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Abstract

Analyzing spatial structures of transportation data at various scales
can be of prime interest to transportation planning and governance. In
recent years, multi-scale spatial analysis methods have been developed
and used in fields like ecology and geography, but only a few studies have
applied these methods to transportation data. However, such methods
can provide an efficient exploratory tool for: identifying those scales at
which transportation data vary spatially; modeling the spatial structures
at each scale; and determining the processes at work that explain these
spatial structures. This paper describes and demonstrates how a multi-
scale spatial analysis method, namely distance-based Moran’s eigenvector
maps (dbMEM), can be applied to study the spatial layout of car own-
ership. For this analysis, we rely on aggregated census data for small
statistical areas within France’s Loire-Atlantique administrative region.
At first, 176 spatial vectors representing spatial patterns with a positive
autocorrelation are constructed. Among the 176 vectors, only 23 signifi-
cant ones are retained after performing a regression with car ownership as
the dependent variable. Next, we divide these spatial vectors into three
sub-models representing three spatial scales: broad scale, medium scale,
and fine scale. Lastly, we identify a set of sociodemographic factors capa-
ble of explaining the spatial variation at each scale, i.e.: the broad-scale
variation is mainly explained by population density, couples with children
and income variables; the medium scale by couples with children, share
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of individuals in the 25-54 year age range and income; and the fine scale
by couples with children and income variables.

Keywords— distance-based Moran’s eigenvector maps; car ownership; spatial
structure; spatial vectors; spatial scales; multi-scale spatial analysis; sociodemographic
factors; variation partitioning

1 Introduction
Transportation is highly correlated with spatial organization at the local, regional
and global levels. Transportation data may display recognizable spatial structures
at many scales. For our purposes herein, scale refers to the unit of measurement,
e.g. broad scale is used to describe phenomena with large extents, while fine scale for
those with small extents. Analyzing such spatial structures at each scale could play a
very important role in understanding the specific transportation-related context and
can therefore be of prime interest to policymakers for transportation planning and
governance.

Multi-scale spatial analysis can prove to be an efficient exploratory tool for: 1)
identifying those scales at which transportation data vary spatially, ranging from the
broadest, encompassing the entire studied area, down to the finest scale; 2) modeling
the spatial structures at each scale; and 3) determining, at each scale, the processes at
work to create these spatial structures, i.e. in explaining the share of transportation
data variation at each scale that can be attributed to certain explanatory variables
(e.g. sociodemographic) available for the analysis. Different processes are often at
work at these various scales to shape spatial structures.

In recent years, Moran’s eigenvector maps (MEM) have been developed and ap-
plied to analyse spatial data. MEM were developed in two distinct fields: statistical
geography (Griffith 1996, 2000a,b, Boots & Tiefelsdorf 2000), and quantitative com-
munity ecology (Borcard & Legendre 2002, Dray et al. 2006, Legendre & Legendre
2012). They were applied 1) to filter the effect of spatial autocorrelation out of model
residuals; 2) as a multi-scale spatial analysis method to analyze scale-dependent spa-
tial structures. Multi-scale spatial analysis using Moran’s eigenvector maps has yet to
be applied more widely to transportation problems (Wang et al. 2013).

This paper describes and demonstrates how distance-based Moran’s eigenvector
maps (Borcard & Legendre 2002, Dray et al. 2006), a multi-scale spatial analysis
method, can be applied to study the spatial layout of household car ownership pat-
terns. Distance-based Moran’s eigenvector maps analysis uses space as an explicit
predictor. It is based on sets of variables describing spatial structures explicitly, de-
rived from the coordinates of the geographic sites or from neighbourhood relation-
ships among sites. This approach offers a detailed and precise description of spatial
structures. Since space is fundamental to transportation planning and governance,
analyzing transportation data with this method can prove to be determinant.

Car ownership has received considerable attention in recent years due to its im-
portant role in transportation and land use planning. Song & Wang (2017) noted the
necessity of understanding the spatial patterns of household car ownership. Various
studies carried out have found that geography influences car ownership and moreover
that the number of vehicles depends on household location. For example, suburban-
ization and car ownership have been shown to be closely correlated (AURAN 2006).

Most previous studies on the determinants of household car ownership rates (see
Section 2) were conducted at the household level (i.e. disaggregated data). The advan-

2



tage of this approach is to place the vehicle acquisition decisions made by households
in their historical context, e.g. vehicle acquisition or disposal may be tied to changes
in household characteristics. However, these studies targeted a sample of the popula-
tion and were unable to provide a comprehensive view of the study territory. Since
disaggregated data are costly to collect, the geographic coverage of surveys remains
uneven, making local variations sometimes difficult to identify.

Few works have thus far studied household car ownership by relying on statistical
areas as their basic units. A statistical area is a polygon, representing a proportion of
a 2-dimensional map, with which one or more aggregated variables can be associated,
e.g. car ownership rate, sociodemographic characteristics. This paper analyzes the
spatial structures of car ownership rates by using small statistical areas from census
data. Patterns of statistical areas are identified at various scales and attributed to
a number of explanatory variables. A major advantage of this approach is the lower
cost required to construct the database compared with a disaggregated approach.
Data can easily be obtained from a number of sources, either public or commercial.
For example, periodic population censuses are common and readily available sources
for such aggregated data.

In order to represent spatial structures in dbMEM (distance-based Moran’s eigen-
vector maps) analysis, spatial variables are constructed. For this step, the dbMEM
method computes a matrix of geographic distances between statistical areas. After
truncation (as explained in Section 3), a principal coordinate analysis of the resulting
matrix is performed, yielding eigenvalues and eigenvectors (also called spatial eigen-
functions). Taken together, these eigenfunctions depict the multi-scale distance rela-
tionships between statistical areas; they model spatial relationships in decreasing order
of spatial scale (i.e. the first dbMEM eigenvector with the largest eigenvalue corre-
sponds to the broadest spatial scale). Furthermore, the eigenvectors possess some
interesting properties (e.g. orthogonality) that increase their desirability as spatial
explanatory variables.

Following this construction step, the variation in car ownership rates is analyzed
with respect to the spatial structures represented by the eigenvectors. For this purpose,
the eigenvectors are used in generalized linear models as explanatory variables for the
car ownership variable. Each significant eigenvector identified by regression explains
part of the variation in car ownership. Since the eigenvectors are orthogonal by design,
significant ones identified by regression can be grouped into sub-models representing
several categories of spatial scales: broad, medium, etc. The subsequent step of the
analysis consists of studying, at each scale, the influence of the sociodemographic
variables on variation of car ownership rate. The last step of multi-scale spatial analysis
consists in partitioning the deviance respectively explained by the sociodemographic
variables and the spatial variables through variation partitioning.

The remainder of this paper will be organized as follows. Section 2 presents the
existing literature, while Section 3 describes distance-based Moran’s eigenvector maps
for spatial analysis and other theoretical aspects. Section 4 displays the results of
the car ownership study conducted in France’s Loire-Atlantique administrative region.
These results are then discussed in Section 5, and the final section offers concluding
remarks.

2 Literature review
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Car ownership has received a good deal of attention in recent years by virtue
of its important role played in transportation and land use planning, as well as its
relationship with energy, environmental and health issues (Whelan 2007). Moreover,
car ownership is considered by some authors as a key mediating link between residential
location and choice of travel mode (Ding et al. 2018). Lavery et al. (2013) reports that
car owners tend to have lower modality, which helps explain why their use of other
modes is low. As such, it constitutes a key variable for urban planning policy-making.
According to Van Acker & Witlox (2010), urban planners should focus not only on
influencing car use directly but also on indirect measures through car ownership, given
that once a car has been purchased, it tends to be used more often.

The main determinants of vehicle ownership usually include variables affecting
travel demand (e.g. individual and household attributes) and variables affecting trans-
portation supply (e.g. accessibility and characteristics of the built residential environ-
ment (Zegras 2010, Cao & Cao 2014). Table 1, based on Anowar et al. (2014) com-
prehensive survey of car ownership in addition to more recent papers (Cao et al. 2019,
Moeckel & Yang 2016, Jiang et al. 2017, Ding & Cao 2019, Ma et al. 2018), provides
the main variables used in previous studies to explain car ownership. These variables
are classified into four categories: household demographics, individual attributes, en-
vironment and accessibility attributes.

Household Individual Built Accessibility
Environment

• family • age • density • transport speed
composition • bicycle possession • urban form • public transport
• income • socio-professional availability
• education category • distance to city
• number of • income center
driving licences • education • travel time
• number of
children
• residence type

Table 1: Main determinants of vehicle ownership

Most studies in the literature investigate the determinants of car ownership at
a disaggregated (individual or household) level; they rely on surveying a sample of
individuals in order to correlate the acquisition or disposal of a vehicle with changes
in the characteristics of the household, environment or life events (Clark et al. 2016).
Disaggregated level studies include Bhat & Pulugurta (1998), Whelan (2007), Potoglou
& Kanaroglou (2008), Anastasopoulos et al. (2012) and Oakil et al. (2016). Only a
small number of these studies have actually taken into account the spatial dimension,
e.g. Adjemian et al. (2010), Paleti et al. (2013) and Clark et al. (2016). Of these,
the study of Páez et al. (2013) is the only one to provide evidence that all spatial
variability has been properly accounted for by the model.

Few studies have thus far examined vehicle ownership rates at the statistical area
level. However, as explained above, a major advantage of this approach is its re-
liance on more easily accessible data, i.e. obtained from readily available governmental
sources and less expensive to collect than survey data.

Geographically Weighted Regression (GWR) (Brunsdon et al. 1998, Clark 2007,
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Clark & Finley 2010) is one of the approaches employed to study car ownership at the
statistical area level. This approach integrates the spatial autocorrelation of regression
coefficients in analyzing the spatial distribution of car ownership. GWR fits a series of
local models to the data, thus providing a series of locally varying parameter estimates
(rather than explicitly accounting for correlations in the residuals). In their seminal
paper, using census data for the County of Tyne and Wear in North East England,
Brunsdon et al. (1998) showed that car ownership rates are correlated with both social
class and male unemployment. Clark (2007) estimated the spatially varying coefficient
of the income parameter and hence produced the local income elasticity. Clark &
Finley (2010) highlighted the influence of income and population density on the UK
car ownership rate at the electoral ward scale.

In another approach, Clark (2007) and Clark & Finley (2010) estimated a spatial
error model (SEM) that accounts for spatial dependence in the error terms rather
than in the dependent variable. In addition, in Clark & Finley (2010), a hierarchi-
cal Bayesian spatial model was proposed to handle residual spatial autocorrelation.
Morton et al. (2018) investigated the determinants of car fleet composition (i.e. the
dieselization rate) recorded in Northern Ireland through a Spatial Durbin Error Model
(SDEM), which accounts for spatial dependence among the error terms as well as the
exogenous interaction effect. In considering 890 contiguous statistical areas contain-
ing a mean of 2,000 residents, these authors found that the availability of relatively
inexpensive diesel fuel in the Republic of Ireland affected the diesel car ownership rate
in Northern Ireland. Clark & Rey (2017) explored the local dynamics of household
vehicle ownership in the UK, by comparing a classical Markov chain approach with
a spatial Markov chain analysis. They showed that the transitions in relative vehicle
ownership are influenced by the neighborhood context.

While the above approaches take neighborhood influence into account in car own-
ership models, none is well suited for an exhaustive identification of spatial structures
at various scales. It is crucial to understand however the spatial patterns (including
global and local spatial clustering) of car ownership, as Song & Wang (2017) pointed
out. This exploratory process can be of major interest to decision-makers while also
being valuable to modelers in generating new hypotheses on explanatory variables.

Few methods have been proposed to model spatial structures at all scales us-
ing space as an explicit variable. Moran eigenvector spatial filtering (MESF) is one
such method that has been proposed for this purpose. This method computes spa-
tial eigenvectors as explicit spatial predictors. Interestingly, MESF was developed
independently and nearly simultaneously in two distinct fields, i.e. statistical geogra-
phy (Griffith 1996, 2000b) and quantitative community ecology (Borcard & Legendre
2002). Griffith (1996, 2000b) set the goal of filtering the effect of spatial autocorrela-
tion out of model residuals, in transferring this component to a model’s conditional
mean (i.e. intercept), whereas Borcard & Legendre (2002) sought to explicitly model
the multi-scale nature of univariate or multivariate response data. Dray et al. (2006)
formalized the theory originally proposed in Borcard & Legendre (2002) as distance
based Moran’s eigenvector maps (dbMEM).

Griffith & Peres-Neto (2006) showed equivalencies of and differences between these
two implementations. They advocated that the two methods can be unified under
the class of spatial eigenfunction maps. They also highlighted that one important
advantage of these two approaches over any other spatial approach is that they provide
a flexible tool that allows the full range of general and generalized linear modeling
theory to be applied to ecological and geographical problems in the presence of nonzero
spatial autocorrelation.
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Software implementations of MESF method were proposed in both quantitative
community ecology and statistical geography fields. Dray et al. (2018) implemented
Moran’s Eigenvector Maps and related methods for the spatial multi-scale analysis of
ecological data in the R package adespatial.1 Murakami & Griffith (2019) proposed ef-
ficient algorithms for MESF which are implemented in the R package spmoran (Moran
Eigenvector-Based Scalable Spatial Additive Mixed Models).2 A pedagogical synthe-
sis of spatial (geo-)statistical and spatial econometric methods with R is presented in
Yoshida & Murakami (2020).

The dbMEM method has already been successfully used in several ecological ap-
plications including: Borcard et al. (2004), Brind’Amour et al. (2005), Legendre et al.
(2005), Laliberté et al. (2009), Brind’Amour et al. (2018), Gáspár et al. (2019), Wag-
ner et al. (2017), Cilleros et al. (2017), Brice et al. (2016), Jin et al. (2020), Chen et al.
(2020), Santos et al. (2020), Pollice et al. (2020) and Taddeo et al. (2021).

To the best of our knowledge, the MESF method has only very rarely been used
to study transportation-related problems. Moniruzzaman & Páez (2012) investigated
the transit shares for the city of Hamilton (Canada) by means of a logistic regression
model for proportions and using a spatial filtering approach to control for spatial
autocorrelation. Wang et al. (2013) applied MESF to land use data and highlighted the
relevance of this method for analyzing both land use and transportation data. Griffith
(2009) demonstrated the use of MESF to study 2002 German journey-to-work flows
among 439 German administrative units. Griffith (2011) used MESF method for the
visualization of spatial autocorrelation in the journey-to-work dataset of Pennsylvania,
USA. Yet MESF has never been applied to study car ownership. The following section
provides a detailed description of the MESF method as formalized in Dray et al. (2006),
i.e. the dbMEM multi-scale spatial analysis method.

3 Distance-based Moran’s eigenvector maps for
multi-scale spatial analysis

dbMEM analysis identifies spatial patterns across the entire range of perceptible
scales with a given dataset. This method is based on a computation of the principal
coordinates of a matrix of geographic neighbors among the geographic sites (Borcard &
Legendre 2002); it can be successfully applied on various spatial designs: linear (tran-
sect) and two-dimensional (surface), regular or irregular geographic schemes. This
section describes both the construction of dbMEM eigenfunctions and multi-scale spa-
tial analysis.

3.1 Construction of dbMEM spatial vectors

As stated above, dbMEM vectors are obtained by performing a principal coordinate
analysis of a truncated matrix of Euclidean distances between defined geographic units.
These units are given sites (e.g. statistical areas) for which population statistics are
available. Notably, the share of car ownership and other variables are associated with

1https://cran.r-project.org/web/packages/adespatial/index.html
2https://cran.r-project.org/web/packages/spmoran/index.html
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each of these units. dbMEM spatial vectors are constructed according to the four
following steps:

1. A 2-dimensional matrix of Euclidean distances (D) between geographic unit
barycenters is built using the geographic coordinates of the relevant points.

2. A truncated connectivity matrix (W) is then constructed. During this opera-
tion, geographic distances are considered to belong to one of two groups: small
or large distances. The truncation step is performed according to the following
rule:

wij = dij if dij ≤ t (1)
and wij = 4t if dij > t (2)

The value of threshold, t, is chosen. This parameter derives from the observation
that MEM eigenvectors display variation across the full set of sites under study
if the sites form a connected graph in the truncated matrix. Furthermore, a
large truncation value implies a loss of the finest spatial structures. The most
commonly applied solution calls for computing the minimum spanning tree of
a single-linkage clustering of the site coordinates and then retaining the largest
edge value. Hence, threshold t is computed as follows:

• A minimum spanning tree (MST) linking all points (i.e. site barycenters)
in the study is created.

• The length of the largest edge in the chain forming the MST is determined.

• t is set equal to the length of the largest edge in the MST.

Disconnected pairs are identified in the matrix D truncated by distances equal
to 4t. The value 4t is chosen here because computer simulations have shown
little change to numerical results when using larger values (Borcard & Legendre
2002).

3. The diagonal values of the distance matrix, which were originally zeros, are
replaced by the value 4t; this change on the diagonal of the truncated matrix
indicates that a site is not connected to itself.

4. The principal coordinate analysis (PCoA) of the truncated matrix is computed,
thereby yielding (n− 1) non-zero eigenvalues and their corresponding eigenvec-
tors (Gower 1966).

3.2 dbMEM spatial vector interpretation

Eigenvectors produced by PCoA decomposition are readily available tools for space
partitioning. The components of each eigenvector, associated with corresponding geo-
graphic units, form an unique spatial pattern; this can apply to any spatial unit design,
but spatial vectors are easier to interpret in the case of regular designs. As an illustra-
tion, Figure 1, extracted from Legendre & Legendre (2012), shows maps of the first six
eigenvectors produced after performing a dbMEM principal coordinate decomposition
for a regular 12 x 8 grid. Shades of gray represent the values in each eigenvector,
from white (largest negative value) to black (largest positive value). Spatial patterns,
corresponding to the eigenvectors, can indeed be clearly identified.
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Note: shades of gray represent the values in each eigenvector, from white (largest negative value)
to black (largest positive value).

Figure 1: Maps of the first six eigenvectors (extracted from Legendre & Legendre
(2012)) produced after performing a dbMEM principal coordinate decomposi-
tion for a regular 12 x 8 grid

3.2.1 Scale representation

dbMEM variables model the spatial relationships among sites in decreasing order
of spatial scale (Borcard & Legendre 2002). The first dbMEM eigenvector (with the
largest eigenvalue) corresponds to the broadest spatial scale, indicating the spatial
extent of the entire study area (large-scale variation), while the last dbMEM eigenvec-
tor (with the smallest eigenvalue) corresponds to the finest spatial scale (small-scale
variation).

To illustrate the spatial scales associated with dbMEM variables, let us consider a
one-dimensional transect with n equally-spaced sites. Since the design is regular, the
dbMEM eigenvectors representing the spatial variation resemble sine waves. Figure 2,
extracted from Legendre & Legendre (2012), shows the results for a 50-point transect.
The complete sine wave of the first eigenvector has a wavelength of 51 units. The
following eigenvectors form sine waves of shorter wavelengths, with the last eigenvector
having a wavelength of 2.04. With irregularly-spaced designs (whether one-dimensional
or two-dimensional), the dbMEM vectors lose the regularity of their shapes (at times
complicating the scale assessment), yet the eigenvectors modeling broader-scaled and
finer-scaled phenomena can still be distinguished.

3.2.2 Spatial autocorrelation and dbMEM spatial vectors

Spatial autocorrelation is a measure of similarity between the value of a variable at
one location and the value(s) of the same variable at one or more proximal locations.
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Note: Abscissa, from left to right: sites 1 to 50. Ordinates: values along the dbMEM eigenfunctions.

Figure 2: Graphs (extracted from Legendre & Legendre (2012)) of 10 of the 49
dbMEM eigenfunctions representing the spatial variation along a transect with
50 equally-spaced points

A widely used tool for measuring spatial autocorrelation is Moran’s coefficient (Moran
1948). In matrix form, Moran’s coefficient can be formulated as follows:

MC =
n∑

i

∑
j
wij

x′Wx

x′x
(3)

where x is a vector (n × 1) of mean-centered values of a geo-referenced variable, and
W a spatial weights matrix of dimensions (n× n) with elements wij . The elements of
the spatial weights matrix assume non-zero values if locations i and j are deemed to
be spatially proximate in some sense, and 0 otherwise.

Dray et al. (2006) showed that the eigenvalues of the dbMEM spatial eigenvectors
are equal to Moran’s I coefficients of spatial correlation (Eq. 3) computed for these
same eigenvectors, divided by a constant. A positive eigenvalue therefore corresponds
to a positive spatial autocorrelation, i.e. the Moran index is positive. On the contrary,
a negative eigenvalue corresponds to a negative spatial autocorrelation at short range.
In the case of a linear transect with equally spaced points (example shown in Figure
2), roughly half the eigenvectors have a positive Moran’s I and model a positive spatial
correlation, while the other half has a negative Moran’s I and models a negative spatial
correlation at short range.

This paper only considers eigenvectors with positive eigenvalues and Moran’s I.
The focus in fact lies on the positive spatial autocorrelation of car ownership in the
spatial analysis. Most previous studies with dbMEM have considered positive spatial
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autocorrelation (Legendre & Legendre 2012). However, eigenvectors with negative
Moran I remain available when investigating negative spatial autocorrelation is needed.

3.3 Multi-scale spatial analysis

3.3.1 Significant spatial vectors

The number of dbMEM eigenvectors created by the principal coordinate analysis
tends to be high. However, not all these vectors are significant and contribute to an
explanation of the dependent variable (e.g. car ownership). Therefore, an appropri-
ate selection method is needed to reduce their number (Borcard et al. 2004). Since
dbMEM eigenvectors are orthogonal by design so as not to correlate with each other,
they can be used in linear models as explanatory variables of the dependent variable.
The model can thus be made more parsimonious, by means of retaining just the sig-
nificant dbMEM eigenvectors, using an appropriate selection method (e.g. stepwise
eigenvectors selection). The dbMEM eigenvectors can be used as explanatory variables
in any model of general and generalized linear modeling theory (Griffith & Peres-Neto
2006).

3.3.2 Spatial scales

Given that dbMEM eigenvectors are orthogonal to one another, they can be com-
bined into sub-models, corresponding to different spatial scales. Furthermore, any
sub-model containing a subset of dbMEM is also independent of any other sub-model
containing another subset. The spatial scales corresponding to these sub-models vary
from large to very fine. For example, if dbMEM eigenvectors are grouped into three
sub-models, then the sub-model representing the largest spatial scale is to be charac-
terized by eigenvectors with the largest positive eigenvalues. Similarly, the sub-model
representing the medium spatial scale is to be characterized by eigenvectors with inter-
mediate positive eigenvalues and the fine scale by eigenvectors with small eigenvalues.

These sub-models are defined arbitrarily, yet a few procedures can still be followed
for this selection step (Borcard et al. 2018):

• predefine spatial scale limits, using the sizes of patterns corresponding to the
dbMEM variables;

• identify groups of eigenvectors by examining a scalogram showing in the ordinate
the regression coefficients (or the Pearson correlations or the absolute values
of the t-statistics associated with the regression coefficients) of the dbMEM
eigenvectors ordered along the abscissa in decreasing eigenvalues;

• draw maps of the significant dbMEM variables and group them visually accord-
ing to the scales of the patterns they represent.

3.3.3 Variation of dependent data

Another step of multi-scale spatial analysis consists in identifying factors that
explain the variation of dependent data:
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Variation explained by W Unexplained
Variation in Y = [a] [b] [c] [d]

Variation explained by X

Figure 3: Diagram describing the partitioning of the variation of a response
variable Y by two sets of explanatory variables (X and W)
.

• variation of dependent data (e.g. car ownership) at each scale can be attributed
to the sociodemographic variables available for the analysis (e.g. sociodemo-
graphic variables identified in Section 2);

• variation of dependent data can be represented simultaneously with respect to
spatial scales and sociodemographic variables.

Variation partitioning analysis (Mood 1971, Borcard et al. 1992, Peres-Neto &
Jackson 2001) constitutes a comprehensive approach to represent the variation of de-
pendent data. It consists of apportioning the variation of a variable, between two or
more explanatory datasets pertaining to the different classes. Variation partitioning is
commonly used in the field of ecology as an exploratory tool and to give insights into
processes structuring communities (Gebrehiwot et al. 2020, Checon & Amaral 2017,
Cao et al. 2019, Zbinden & Matthews 2017).

In a partitioning by two explanatory matrices (sets) X and W , both explain some
variation of the response data. When the explanatory datasets are not orthogonal to
one another, some amount of variation is explained jointly by the two sets. Conse-
quently, the variation explained by all variables taken together is less than the sum of
the variations explained by the various subsets. Figure 3 illustrates the partitioning
of the explanatory power of different explanatory matrices (X and W) in relation to
the same response matrix (Y).

Each explanatory matrix uniquely explains a portion of the variation in Y (X
(resp. W) explains partition [a] (resp. [c])). In addition, both matrices explain
another portion of the variation in Y (partition [b]), i.e. the explanatory matrices
are redundant in this partition. The larger this fraction, the more multicollinearity
present in the model. The residual variation in matrix Y (partition [d]) is explained
by neither X nor W.

4 Study of car ownership in a French administra-
tive region

This section will demonstrate the use of dbMEM multi-scale spatial analysis on
car ownership rate data. The procedure presented in Section 3 is applied to the Loire-
Atlantique Department (France).3 The dataset will be described before conducting
a dbMEM analysis of the dependent variable (i.e. car ownership), then dividing the
significant eigenfunctions into sub-models and interpreting these sub-models using
explanatory variables. As a final step, dbMEM eigenfunctions will be applied within
the framework of variation partitioning.

3In France’s administrative divisions, the department is one of the three administrative
jurisdictions of government below the national level, positioned between regions and munici-
palities.
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4.1 Data considerations

For this analysis, we are using data of the Loire-Atlantique Department from the
2016 census and the FiLoSoFi (localised disposable income system) database. These
datasets have been collected respectively by the French National Institute of Statistics
and Economic Studies (INSEE) and the French fiscal administration. The Loire-
Atlantique department is located in northwestern France and has a population of
roughly 1,400,000. The main city Nantes is France’s 6th largest (with a population of
about 310,000).

The statistical areas used in this study are known as IRIS units (acronym for “ag-
gregated units for statistical information”); they represent the basic units for dissemi-
nating sub-municipal data in France. All municipalities with over 10,000 inhabitants
and a large proportion of those with populations between 5,000 and 10,000 are divided
into several IRIS units. The municipalities not divided into multiple IRIS units consti-
tute an IRIS unit in themselves. Within a residential IRIS, the population lies between
1,500 and 5,000. Both census and FiLoSoFi datasets are associated with IRIS units.
Variables in the census database include household characteristics (e.g. family com-
position and car ownership) and individual ones (e.g. profession, age and gender). In
Appendix B, Table B.1 provides a detailed description of census variables. Household
median disposable annual income variable is given in the FiLoSoFi database.

Car ownership rate is one of the variables contained in the census database, mean-
ing that the car ownership rate can be computed for each IRIS. The mean value of
this variable for the study area is 87.41 percent, with a standard deviation of 10.92
percent and a median value of 91.79 percent. Households are more likely to own a car
if they live in the Nantes outskirts. Figure 4 shows the proportion of households in
each IRIS possessing at least one car.

Figure 4: Car ownership, by IRIS

Based on the literature review (Section 2) that identified the main determinants of
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car ownership, we selected an initial set of explanatory variables from those available
in the census and FiLoSoFi databases. This set of variables includes:

• family composition variables: shares of family categories (single member, couple
without children, couple with children, single-parent and other composition);

• age variables: shares of different age groups (0-2, 3-5, 6-10, 11-14, 15-17, 18-24,
25-29, 30-39, 40-54, 55-64, 65-79 and 80/+);

• profession variables: shares of farmers, tradespeople, executives, intermediate
occupations, clerical support workers, lower-skilled technical occupations, retiree
and unemployed;

• income variable: median disposable annual income.

However, many of these variables are highly correlated (e.g. income and profession).
In order to avoid co-linearity in our model, only a subset of these variables is retained.
This subset is constituted of the following variables:

• share of couples with children variable to take into account the effect of larger
households;

• share of individuals in the 25-54 age group variable as individuals in this age
group tend to be more active;

• median disposable annual income per consumption unit (consumption units of a
household are defined as follows (Eurostat 2021): 1 consumption unit (CU) for
the first adult in the household, 0.5 CU for every other person in the household
aged 14 years or older, 0.3 CU for each child under 14).

In addition to the three selected variables, we also computed a fourth variable,
i.e. population density (in inhabitants/km2), to integrate it into our model. This
variable has been used in previous studies of car ownership as a proxy to accessibility
variables (Clark 2007). It could be hypothesised that car ownership is likely to be
higher in areas of lesser density because there is a poorer provision of public transport
and people need to travel further to access shops and services. Therefore, population
density of the IRIS is selected as one to help capture this accessibility effect. Table 2
lists the descriptive statistics of this set of explanatory variables.

Variable Mean Median s.d.

car ownership (%) 87.41 91.79 10.92
couples with children (%) 28.41 29.21 11.17
25-54 yrs (%) 38.96 39.93 6.01
population density (inhabitants/km2) 2362.89 591.80 3399.96
median income (e) 21,681 21,512 3,118

Table 2: Descriptive statistics (IRIS level)

4.2 Results
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4.2.1 Spatial vectors

This analysis begins by defining the IRIS spatial neighborhood by means of a
minimum spanning tree (see Section 3.1), which can be represented by an unweighted
graph, as seen in Figure 5. For our study area, the longest edge of this tree has a
length (t) equal to 7,604.5 meters. Beyond this truncation distance, IRIS pairs are
deemed to be disconnected. The distance between disconnected IRIS pairs has been
set at 4t in the distance matrix.

In order to compute spatial vectors, a principal coordinate analysis of the truncated
distance matrix between the 499 IRIS has been carried out. This procedure resulted
in 498 eigenvectors, 176 of which are associated with positive eigenvalues and the
remaining 322 with negative eigenvalues. As explained in Section 3.2.2, only those
eigenvectors associated with a positive eigenvalue have been taken into account in our
analysis.

Figure 5: Spatial neighborhood

4.2.2 Significant spatial vectors

As the car ownership variable is expressed as a percentage, the standard techniques
of statistical analysis (i.e. linear regression and ANOVA) are not appropriate. Thus,
we use a generalized linear model (GLM) regression (with a quasi-binomial distribution
to account for overdispersion and using a logit link function) in order to estimate the
explanatory power of the 176 dbMEM vectors associated with a positive Moran’s I
value. Among the 176 vectors, only 23 significant ones are retained. The reduced
model is presented in Table 3.
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Estimate Std. Error t-value

Intercept 2.168 0.029 72.676
MEM1 -0.572 0.024 -23.575
MEM4 -0.409 0.023 -17.077
MEM6 0.131 0.028 4.606
MEM8 -0.108 0.031 -3.406
MEM9 0.077 0.026 2.897
MEM13 -0.062 0.024 -2.615
MEM14 -0.090 0.022 -3.959
MEM15 -0.082 0.027 -3.035
MEM16 0.074 0.027 2.678
MEM17 0.087 0.031 2.797
MEM20 0.069 0.022 3.027
MEM34 -0.054 0.028 -1.902
MEM36 -0.076 0.029 -2.577
MEM37 -0.083 0.032 -2.597
MEM39 0.094 0.031 2.964
MEM61 -0.075 0.028 3.383
MEM69 -0.075 0.025 -2.906
MEM73 -0.062 0.029 -2.135
MEM80 -0.050 0.024 -2.052
MEM96 -0.057 0.027 -2.063
MEM129 0.059 0.025 2.297
MEM137 0.048 0.024 1.978
MEM167 -0.060 0.027 -2.191

N 499
φ 0.033
Moran I stat. (p-value<0.001) 0.090

Table 3: GLM regression: significant eigenfunctions

4.2.3 Spatial sub-models

Significant dbMEM variables have been grouped into subsets corresponding to
distinct spatial scales. They were partitioned into three distinct subsets corresponding
to three scales by inspecting their geographical representation which are displayed in
Appendix A:

• the first two significant dbMEM variables (MEM1, MEM4) have been grouped
to represent the broad scale (BS);

• the next nine dbMEM variables (MEM 6, 8, 9, 13, 14, 15, 16, 17, 20) have been
grouped to represent the medium scale (MS);

• and the last twelve dbMEM variables (MEM 34, 36, 37, 39, 61, 69, 73, 80, 96,
129, 137, 167) have been grouped to represent the fine scale (FS).

We define broad, medium and fine scale sub-models as mathematical operations
for computing the variation of car ownership at the corresponding scales. In order to
compute the variation of car ownership at each scale, the following steps are applied:
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1. the sum of the chosen dbMEM vectors at each scale multiplied by their corre-
sponding estimates (displayed in Table 3) added to the intercept is computed;

2. the variation of the car ownership at each scale is obtained by applying the in-
verse of the link function (used for GLM regression) to the result of the previous
operation.

The values of car ownership variation at broad, medium and fine scale are shown
respectively in Figures 6, 7 and 8. Spatial structure associated with broad scale sub-
model matches the structure obtained distinguishing between main cities (Nantes and
Saint-Nazaire) versus other areas (Figure 6). Spatial structure associated medium
scale sub-model matches the structure obtained distinguishing between main city cen-
ters and close surrounding areas (Figure 7). Fine scale spatial structure is harder to
interpret (Figure 8).

Figure 6: Variation in car ownership computed with the broad scale sub-model
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Figure 7: Variation in car ownership computed with the medium scale sub-model

Figure 8: Variation in car ownership computed with the fine scale sub-model

4.2.4 Multi-scale analysis of explanatory variables and variation par-
titioning
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Let us now turn to identifying the sociodemographic characteristics that contribute
to the variation in car ownership rate at each identified scale. For this purpose,
the following sociodemographic variables have been considered: share of couples with
children, share of individuals in the 25-54 year age range, share of households living
in single-family dwellings, population density, and income. These sociodemographic
variables are used as explanatory variables in regression analysis of the output of each
of the three sub-models. Outputs of broad scale, medium scale and fine scale sub-
models are respectively regressed on these variables. The results of these regressions
establish the contribution of sociodemographic variables at each scale.

The results of multi-scale analysis of explanatory variables are displayed in Table
4. The table reports the signs of the significant coefficients (with a p-value < 0.1)
associated with each variable of the following GLM regressions: (i) car ownership on
the sociodemographic variables (column 1 of the table); (ii) variations of car ownership
at each scale (i.e. broad, medium, fine) as displayed by Figures 6, 7 and 8 on the
sociodemographic variables (columns 2, 3 and 4).

(1) (2) (3) (4)
car ownership Broad scale Medium scale Fine scale

Median income + - + +

Couples with children + + + +

25-54 yrs - +

Population density - -

Table 4: Signs of significant coefficients related to the spatial analysis of the car
ownership variable

Some important elements should be highlighted as regards regression analysis dis-
played in Table 4.

Considering the regression of the car ownership on the sociodemographic variables
(Table 4, column 1), the signs of the coefficients of the median income and the popu-
lation density are as expected. In line with previous literature (Clark 2007, Clark &
Finley 2010), the car ownership rate is positively correlated with the median income,
in contrast, it is negatively correlated with the population density. Furthermore, the
coefficient is positive for the share of couples with children and negative for the share
of individuals between 25-54 years.

Considering the three other regressions (Table 4, columns 2, 3 and 4), the multi-
scale analysis provides a more nuanced view of the effect of the different sociodemo-
graphic explanatory variables. The variables population density, median income and
couples with children are significant at the broad scale: population density and median
income are negatively correlated with the response variable; while couples with chil-
dren variable is positively correlated. It is interesting to note that median income is
negatively correlated with car ownership variation at broad scale (Table 4, column 2)
although it is positively correlated to car ownership in the purely sociodemographic
model (Table 4, column 1). This derives from the fact that spatial structure at broad
scale is closely related to the structure obtained distinguishing between main cities
(Nantes and Saint-Nazaire) versus other areas as shown in Figure 6. Furthermore,
centers of the two main cities in Loire-Atlantique Department tend to concentrate
higher income households (i.e. median income in town centers is higher than other
areas). The combination of these two factors yields a negative correlation between
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median income and car ownership variation at broad scale. At the medium and fine
scales, couples with children and median income are significant and positively corre-
lated with the response variable. The share of individuals in the 25-54 year age range
is only significant at the medium scale (Table 4, column 3). As the medium scale
distinguishes between main city centers and close surrounding areas (Figure 7), this
implies a variation in the share of individuals in the 25-54 year age range between
these two areas. Additional data are needed to further explore this result. Finally, one
can note that the population density is significant at broad scale (Table 4, column 2)
but not significant at medium and fine scales (Table 4, columns 3 and 4).

These results suggest that car ownership variation at each scale and sociodemo-
graphic variables are indeed correlated; hence, it can be inferred that at least a portion
of the spatial variation in car ownership rate (i.e. structure) is induced by the relevant
driving (i.e. sociodemographic) factors. In order to apportion car ownership variation
between sub-models and sociodemographic variables, a variation partitioning analysis
is undertaken. This analysis estimates both the amount of variation that can be at-
tributed exclusively to sub-models (spatial variables) and the amount explained jointly
by spatial and sociodemographic variables.

Figure 9 displays the results of this variation partitioning analysis following the
method proposed by Randin et al. (2009). The explanatory matrices defined contain
variables pertaining to sociodemographic determinants and various spatial scales. The
first model (i.e. full) considers all significant dbMEM variables while the other three
models (i.e. broad, medium and fine) consider only the subset of dbMEM variables
associated with each scale. We partition the variation into four identifiable fractions
of deviance: (i) pure sociodemographic (black area), (ii) pure spatial (grey area), (iii)
shared sociodemographic and spatial (mustard area), and (iv) unexplained variation
(yellow area).

Figure 9: Variation partitioning

Some important elements should be highlighted as regards variation partitioning
analysis. They are summarized as follows:

19



• The car ownership rate variation is well explained by the model: the proportion
of variation explained by the model ranges from 85 % for the full model to 81 %
for the model including the fine scale as spatial model.

• As expected, the sociodemographic model explains most of the variation: the
sum of the deviance explained by the pure sociodemographic fraction and the
shared sociodemographic and spatial fraction represents at least 81 % of the
total variation.

• The car ownership rate variation explained by sociodemographic variables is
highly spatialized: 63 % of the deviance in the full model is simultaneously
explained by sociodemographic and spatial variables. The shared deviance be-
tween the socioeconomic and the spatial variables remains important for the
broad scale model (i.e. 53 %) but diminishes dramatically for the medium and
fine scale models (i.e. 7 % and 4 %, respectively).

• A small part of the car ownership rate variation is exclusively explained by the
spatial structure: in the full model, this part is 4 %. This additional explanation
by the spatial model is mainly due to the broad scale model: the independent
contribution of the spatial variables is very small for the medium and fine scale
models.

5 Discussion

The results presented in this paper underscore the importance of multi-scale spatial
analysis as an explanatory tool applicable to transportation data. Since the data
are spatially structured, these structures can be correlated with both explanatory
factors and governance policies. Let us note that space per se is not considered as
an explanation of transportation data variability; rather, spatial variables serve as
proxies to quantify and dissect the spatial variation. A portion of this variation can
then be attributed to some of the explanatory variables available for analysis, with the
remainder being considered as spatial variation yet to be explained.

In this study, the car ownership rate has been shown to have a spatial structure
at three distinct scales. At the broad scale, the spatial structure of car ownership
rate variation is in line with the structure obtained when distinguishing between the
two main cities (Nantes and Saint-Nazaire) versus other areas (Figs. 6 and A.1),
which implies that living in one of the study area’s two main cities is a relevant
predictor of car ownership, as the rate is less in these cities. The broad-scale spatial
structure of car ownership rate has been correlated with classical sociodemographic
explanatory variables: negatively with population density and median income, and
positively with share of couples with children. Population density is closely correlated
with the availability of public transit as corresponding investments in denser areas are
far greater. Part of the explanation of the negative correlation between median income
and car ownership at broad scale model may lie in the fact that a part of the population
with higher income lives in areas with better urban amenities which can offer a good
substitute for car ownership (Mulalic & Rouwendal 2020). This assumption needs to
be explored further by social scientists. In future research, it would be interesting
to investigate if this finding is specific to the studied area or valid in different areas.
This analysis illustrates the additional value to classical sociodemographic modeling
brought by taking into Mems in analyzing the car ownership.
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At the medium scale, the spatial structure of car ownership rate variation is in
line with the structure obtained when distinguishing between large city centers and
the nearby surrounding areas (Figs. 7 and A.2). In the case of Nantes city, three
areas can be distinguished. The first is the inner core with a lower rate. The second
area is constituted of IRIS located between the inner core and the ring road, where
median income and individual house share are higher. These areas tend to have higher
ownership rates. The third area, located outside the ring road and characterized by
lower median income and a higher dwelling share, tends to have lower ownership. At
the fine scale, spatial structures are harder to interpret (Figs. 8 and A.3).

A major advantage of distance-based Moran’s eigenvector analysis is its explicit
identification of scale patterns, which provides critical information in land use and
transportation planning (Wang et al. 2013). Knowing these patterns (i.e. spatial
structures) can be of major interest for transportation and urban planners and more-
over allow decision-makers to act on targeted zones of the territory to influence the
variable of interest. As shown by our analysis, issues are not the same throughout the
territory considered. For example, since the car ownership rate is particularly high
outside city centers, policymakers can increase the supply of public transit in these
zones. Similarly, the analysis has identified a higher car ownership rate within the IRIS
located in Nantes between the core and the ring road. A more targeted analysis of this
area would serve to determine whether any levers could be used to reduce the rate.
Another advantage of this analysis is its use as an explanatory tool to refine models
for the dependent variable. When model residuals are not randomly distributed, ex-
ploring the spatial patterns of these residuals can in fact be very helpful in identifying
missing explanatory factors. Supported by expert opinion, the resulting patterns will
then guide the choice of omitted relevant explanatory variables (Paez 2019).

dbMEM vectors are obtained by performing a principal coordinate analysis of a
truncated matrix of Euclidean distances between centroids of defined statistical ar-
eas. As our concern is transportation data analysis, a more sophisticated approach
would use other distance measurements between statistical areas (instead of simple
Euclidean distances) such as travel time.4 In fact, travel time provides another rele-
vant transportation-related measure of scale. In this paper, we have kept the classic
Euclidean distance as a first approach and in order to facilitate the analysis. However,
it will be the purpose of future works to analyze the data using others distances (e.g.
travel time).

6 Conclusion
This study has contributed to the current transportation literature by introducing
multi-scale spatial analysis techniques with space as an explicit predictor. Applying
these techniques to study transportation variables (e.g. household car ownership) of-
fers many important methodological and operational advantages. They provide trans-
portation planners with a tool for identifying the spatial structures of response vari-
ables at various scales. These structures can be correlated with explanatory variables
and used to target specific geographical areas in transportation planning policies.

In this paper, distance-based Moran’s eigenvector maps have been implemented
for car ownership spatial analysis. For this purpose, aggregated census data for small

4We thank an anonymous reviewer of this paper for suggesting travel time as another
relevant transportation-related measure of scale.
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statistical areas in France’s Loire-Atlantique Department were used. Significant spa-
tial vectors explaining car ownership variable were selected by performing generalized
linear model regression. These spatial vectors were then divided into sub-models rep-
resenting broad scale, medium scale and fine scale. Finally, variation partitioning
analysis was performed with respect to variables pertaining to both sociodemographic
determinants and the distinct spatial scales.

In conclusion, distance-based Moran’s eigenvectors maps is an appealing method
that can be used to study transport data. In this paper, it has been applied to study
spatial structure of a single response variable. An avenue for future research is to
apply this methodology in different urban areas to check whether the same findings
still apply. For example, some counterintuitive results, such as the negative correla-
tion between income and car ownership at broad scale, underline the interest of this
approach, but this result needs to be verified in other urban areas. Furthermore, as
this first analysis was based on Euclidean distance between statistical areas to explore
spatial structures, it could be enriched by considering other distance measurements for
transportation data analysis (e.g. travel time). Moreover, opportunities for continued
investigation include applying this method to study multivariate response data. In
this approach, spatial layout of multiple transport variables (e.g. single car, multiple
cars and motorized two-wheelers ownership) can be explored simultaneously. Finally,
another investigation opportunity is the study of both spatial and temporal layout of
the response variable. In fact, dbMEM variables can represent effectively a spectral
decomposition of both the spatial and temporal relationships.
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Appendices
A MEM spatial representation

Note: Each dbMEM vector is plotted with the component of the vector associated to a given
statistical area (IRIS) represented by a square. Black and White squares represent values of
different signs (positive or negative). Square sizes are proportional to the absolute value of
the component.

Figure A.1: MEM 1 and 4 form the broad scale sub-model. Spatial structure
associated with these MEM matches the structure obtained distinguishing be-
tween main cities (Nantes and Saint-Nazaire) versus other areas.
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Note: Each dbMEM vector is plotted with the component of the vector associated to a given
statistical area (IRIS) represented by a square. Black and White squares represent values of
different signs (positive or negative). Square sizes are proportional to the absolute value of
the component.

Figure A.2: MEM 6, 8, 16 and 17 are part of the medium scale sub-model.
Spatial structure associated with these MEM matches the structure obtained
distinguishing between main city centers and close surrounding areas.
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Note: Each dbMEM vector is plotted with the component of the vector associated to a given
statistical area (IRIS) represented by a square. Black and White squares represent values of
different signs (positive or negative). Square sizes are proportional to the absolute value of
the component.

Figure A.3: MEM 61, 69 and 129 are part of the fine scale sub-model. Fine
scale spatial structures are harder to interpret.
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B Variables in the census database

Level Variable Definition Categories

[number of categories]

Household Fam Family composition [5] Single member; The nuclear family is a couple without chil-
dren; The nuclear family is a couple with children; The nuclear
family is a single-parent family; Other composition

ProfRP Profession of the reference
person [7]

Farmers, tradespeople; Executive; Intermediate occupations;
Clerical support workers; Lower-skilled technical occupations;
Retiree; Unemployed

Size Household size [2] One person; Two persons or more

Cars Number of cars [3] No car; One; Two or more

Individual Age Age [12] 0-2; 3-5; 6-10; 11-14; 15-17; 18-24; 25-29; 30-39; 40-54; 55-64;
65-79; 80/+

Sex Gender [2] Female; Male

Relate Relationship to the house-
hold reference person [2]

Household reference person; Other household member

Prof Profession [7] Farmers, tradespeople; Executive; Intermediate occupations;
Clerical support workers; Lower-skilled technical occupations;
Retiree; Unemployed

Wstat Work status [7] In fixed-term employment; Permanent employment; Self-
employed; Unpaid apprenticeships for those 15 or older; Un-
employed; Under 15 years old; Other non-active persons

Wtime Working time [3] Full-time worker; Part-time worker; Not applicable

Table B.1: Census sociodemographic variables
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