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ABSTRACT 

 

Conditional strategies are the most common form of discrete phenotypic plasticity. 

In a conditional strategy, an expressed phenotype is determined by the difference between 

an environmental cue and a threshold, both of which may vary among individuals. The 5 

Environmental Threshold model (ETM) has been proposed for understanding the evolution 

of conditional strategies. Surprisingly, the ETM has little been applied to empirical studies. 

Here, we extending the ETM that allows assessment of conditional strategies from 

observational data. Our model accommodates likely situation where an observable aspect 

of the environment ('observable cue') is distinct from the unobserved proximate cue. First, 10 

we show that ignoring the observable vs. proximate cue distinction can lead to 

overestimate the variation in the threshold.  Second, despite of identifiability issue, we 

show that the LETM allow to estimate the proximate cue and the threshold at individual 

level. Third, we propose the use of genetic data to cope with identifiability issues. Finally, 

we illustrate our approach with empirical data on the size-dependent smolting process for 15 

stream-dwelling Atlantic salmon juveniles in the Scorff River (Brittany, France). We argue 

that coupling our model with quantitative genetic methods could allow disentangling the 

genetic and environmental components of the threshold phenotypic variance. 
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INTRODUCTION 

Phenotypic plasticity - the ability of a genotype to produce different phenotypes 

according to environmental conditions – can be an adaptive response of organisms to 

selection in stochastic environments (Ghalambor et al. 2007). When plasticity refers to a 

discrete trait (e.g., maturation at given age, polymorphism in defensive structures, and 5 

alternative mating tactics), the concept of the conditional strategy (Gross 1996) is a 

popular framework to study the ability of a genotype to express alternative phenotypes (or 

tactics). Tomkins and Hazel (2007) define the conditional strategy as a genetically 

determined decision rule containing a conditional clause. For binary traits, i.e. traits two 

possible categorical phenotypic states, the phenotype expressed by an individual may be 10 

dependent on an environmental cue and the choice between phenotypes may result from 

a physiological 'comparison' between the cue and a threshold (or switchpoint).  

Tomkins and Hazel (2007) critically assess the Status Dependent Selection model 

(SDSM) initially formulated by Gross (1996) for representing a conditional strategy. They 

propose to replace the SDSM with the Environmental Threshold Model (ETM; Hazel et al. 15 

1990; Hazel et al. 2004). The ETM is an extension of the SDSM. First, the main difference 

between the two models lies in that the ETM assumes the threshold can vary among 

individuals according to their genotype. Second, the ETM facilitates the use of quantitative 

genetic theory for understanding the evolution of conditional strategies (Hazel et al. 2004). 

In the ETM the threshold is considered as a trait that varies among individuals, and in this 20 

quantitative genetic framework the threshold is considered to be controlled by a trait that is 

modeled as continuously and normally distributed on some unobserved latent scale. In the 

ETM model, the threshold can thus be treated as a heritable trait where variation may 

come from multiple sources, including environmentally-induced variation and heritable 

differences among individuals (Roff 1997). At the individual level, the phenotype expressed 25 

results from the comparison between the cue and the threshold both in the SDSM and the 



 

 

ETM. At the population level, the proportion of the alternative phenotypes depends only on 

the cue distribution in the SDSM - the threshold is fixed - whereas it depends both on the 

cue and the threshold distributions in the ETM. The ETM formally distinguishes phenotypic 

plasticity from evolution  of the phenotype proportions (Tomkins & Hazel 2007). A change 

in the cue distribution immediately translates into a change in the phenotype proportions, 5 

therefore reflecting phenotypic plasticity. Evolutionary changes modify the threshold 

distribution and thus shift the phenotype proportions as well, and potentially independently 

of changes in the distribution of the cue. 

In the context of environmental change, understanding how organisms can respond 

to varying environmental conditions is of particular importance.  Understanding this 10 

potential for phenotypic change requires simultaneous consideration of the consequences 

of phenotypic plasticity and of evolutionary change, and in the current context, of the 

evolution of plasticity. The ability of the ETM to accommodate both phenotypic plasticity 

and its evolution is most appealing for assessing conditional strategies in the wild. Indeed, 

it allows addressing jointly in a single model the two mechanisms by which adaptation can 15 

occur, namely environmental cues that trigger phenotype expression and genetic variation 

that control phenotype expression. However, confronting the ETM with observation data 

collected in the wild requires embedding the ETM into a statistical model to deal with 

uncertainty. Although the thresholds and the parameters of their distribution are clearly not 

observable, they are conceptual and unknown quantities for which statistical inference can 20 

be derived from observed data. In contrast, the phenotypes expressed by individuals are 

observable. The status of the environmental cue is more ambiguous. Indeed, the 

proximate mechanism by which an individual assesses its environment to adjust its 

phenotype remains in most instances unknown (Metcalfe 1998; Tomkins & Hazel 2007). 

The environmental cue of the ETM should then be split in two distinct but related 25 

quantities: the proximate cue, for which the comparison with a threshold would trigger the 



 

 

phenotype expressed by an individual, is hidden; however it may be correlated with an 

observable cue which can be readily measured. 

The proposed distinction between observable and (unobservable) proximate cue is 

supported by Ostrowski et al. (2000) study on the snail Bultinus truncatus. They tested the 

ETM in a set of experiments where both the genotype and the environment were 5 

controlled. In contrast with what was expected under the ETM, they observed significant 

random variation in the phenotype expression for fixed environment X genotype 

combinations. They hypothesized a micro-environmental and uncontrolled variation in the 

threshold to explain this residual randomness. Avoiding the rather inconsistent statement 

that environment varies significantly even when it is experimentally fixed, we contend the 10 

proximate vs. observable cue dichotomy is a more sensible alternative hypothesis. In the 

case  Ostrowski et al. (2000)'s study, it would mean that the organisms assess 

temperature – the observable environmental cue experimentally controlled - through  an 

unknown proximate mechanism with some random "measurement error". The proximate 

cue would then only be correlated with temperature, which could be used as the observed 15 

cue. Note that any observable quantity traits can also be used as environmental cues. In 

fish, growth rate or size at a given age are known to be strongly influenced by the 

environment and are thus considered as integrating various environmental factors 

(Hutchings 2004; Dieckmann et al. 2007). Body size may be particularly useful as an 

observed cue, because it may integrate many important aspects of the environment an 20 

individual has experienced in a single tractable and obtainable measurement.  However 

body size or any other cue should nonetheless still be distinguished from the proximate 

cue triggering the phenotype expression because there must be an (unknown) inner 

mechanism by which an organism gets informed about its size or growth rate, because a 

perfect correlation with the proximate cue is unlikely. 25 

The purpose of this paper is to develop a statistical model extending the ETM that 



 

 

incorporates the proximate vs. observable cue distinction. It allows the estimation of latent 

variables of primary interest, i.e. the proximate cue and the threshold trait. We refer to this 

new model as the Latent Environmental Threshold Model (LETM). We first describe the 

model and show that ignoring the proximate vs. observable cue distinction leads to 

overestimation of the variance of the distribution of the threshold. This result is crucial 5 

since the potential for evolution of the conditional strategy directly depends on this the 

existence of this variability in the threshold and its heritability (Hazel et al. 2004). Second, 

we investigate the properties of our new model using simulated data. In particular, we 

explore the conditions in which the parameters of interest are, or can be rendered, 

identifiable. Particularly, we show that the use ofgenetic data render parameters of interest 10 

identifiable. Our LETM approach is applicable to any situation where the conditional 

strategy framework is relevant and when individual data are available for at least the 

alternative phenotypes involved and a related observable cue. Third, because Atlantic 

salmon is a conditional strategist (sensu Gross 1996) with respect to  status-dependent  

alternative life-history tactics (migrating to sea or not, delaying reproduction or not), we 15 

illustrate our approach with a  case study on the size-dependent smolting process for 

stream-dwelling juvenile Atlantic salmon  in the Scorff River (Southern Brittany, France).  

 

 THE LATENT ENVIRONMENTAL THRESHOLD MODEL (LETM) 

 20 

 We use the notation A∣B~ Dist f B  to denote a set of random variables A 

distributed conditionally on the set of variables B according to a probability distribution Dist 

which parameters are a function f of B. Observable quantities are denoted with capital 

roman letters and unknowns with greek letters. 

 25 

 The LETM as an extension of the ETM model 



 

 

 

For an individual i, the threshold modeling framework stipulates that if the value of a 

cue ηi is larger (resp. lower) than a critical threshold θi, then it triggers the expression of a 

phenotype, say migrant (resp. resident). If Yi is the binary variable indicator of the 

phenotype (e.g., 1 for migrant and 0 for resident), then we have: 5 

 

 

Y i={1 if ηi>θ i

0 if ηi≤ θ i
} (1) 

 

 

In line with the ETM, the threshold varies among individuals and is a polygenic quantitative 10 

trait which is normally distributed with mean μθ and standard deviation σθ , as typically 

assumed in quantitative genetics (Hazel et al. 1990; Tomkins & Hazel 2007; Lynch and 

Walsh 1998):  

 

 15 

θi∣ μθ ,σθ~ N μθ ,σθ  (2) 

 

 

where ηi and θi.is the value of the proximate cue and the threshold of individual i, 

respectively. The proximate cue ηi is to be compared with the threshold θi. ηi is assumed to 

vary among individuals as a function of the environment, and θi is considered an intrinsic 20 

property of the individuals.  Although ηi is not observable, an observable cue Xi can be 

measured which is correlated with ηi. Indeed, the distribution of the unknown proximate 

cue ηi can be expressed conditionally on the observable cue Xi with some error. 



 

 

Specifically, ηi is assumed to be normally distributed around Xi with standard deviation ση: 

   

 

ηi∣X i ,σ η~ N X i ,σ η  (3) 

 

 5 

Note that it corresponds to the Berkson measurement error model in the statistical 

literature (Congdon 2006). This formulation has the advantage of making no assumption 

regarding the distribution of ηi, therefore making the statistical analysis convenient since 

irrespective of the origin of the Xi distributions.  

 We refer to the model defined by Eqns 1-3 as the Latent Environmental Threshold 10 

Model (LETM) since (i) in the statistical modeling terminology, both ηi and θi are latent 

variables (Congdon 2006) and (ii) it is an extension of the ETM which corresponds to the 

limit case where ση is null, i.e., the proximate cue and the observable cue are equal (Xi = 

ηi). The conditional structure of the LETM can be summarized by a Directed Acyclic Graph 

(DAG; Fig. 1). 15 

 

 

[Figure 1 about here] 
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 The latent data formulation of the LETM 

 

 In the LETM, we assume that Yi the binary variable indicator of the phenotype (e.g., 

1 for migrant and 0 for resident) depends on continuous latent variables, i.e. the proximate 



 

 

cue and the threshold.  To estimate the relevant parameters, we need to derive the 

distribution of Yi. First, Yi is distributed according to a Bernoulli distribution with probability 

pi: 

 

Y i~ Bernoulli pi  (4) 

 5 

 

Second, using that the random variable 
θ

i
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 is distributed as a standardized normal 

distribution N(0,1) (recall that θi is normally distributed; Eqns 2), we have: 
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where F is the cumulative function of a standardized normal distribution. The inverse of F 

is often referred to as the probit function and is often used for parameters that lie in the unit 

interval i.e., it connects the dichotomous variable Yi and the corresponding continuous 15 

latent variable ηi through the proportion pi. Third, conditionally on the proximate cue ηi and 

integrating over the latent variable θi, we obtain: 

 

 

Y i∣ηi ,μθ ,σ θ~ Bernoulli F
ηi− μθ
σθ

 (6) 
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This formulation corresponds to the standard ETM formulation (e.g., Ostrowski et al. 

2000). 

 

To make the distinction between the proximate and observable cues , the LETM 5 

formulation can be obtained using the same reasoning as above by conditioning on the 

observable cue Xi and by integrating over the latent variables ηi and θi: 

 

 

Y i∣X i ,μθ ,σ θ ,ση~ Bernoulli F
X

i
− μ

θ

σ
θ

2
+σ

η

2  (7) 

 10 

   

 

The comparison of the two formulations of the ETM and LETM (respectively Eqns [6] and 

[7]) shows that confounding the proximate and the observable cue makes the variance 

component of the proximate cue falsely attributed to the variation in the threshold and 15 

artificially inflates the threshold variability. Given that the variability in the threshold is of 

primary interest for studying conditional strategy, ignoring the proximate vs. observable 

cue distinction could result in flawed inference regarding the potential evolution of the 

conditional strategy (Hazel et al. 2004; Tomkins & Hazel 2007). 

 20 

 Identifiability issues 

 

 The LETM is a statistical model which makes the connection between the 

conditional strategy conceptual framework and observable quantities at the individual 



 

 

level. The unknowns that need to be estimated are both the individual latent variables (the 

proximate cue ηi and the threshold θi) and the parameters controlling the distribution of 

these latent variables (the mean μθ and the standard deviation σθ of the individual 

threshold distribution and the standard deviation ση of the proximate cue distribution 

around the observable cue Xi). However, when only the observable cues Xi's and the 5 

alternative phenotypes Yi's are available, the LETM is not fully identifiable, that is not all 

parameters are separately estimable. More specifically, only the total variance σT
2
=σθ

2
+σ η

2
 

is identifiable while the ratio 
κ=σθ

2
/ σT

2
is not. The ratio  which corresponds to the 

proportion of total variance explained by the variability in the threshold is of primary 

interest because if it is not identifiable, then the variance of the threshold is not identifiable 10 

either. Indeed, from Eqns [5], the likelihood of the observations (Yi, Xi) conditionally on (μθ, 

σθ, ση) (and consequently σT) remains unchanged for any combination of (σθ, ση). To 

circumvent this issue, additional information is required. When studying wild populations or 

when performing controlled experiments, genetic data may be available providing 

additional information about the structure of the θi's variability. Assuming the threshold is 15 

heritable (Hazel et al. 1990; Tomkins and Hazel, 2007), batches of related individuals have 

the same threshold value, thus enhancing our ability to estimate the value of the threshold 

for each individual of each batch and the variability of the threshold in the population. 

Consequently, knowledge of the individuals kinship or pedigree inform about the relative 

degree of similarity of the θi's between individuals and  about the variability of the threshold 20 

θ in the population. We explore the introduction of the genetic information in the LETM and 

its influence on the estimation of parameters below (see “Simulation study” section and 

“Results” section). 

 

 Bayesian statistical inference 25 

 



 

 

 To fit our LETM to the data, we adopted a Bayesian approach using Markov chain 

Monte Carlo (MCMC) algorithms because it provides a flexible framework for analyzing 

latent variables models and their conditional structure (Clark 2005). The Bayesian 

approach combines the likelihood (i.e., information derived from the observed data) and 

the prior distribution of the unknown quantities (i.e., knowledge available before the data 5 

were observed) to produce a joint probability distribution of all model unknowns 

conditionally on the observed data, the so called joint posterior distribution (see Gelman et 

al. 2004; Ellison 2004; McCarthy 2007 for more details about the Bayesian statistical 

modeling). If the prior and the posterior distributions of a given parameter look similar, , 

then there is not enough information in the data to estimate this parameter. The joint 10 

posterior distribution of all the model unknowns, i.e., the parameters (μθ, σθ, ση) and the 

individual thresholds and proximate cues (θi, ηi), was obtained by means of MCMC 

sampling as implemented in the OpenBUGS software (Spiegelhalter et al. 2003). The 

OpenBUGS code of our model is available at 

(http://www.cefe.cnrs.fr/biom/zips/LETM_Buoro et al.txt). We ran 3 parallel MCMC chains 15 

and retained 50,000 iterations after an initial burn-in of 10,000 iterations. Convergence of 

MCMC sampling was assessed by means of the Brooks-Gelman-Rubin diagnostic (Brooks 

& Gelman 1998). A Bayesian analysis requires specifying prior probability distributions for 

the model parameters, i.e. the unknown quantities which are not conditioned by any other 

quantity in the model (μθ, σθ, ση; Fig. 1).  The prior on the mean of the threshold 20 

distribution μθ was a normal distribution with mean 0 and a large variance (1000). To make 

the assessment of identifiability issues easier, priors on the standard deviations σθ and ση 

were not defined directly as is usual but rather on the total variance σ T
2

 and the ratio . 

Because there is a one-to-one transformation relating ( σ T
2

,) to (σθ, ση), assigning a prior 

to ( σ T
2

,) induces a prior on (σθ, ση) as well (Gelman et al. 2004). We used a scaled 25 

inverse-χ2 with one degree of freedom for σ T
2

(Gelman et al. 2004) and a uniform 

http://www.cefe.cnrs.fr/biom/zips/LETM_Buoro%20et%20al.txt


 

 

distribution between 0 and 1 for . The empirical variance of the observed cue Xi was used 

to scale the prior on σ T
2

 to the level of the observed cue. 

 

SIMULATION STUDY 

 To evaluate the performance of the LETM, we carried out a simulation study. The 5 

data were generated according to the LETM using known parameter values and including 

a simple genetic structure for the θi's. Statistical inference was derived from the simulated 

data to check whether the LETM was able to provide accurate estimates of the known 

values of the parameters (μθ, σθ , ση) and of the individual latent variables (i.e., the 

thresholds θi and proximate cues ηi). To assess the added value of bringing genetic 10 

knowledge about the θi's in the fitting process, inferences were successively conducted 

considering the genetic (batch) structure of the θi's was unknown and known. In the first 

instance, the model assumes the θi's are potentially all different. In the second instance, it 

is explicitly included in the model that the θi's are equal within a batch while being 

potentially different between batches (Eqn [8]). 15 

 

 We considered a set of 200 individuals assuming they were made of 20 batches of 

10 individuals, each batch corresponding to the same genotype and a single 

threshold.First, 20 threshold values were generated for the 20 batches from a normal 

distribution with mean μθ =0 and standard deviation σθ =0.25 (Eqns [2]). 20 

We then allocated these latent threshold values to the 200 individuals i so that for two 

distinct individuals i and i' : 

 

Bi =B
i ,⇔θi=θi ,  (8) 

 

   25 



 

 

where Bi  and Bi'  denotes the batch number of the individuals i and i'. If individuals i and i'  

 are from the same batch Bi , then they have the same threshold value.  It means that the 

variability of the threshold is exclusively genetic and the heritability of this trait is 1. Our 

aim here is not to identify the genetic component of the threshold trait but the structure of 

the variability in the threshold through the relatedness between individuals. 5 

Second, we generated an observed cue Xi value for each individual i by drawing from a 

normal distribution with mean 0 and standard deviation 1. For each individual i, given the 

value of the observed cue, Xi, we generated its proximate cue ηi from a normal distribution 

with mean Xi and standard deviation ση =0.5 (Eqn [3]). Finally, given the values of the 

proximate cue ηi and of the threshold θi, we assigned the phenotype indicator values Yi 10 

(Eqn [1]).  Note that simulated data are much more variable in the proximate cue than in 

their threshold, as should usually be the case (Tomkins and Hazel 2007). A graphical 

representation of the resulting data is provided in Figure 2. 

 

[Figure 2 about here] 15 

 

 

APPLICATION TO ALTERNATIVE LIFE HISTORY TACTICS IN ATLANTIC SALMON 

 

Atlantic salmon is an anadromous species that shares its life cycle between 20 

freshwater and the ocean (Guéguen & Prouzet 1994). The juvenile phase takes place in 

freshwater and lasts one or two years in Brittany (Baglinière et al., 1993). Thereafter, fish 

migrate to the ocean and return after one or two years to their native stream to breed. 

Atlantic salmon are conditional strategists with state-dependent choice among alternative 

life history tactics (Thorpe et al. 1998). During their first year of life in their natal river, 25 

young of the year  (YOY; i.e., individuals less than one year old, counting from fertilization) 



 

 

have to 'decide' whether to migrate to the ocean the next spring or to reside in freshwater 

an additional year (Thorpe et al. 1998). The choice between the migrant vs. the resident 

alternative tactics (i.e., phenotypes) is related to the size of the individuals at their first 

autumn (Nicieza et al. 1991; Thorpe & Metcalfe 1998).  Although size is an observable 

cue, it is probably best considered as a proxy for energetic status (Thorpe et al. 1998), i.e.  5 

likely a more biologically proximate cue, which is to be compared to a threshold for 

triggering seaward migration the next spring (Mangel & Satterthwaite 2008; Thorpe et al. 

1998; Satterthwaite et al. 2009). The individual energetic status influences this life-history 

choice (Jonsson & Jonsson 2005) because migration to the ocean is preceded by the 

smolting process preparing individuals for sea water life which is energetically costly 10 

(Mccormick et al. 1998; Thorpe et al. 1998). The energetic status reflects the way energy 

is acquired, stored and used and is strongly influenced by the environmental conditions 

experienced by each individual (e.g., food availability, temperature regime or density of 

fellow beings; (Elliott & Hurley 1997; Forseth et al. 2001; Imre et al. 2005; Jones et al. 

2002; Murphy et al. 2006). Under the LETM, we consider migrant vs. resident (at one year 15 

of age) as alternative phenotypes, YOY size in autumn as an observable cue indicative of 

the individual energetic status, the proximate cue triggering phenotype expression. 

 

Data collection 

In autumn 2005, YOY juveniles were sampled by electrofishing at 39 stations along 20 

the main course of the Scorff. Every fish captured was measured (fork length, to the 

nearest 1mm) and individually marked with a Passive Integrative Transponder (PIT) tag 

(11 mm long, 2.2 mm in diameter) inserted into the peritoneal cavity according to the 

protocol described in Acolas et al. (2007). 

One year old seaward migrating juveniles (smolts) previously PIT tagged were 25 

identified during their downstream migration in the spring of 2006. They were captured at 



 

 

two successive traps located at the lower end of the river system below all sites where 

YOY were marked. At both facilities, their individual PIT tags were identified. Eventually, 

PIT tagged anadromous salmon were recaptured in 2007 and 2008 when returning into 

the Scorff river after one or two years at sea. They were sampled at the Princes Mill facility 

in a trap designed to catch upstream migrating adults. PIT tagged resident juveniles, i.e., 5 

future two years old smolts, were identified in autumn 2006 using sampling by 

electrofishing according to same protocol used for the YOY the previous year. Two year 

old smolts we also recaptured the following spring (2007) and were also identified by their 

PIT tags. 

Here, we considered the set of YOY juveniles marked in autumn 2005 and 10 

recaptured later on (N=124). For each of them, we observed its alternative phenotype 

(migrant vs. resident) and its observable cue (fork length at first autumn).  

 

Modeling 

 For each individual i, given the observed cue (fork length at first autumn) Fli, the 15 

proximate cue ηi (energetic status) was assumed to be normally distributed with mean Fli 

and standard deviation ση (Eqn [3]). For each individual i, the alternative phenotype 

indicator Yi  (Eqn. [1]) takes the value 1 if the individual migrates to sea at one year of age, 

and 0 if it stays an additional year in fresh water. 

 We considered two scenarios as in the simulation study. First, we assumed we have 20 

no information available about the structure of the threshold variability. Second, we 

assumed that YOY captured in the same station in autumn were closely related genetically 

and had the same threshold value. The latter hypothesis was unrealistic but was used as 

an (extreme) illustration of the likely greater genetic similarity of YOY salmon within a site 

than between sites. Indeed, YOY juveniles tend to stay close to their natal spawning nest 25 

(Beall 1994; Einum et al. 2008; Foldvik et al. 2010). 



 

 

 

 

RESULTS 

 

 5 

 Simulation study 

 The comparison of posterior to prior distributions suggested that the information 

contained in the data led to considerable updating of the prior distributions. Whether 

genetic information was included or not, the LETM properly estimated the threshold mean 

μθ and the total variance σ T
2

; the true value of these parameters were close to their 10 

posterior median (fig. 3). As expected,  was not identifiable when the genetic data was 

lacking; its posterior distribution was the same as its prior distribution. When genetic 

information was included,  became identifiable as its posterior distribution was much 

narrower than the prior and the true value was very close to the posterior median (Fig. 3). 

The standard deviations of the threshold σθ and of the proximate cue ση were poorly 15 

estimated without the genetic information. Although the true values fell within their 

corresponding 95% PPI (Posterior Probability Interval (PPI) is defined as the posterior 

probability that the true value of the parameter lies in an interval of two given values with 

probability 0.95; Congdon, 2006), they were at the edge of the posterior inter-quartile 

range. The posterior distributions of σθ and ση were the same, reflecting the essentially 20 

uniform posterior distribution of . With the inclusion of genetic information, the posterior 

distributions of σθ and ση were substantially smaller, and the posterior medians coincided 

with the true values. Moreover, the posterior distributions of σθ and ση were well contrasted 

indicating that the parameters were identifiable, given the inclusion of genetic information. 

 25 

 



 

 

[Figure 3 about here] 

 

 

Whether genetic information was included or not, the proximate cue ηi and the threshold    

θi estimates were estimated with little bias, the latter falling within or being close to the 

95% PPI (Fig. 4). The uncertainty in the threshold estimates was much reduced when 

integrating genetic information while the proximate cue estimates remained almost 

unchanged. 

 

[Figure 4 about here] 

 5 

 

 Case study 

 Using the LETM framework, we were able to obtain precise  estimates of the mean 

latent threshold μθ and the total variance σ T
2

 (Fig. 5). The posterior distributions of these 

parameters were little affected by the addition or exclusion (pseudo) genetic information. 10 

The ratio  was identifiable only when the genetic information was included, although it 

remained imprecisely estimated. In this case, the variance of the threshold corresponds 

approximately to 30% of the total variance σ T
2

. Recall that σ T
2

 would have been equated 

with the threshold variance if the observed vs. proximate cue distinction was ignored. The 

posterior distributions of standard deviations of the proximate cue ση and of the threshold 15 

σθ were narrowed down when incorporating the (pseudo) genetic information. The 

posterior distributions of σθ and ση were well contrasted indicating that the identifiability 

issue was alleviated.  

 



 

 

 

[Figure 5 about here] 

 

 

Estimates of the proximate cue and of the threshold at the individual level were also 5 

obtained (Fig. 6). YOY salmon appeared much more variable in the proximate cue than in 

their threshold. As for the simulated data, the uncertainty of the threshold estimates was 

reduced when integrating (pseudo) genetic information while the proximate cue estimates 

remained almost unchanged. 

 The proximate cue is a conceptual quantity and as such its scale is arbitrary. Here, 10 

given the measurement error structure of the LETM, its scale is the same as that of the 

observed cue. Then a proximate cue of say 90 can be interpreted as the mean energetic 

status of a YOY of 90 mm fork length in autumn. For the same reason, the mean threshold 

μθ can be either interpreted as the energetic status (proximate cue; eq. [5]) or the fork 

length in autumn (observed cue; Eq. [6]) of a YOY salmon having equal odds to become 15 

migrant or resident. 

 

[Figure 6 about here] 

 

 20 

DISCUSSION 

Conditional strategies are the most common form of discrete phenotypic plasticity 

(phenotype or tactics) within species (Gross 1996). Understanding how these strategies 

evolve and are maintained by natural selection is a challenge. Tomkins and Hazel (2007) 

critically reviewed the theoretical models that have been proposed to understand the 25 

evolution of phenotypic plasticity in the conditional strategy framework. They argued that 



 

 

the ETM is “the best model available currently for understanding the evolution and 

maintenance of conditional strategies” because it accounts for both genetic variation and 

environmental cues that affect phenotype expression. Surprisingly, the ETM has little been 

used to study adaptive phenotypic plasticity either in the wild (with theoretical approach; 

Edeline 2007) or under controlled experimental conditions (Ostrowski et al. 2000). In this 5 

paper, we propose a statistical model extension of the ETM, the Latent ETM, which should 

make the assessment of conditional strategies from observational data easier. The 

originality of our proposal lies in the proximate vs. observable cue distinction which 

accounts for the underlying proximate mechanism triggering the phenotype expression (by 

means of a Berkson type measurement error structure). It allows the estimation of not only 10 

the parameters of the threshold distribution but also the proximate cue and the threshold at 

the individual level. 

When data are available only for the alternative phenotypes and the observable 

cue, the LETM is not fully identifiable. However, this issue does not prevent the LETM from 

providing reliable estimates of the mean threshold and of the individual thresholds as 15 

shown by our simulation study (Fig. 3 and 4). To circumvent the identifiability issue, we 

recommend integrating supplementary information about the structure of the individual 

threshold variability. The threshold is considered as a heritable phenotypic trait being 

under polygenic control and can vary among individuals according to their genotype 

(Tomkins and Hazel 2007). The genetic component in the threshold variability has been 20 

evidenced by Ostrowski et al. (2000) and Piché et al. (2008) show that probabilistic 

maturation reaction norms vary genetically. Consequently, considering the genetic basis 

about the threshold trait, knowledge about the relative degree of similarity between 

individuals’ genotype (by means of kinship or pedigree) could inform about the structure of 

the threshold variability. We simulated genetic data in this way, by having batches of 25 

individuals with the same threshold. We showed that using this additional information 



 

 

allows separation of the threshold variance from the proximate cue variance (Fig. 3 and 5) 

and can improve the precision of the individual threshold estimates (Fig. 4 and 6).  

Alternatively, the Bayesian approach with informative priors could be used to separate the 

threshold variance from the proximate cue variance (Congdon 2006). 

Wrongly ignoring the distinction between proximate vs. observable cue would lead 5 

to overestimation of the variability of the latent threshold since the variance component of 

the proximate cue is falsely attributed to the variation in the threshold and thus artificially 

inflates the threshold variability. Even when the threshold variance cannot be separated 

from the proximate cue variance, the LETM protects against overestimating the threshold 

variability while acknowledging a greater uncertainty in this key parameter. This variability 10 

conditions the ability of the conditional strategy to evolve under selective pressure (Hazel 

et al. 2004). Hence, the LETM can be seen as a cautious approach preventing erroneous 

inference regarding the potential for an adaptive evolutionary response of the threshold 

components of reaction norms to environmental change. 

Within the conditional strategy framework, the LETM opens up interesting prospects 15 

in the study of phenotypic plasticity from observational data. Our new approach is a 

generic tool and could be applied to a wide range of taxa and to different forms of 

conditional strategies, including the induction of defences against predators (Hammill et al. 

2008), polyphenic traits in insects (Moczek 2010; Tomkins & Moczek 2009), sex-ratio 

investment, filial cannibalism (Takeyama et al. 2006) and alternative reproductive tactics 20 

(Piché et al. 2008; Pitnick et al. 2009; Gross 1996). For the sake of simplicity, only binary 

traits were considered in this paper. However, the extension to more than two phenotypes 

can be envisaged by considering multiple thresholds (Gianola 1982; Sorensen et al. 1995). 

Further development of the means for including additional information, including 

genetic data, will be highly profitable. The LETM could be adapted to take advantage of 25 

the knowledge about the relatedness of individuals in a population in a more realistic way 



 

 

than we did in the simulation study. Pedigree data could be incorporated to account for the 

genetic structure of the threshold and consequently, to ensure model identifiability and to 

improve estimation precision. Coupling the LETM with quantitative genetic methods (such 

as the animal model; Kruuk 2004, Wilson et al. 2010) would allow the estimation of the 

genetic and environmental components of phenotypic variance of the threshold (i.e., its 5 

heritability) and a better assessment of the evolutionary potential of the conditional 

strategy. In a context of rapid and global environmental change, both evolution and 

plasticity can be critical for species adaptation (Gienapp et al. 2008). The joint appraisal of 

both phenomena from observational data is required, for which the use and further 

developments of the LTEM should help. 10 
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Figure captions 

 

Figure 1: Directed Acyclic Graph of the Latent Environmental Threshold Model (LETM). 

Observable data are presented in squares and unknown quantities to be estimated are in 

circles. For an individual i, the threshold θi is normally distributed with mean μθ and 5 

standard deviation σθ. Its proximate cue ηi is assumed to be normally distributed around 

the observable cue Xi with standard deviation ση. Finally, Yi is a binary indicator variable of 

the observed phenotype and is modeled as a joint function of the threshold and the 

proximate cue at the individual level, such that Yi =1 when θi <ηi]. Solid and broken arrows 

stand for stochastic and logical dependence, respectively. The model is fit over 10 

observations at phenotyped individuals, i.e., the boxes denote a loop over i=1,2, ...… N. 

 

Figure 2: Representation of the simulated data for 200 individuals (circles). Upper panel: 

correlation between the observed cue Xi and the proximate cue ηi. Bottom panel: 

relationship between the phenotype indicator Y and the proximate cue ηi. The empirical 15 

distribution of thresholds θ is also shown (histogram). 

 

Figure 3: Posterior distributions of Latent Environmental Threshold Model (LETM) 

parameters with and without genetic information for simulated data (based on 50000 

MCMC samples). The 2.5, 25, 50 (median), 75, 97.5 percentiles are displayed. The actual 20 

values are also displayed (dashed lines). 

 

Figure 4: Posterior distributions of proximate cue ηi and threshold θi for one individual 

picked in each of the 20 batch considering the genetic information (right column) or not 

(left column) (based on 50000 MCMC samples). The 2.5, 25, 50 (median), 75, 97.5 25 

percentiles are displayed. The actual values are also displayed (stars). 



 

 

 

Figure 5: Posterior distributions of latent Environmental Threshold Model (LETM) 

parameters for Atlantic salmon data with and without (pseudo) genetic information (based 

on 50000 MCMC samples). The 2.5, 25, 50 (median), 75, 97.5 percentiles are displayed. 

  5 

 

Figure 6: Posterior distributions of proximate cue ηi and threshold θi for one individual 

picked in each of the 20 batches considering the (pseudo) genetic information (right 

column) or not (left column) (based on 50000 MCMC samples). The 2.5, 25, 50 (median), 

75, 97.5 percentiles are displayed.  10 
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