hand\ Proposition 3[03 forces lp"t# to minimize

−t1Kpl
1ap¦kpl¦o"l#[ "05#

Whenever ap³ 0:1\ the minimum is attained for lp"t# � l¹p"t# given in "04#\ whereas\
if ap× 0:1\ the minimum is 9[ This proves "i#[
In the setting of "ii#\ ti cannot be 9\ otherwise the argument developed in the proof

of "i# would lead to lp"t# �9\ for t close to 9\ i[e[\ to G"t# �G9 for such t|s\ which
contradicts ti�9[ Further ti³� according to Proposition 3[1[ The argument
developed in the proof of "i# also applies near ti[ Thus\ if the crack evolution were
progressive "i[e[\ if G"t#wG9 as t tends to ti#\ then necessarily lp"t#w 9 as t tends to ti\
but\ since all ap× 0:1\ the minimum in "05# is 9\ i[e[\ all lp"t#|s would stay 9 in a
neighborhood of ti\ which is impossible[ This proves "ii#[

Items "iii# and "iv# are proved using identical arguments[ Note that when ap�0:1
we cannot conclude on the value of the minimum in "05#\ hence on the brutal vs
progressive character of the crack growth[ '

Remark 3[19[ In the presence of a weak singularity "a× 0:1# Gri.th|s theory will
predict that no further cracking will occur\ because the energy release rate is 9\ so
that growth is not possible[ But\ in our formulation\ this does not occur because crack
growth will be brutal in such a case[

Remark 3[10[ A similar analysis could be performed in the case where only a {{tiny||
connecting arc remains between two connected components of the domain[ A di}erent
expansion derived by Leguillon "0889b# would be used and the conclusion would be
that that arc would break brutally "i[e[\ in our language\ that kt³tf

G"t#�G"tf#[

Remark 3[11[ In view of the results of Proposition 3[08 and of the previous remark\
it is seen that brutal growth is indeed a likely event\ as demonstrated in the explicit
computations of Section 2[

4[ EXTENSIONS AND OBSTACLES

In a _rst subsection\ two extensions of the model are brie~y described ^ one permits
to reconcile Gri.th|s approach to Barenblatt|s with minor changes to our for!
mulation ^ the other one pertains to lip contact along a crack and proposes a somewhat
more realistic model[ In a second subsection\ various issues are raised about the
model\ and most notably its current inadequacy at confronting force loads[

4[0[ More realistic models

As alluded to in Remark 1[1\ the surface energy could be modi_ed\ so as to
incorporate the e}ect of toughness anisotropy[ Speci_cally\ "0# can be replaced by

19



Es"G#� gG k"x\ n"x## dHN−0"x#\ "06#

provided that G is an N−0!recti_able set\ so that its normal is well de_ned[ As
mentioned before\ we cannot anymore allow for arbitrary closed sets of _nite HN−0!
measure[ This restriction\ which may appear as unwelcome\ is actually no restriction
at all\ provided that the global minimization problem described in Section 1 be
reformulated as a one!_eld minimization problem over kinematically admissible dis!
placement _elds that live in a bounded variation type space "SBV or SBD#\ because
the jump set of such functions "which then replaces the crack# is then N−0!recti_able
"see Section 5#[ As stated in the introduction\ we do not want to dwell in this study
upon the many and complex mathematical questions that underlie the proposed
model and refer the interested reader to the bibliography suggested in Section 5[

A further extension of "0# is

Es"G\ u#� gG k"x\ n"x#\ ðu"x#Ł = n"x## dHN−0"x#\ "07#

where ðu"x#Ł denotes the jump in the displacement _eld across a point x of G[ The
surface energy is now a function of the displacement _eld u and the minimization
over kinematically admissible displacement _elds has to be performed for the whole
energy\ rather than solely for Ed[ Once again\ such a model requires a well de_ned
normal vector\ as well as well!de_ned traces of the displacement _eld u across the lips
of the crack\ and\ once again\ bounded variation type spaces come in handy and
provide a meaningful interpretation of "07# ^ cf Section 5[ Note that the dependence
of k"x\ p\ s# upon s has to exhibit concavity and monotonicity properties for the
mathematical formulation in a bounded variation type space to make sense "see
Ambrosio\ 0878#[ The purpose of such an energy is twofold[ On the one hand\ it
incorporates within our formulation fracture energies of Barenblatt|s type\ see Bar!
enblatt "0851#\ which\ some will argue\ is a more realistic model for the surface energy
associated to a crack[ On the other hand\ upon choosing

k"x\ p\ s#��\ if s³ 9\

it allows "at least formally# for the consideration of lip interpenetration[ Speci_cally\
such an energy bans\ as energetically unfavorable\ those con_gurations where matter
would interpenetrate at the crack site[ Such a ban can also be imposed as a restriction
on the set of kinematically admissible displacements C"G\U#\ which then becomes in
lieu of "1#\

C"G\U#� "v $H0"Vd:G ^ RN# ^ v�Ud in Vd:VÞ\ ðvŁ = n− 9 on G#[ "08#

Of course\ such a de_nition is meaningless unless the trace of v is adequately de_ned
on G[ We refer the concerned reader to the referenced literature on BV"BD#!spaces\
for instance Evans and Gariepy "0881#[ Note also that the equivalence between the
two above!described approaches remains to be proved[

In any case\ both model unilateral contact without friction\ that is\ formally\ the
following set of boundary conditions on the lips of the crack G ]
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s = n�sn\ s¾ 9\ ðuŁ = n− 9\ s or ðuŁ = n� 9\

in lieu of the no!contact condition

s = n� 9[

All results of Subsection 3[0 apply to the case of unilateral contact[ As alluded to
there\ the set of bulk!free states could however be empty[ In such a case Proposition
3[1 has to be replaced by

Proposition 4[0[ If F"U#�/\ then

ti �� iffEd"G\U9#�Ed"G9\U9#\ for all GwG9[

Proof[ If ti��\ then G"t# �G9\ t− 9[ According to "ii# in Law 1[8[

t1"Ed"G9\U9#−Ed"G\U9##¾Es"G#−Es"G9#\ GwG9[

But Ed"G\U9#¾Ed"G9\U9#\ thus\ the above relation cannot hold for all t|s unless
equality holds[ Conversely\ if the equality holds\ then "iii# of Law 1[8 implies that
Es"G"t##¾Es"G9#\ which yields the converse[ '
In other words\ no further cracking will occur without a softening of the material[

Such is the case of\ e[g[\ compressive 0!D problems without interpenetration[

4[1[ Limits of the current formulation

As mentioned several times before\ our formulation is severely impaired when
surface or body force!loads are applied to the sample[ Let us brie~y explain why it is
so[ Assume the imposed force!loads are characterized through their work\ a linear\
bounded functional on C"G\U# that we denote by L"u#[ It is somewhat natural to
replace the bulk energy Ed"G\U# in Laws 1[7 or 1[8 by the potential energy

P"G\U#� inf
v$C"G\U# 6gVG

W"x\ o"v#"x## dx−L"v#7[
The e}ect is however devastating as illustrated below[
Assume\ for example\ that the only loadings are force!loads f applied to a part\ say\

1fV of the boundary of V[ Then introduce a crack G which cuts the domain into two
parts V0 and V1\ the boundary of V0 containing 1fV[ Then a displacement v of the
form

v� 6sV on V0\

9 on V1\

where V is a constant displacement such that L"v#�sÐV0
f"x# dx =V× 9 will be

admissible\ and its corresponding potential energy will then tend to −� as s tends
to �[ This would happen for any force!loads such that ÐV0

f"x# dx� 9 if the no!
contact condition is adopted\ and for appropriately de_ned tensile force!loads if
unilateral conditions prevail[ In other words\ total failure of the material would occur
under any non!zero loading; Not a very encouraging prospect[

Let us suggest several potential remedies[ One would view the applied force _eld as
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f"x# � l"t# f¹"x#\ where f¹"x# is given\ but l"t#\ the intensity of the force!loads is not[
As a balancing factor\ we impose an additional kinematic condition\ namely that the
work of the loads be given\ i[e[\

L"v#�`"t#\

where ` is some given function of t[ The break!up of the sample described above
cannot occur in such a setting because we would immediately conclude that l"t# �9[

A di}erent approach would investigate local minimizers of P"G\U#¦Es"G#[ This is
unfortunately not feasible as of yet\ as emphasized in Subsection 1[1[ It might also do
away with one of the assets of our formulation\ the possibility of brutal crack growth[

5[ REMARKS ON THE MATHEMATICS AND NUMERICS OF THE
MODEL

The proposed formulation could be doomed\ its virtues notwithstanding\ if not
tractable as a well!posed mathematical problem[ Let us emphasize right now that the
current state of mathematical consistency for the model is at best partial[ We give
below a few pointers and references for the mathematically inclined reader[

Our minimization principle*especially in its discrete form ^ cf Law 1[7*is strongly
reminiscent of the model proposed\ in the totally unrelated context of image seg!
mentation\ by Mumford and Shah "0878#[ In that context\ they proposed image
segmentation through the following algorithm ] _nd a pair K\ compact of V "the
picture# representing the contours of the image in the picture\ and u\ the true pixel
intensity at each point of the picture\ an element of C0"V:K#\ which minimizes

gV�K =Du=1 dx¦kHN−0"K#¦gV =u−`=1 dx\

where ` is the measured pixel intensity[ It was then shown in De Giorgi et al[ "0878#
to be equivalent to awell!posed one!_eldminimization problemon a subspaceSBV"V#
of the space of functions with bounded variations on V\ namely\

gV =9u=1 dx¦kHN−0"S"u##¦gV =u−`=1 dx\ "19#

where 9u represents the absolutely continuous part of the weak derivative of u "a
measure#\ and S"u# the set of jump points for u[ This was later extended to a problem
with Dirichlet boundary conditions on 1V in Carriero and Leaci "0889#[

The analogue result in our setting is not known\ except in very speci_c cases ] the
antiplane case "Carriero and Leaci\ 0889# and the case of an energy density essentially
of the form =j=p¦`"j#\ with `"j#:=j=p: 9\ j:� "Fonseca and Fusco\ to appear#[
The obstacles are multiple ] _rstly\ the problem at hand is vector!valued "except in
the 0!D or antiplane case# ^ secondly the energy are not quadratic in the _eld u\ except
in the linearized setting\ but\ then\ symmetrized gradients replace gradients\ SBV is
not anymore an appropriate space\ and SBD!type spaces have to be introduced[ The
structure of SBD spaces is currently the object of active research\ see Ambrosio et al[
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"to appear#\ but\ to our knowledge\ no results even remotely approaching the equiv!
alence result of De Giorgi et al[ "0878# are available[ Of course one is always at liberty
to substitute the SBV"SBD# setting\ in lieu of the setting proposed in this study ^ that
was the approach suggested by Fonseca and Francfort "0884#[ It is not clear however
that this is the proper thing to do[ In any case\ such an approach will be hard!pressed
to evidence the parts of the crack\ the lips of which are in contact with one another\
an unlikely occurrence in the presence of MIL|s\ but a more likely one during general
loading processes[

A numerical approach based on the SBV"SBD# formulation is currently being
developed by Bourdin "to appear# for a description of the approach in the image
segmentation setting[ It also relies on remarkable G!convergence type approximation
results for the minimization of "19# obtained by Ambrosio and Tortorelli "0889#[ As
a side remark\ the several approximations proposed by Ambrosio and Tortorelli
"0889# look very much like various kinds of damage model\ the di}erence being that
they are only used as mathematically convenient approximations of the original
discontinuous model\ and not as suitable replacements for that model[ The numerics
are tricky and raise the additional issue of the convergence of the adopted numerical
scheme ^ see Belletini andCoscia "0883# for partial answers in the scalar!valued setting[

Even when the knots are unraveled in the vector!valued and:or symmetrized gradi!
ent case\ the evolution problem\ and most notably item "iii# in Law 1[8\ will be yet
another hurdle in the investigation of the continuous model[ Note that the discrete
model would then pose no particular problem ^ see Fonseca and Francfort "0884#[

In conclusion\ the mathematical and numerical study of the proposed model is
largely untapped\ although the approach that uses special spaces of bounded vari!
ations seems promising for the time being[
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