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ABSTRACT 10 

Effective conservation and management require reliable monitoring methods and estimates of 11 

abundance to prioritize human and financial investments. Camera trapping is a non-invasive 12 

sampling method allowing the use of capture-recapture (CR) model to estimate abundance 13 

while accounting for the difficulty of detecting individuals in the wild. Here, we investigated 14 

the relative performance of classical closed CR models and spatially explicit CR models 15 

(SECR) that incorporate spatial information in the data. Using simulations, we considered 16 

four scenarios comparing low vs. high detection probability and small vs. large populations 17 

and confronted abundance estimates obtained from both approaches. Standard and SECR 18 

models both provided lowly biased abundance estimates but precision was improved when 19 

using SECR models. The associated confidence intervals also provided better coverage than 20 

their non-spatial counterpart. SECR models exhibit better statistical performance than 21 

standard closed CR models and allow producing sound management strategies through 22 

density maps of activity centers. To illustrate the comparison, we considered the Eurasian 23 



2 

 

Blanc, Marboutin, Gatti and Gimenez   2 

 

lynx (Lynx lynx) as a case study and provided the first abundance estimates of a local 24 

population in France.  25 

Keywords: abundance, relative bias, camera trapping, capture-recapture models, Lynx lynx, 26 

root mean square error, simulations, spatially explicit capture-recapture models.  27 

 28 

INTRODUCTION 29 

The presence of large carnivores - wolves, bears, lynxes, and wolverines - usually results in 30 

strong socio-cultural issues in all societies, Europe making no exception. These species share 31 

common features such as large territories and the need for a large mosaic of natural habitat 32 

and preys, potentially competing with human activities, e.g., hunting and livestock farming. 33 

Such conflicts, in combination with habitat loss, have led to local extinction of large 34 

carnivores in many areas. While almost extinct at the beginning of the 20th century in many 35 

European countries, large carnivores have slowly recovered via reintroduction or natural re-36 

colonization through dispersal.  37 

In this context, the Bern convention (1979), the European Habitats Directive (1992) as well as 38 

the International Union for Conservation of Nature (IUCN) Red list provided specific indexes 39 

and rules to assess the conservation status of species and to help checking how management 40 

decisions could meet the conservation requirements. Abundance was defined as one of the 41 

key estimates needed in assessing species’ status and is the state variable of interest in most 42 

ecological research and monitoring programs involving management and conservation of 43 

animal populations (Nichols and MacKenzie 2004). Indeed, reliable estimates of population 44 

size are essential to evaluate conservation and wildlife management programs such as 45 

reintroduction programs. However, large carnivores are difficult to monitor since they are 46 
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elusive, living at low densities over wide areas and usually solitary and mostly nocturnal. 47 

Exhaustive counts are therefore often expensive, time consuming and sometimes impractical.  48 

In order to assess population trends in elusive and wide-ranging population, non-invasive 49 

survey methods have been increasingly used over the last decade. In particular, camera-50 

trapping methods combined with capture-recapture (CR) modeling have become a standard 51 

tool to estimate carnivores’ abundance while accounting for detectability less than 1 (e.g., 52 

tigers Panthera tigris: Karanth et al. 2006, Karanth and Nichols 1998; ocelots Felis pardalis: 53 

Trolle and Kéry 2003; snow leopards Uncia uncia: Jackson et al. 2006; jaguars Panthera 54 

onca: Silver et al. 2004). Standard CR models usually assume geographical closure (no 55 

movement in or off the sampling grid). However, this assumption is often violated, especially 56 

for mammals with large home range. Another major assumption of these models is that no 57 

individual within the sampled area has a zero probability of being captured. To deal with these 58 

issues, an alternative approach known as spatially-explicit CR modeling (SECR) was recently 59 

developed (Royle and Young 2008, Borchers and Efford 2008). This method has been applied 60 

to a large number of taxa (e.g., birds: Efford 2004, Borchers and Efford 2008, Efford et al. 61 

2009a; cetaceans: Marques et al. 2010; stoats: Efford et al. 2009b; bears: Obbard et al. 2010 62 

and lizards: Royle and Young 2008). Here, the probability of detection for each trap is 63 

modeled as a function of distance between a latent variable, the individual activity center 64 

(equivalent to the home range center), from which animals move randomly, and the camera 65 

trap where they have been captured. This model does not rely on the assumption of 66 

geographic closure by accounting for the fact that animals move and that detection probability 67 

depends on their center of activity (Gardner et al. 2009).  68 

In this paper, our objectives were twofold. First, we aimed at evaluating the relative 69 

performance of SECR methods vs. conventional non-spatial CR models in estimating 70 
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abundance in the context of carnivore conservation. Most of the studies assessing bias in 71 

spatial models compared abundance estimates using real datasets rather than simulated data, 72 

hence the impossibility to infer bias and precision (e.g., Gardner et al. 2009). Recent papers 73 

dealing with SECR models and simulations (Efford 2004, Royle and Young 2008, Borchers 74 

and Efford 2008, Efford 2011) focused on the performance of different methods to estimate 75 

density (e.g., nested subgrid vs. inverse prediction, likelihood-based vs. Bayesian methods) 76 

but did not formally compare SECR and non-spatial models. Therefore, we carried out a 77 

simulation study with several scenarios comparing low vs. high detection probability and 78 

small vs. large populations to quantify the performances of parameter estimates using both 79 

SECR and non-spatial models. We also suggested how the simulations results could be used 80 

to improve the trapping design when necessary. Second, we used the two methods to analyze 81 

a real dataset from a camera-trapping experiment with the Eurasian lynx (Lynx lynx) in the 82 

French Jura Mountains. This population originates from reintroductions in Switzerland in the 83 

70’s. Although listed as a species of Least Concern given its wide range (IUCN, 2001), habitat 84 

loss, prey depletion, and poaching are still regarded as potential threats. Up to now, the main 85 

monitoring program for lynx in France was based on indirect signs (i.e., tracks, scat, hair, and 86 

other signs) collected by a network of volunteers (state employees, hunters, naturalists, 87 

farmers, and mountain guides). While the use of indirect signs is often the most effective and 88 

least expensive method for estimating the distribution of carnivores, the resulting estimates of 89 

population parameters such as abundance are often approximate. Camera-trapping monitoring 90 

has recently been initiated in France in order to monitor lynx population and evaluate the 91 

conservation status of a population where problematic interactions between hunters and lynx 92 

exist. We provided the first estimate of Lynx abundance for this French population. Finally, 93 

recommendations are provided for the conservation of elusive species, with an emphasis on 94 

large carnivores and their monitoring. 95 
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MATERIAL AND METHODS 96 

Simulation study design 97 

We considered that our population was demographically and geographically closed (i.e. no 98 

birth, death, immigration or emigration during the sampling period) to apply CR models to 99 

estimate abundance. Lynx are long-lived animals (Sunquist and Sunquist 2002) and the 100 

camera-trap sampling period was made short enough so that no deaths or births were assumed 101 

to occur during this period. In addition, the trapping session was timed outside the dispersal 102 

period for subadults.  103 

In order to compare the performance of the standard vs. the SECR methods in estimating 104 

abundance, we simulated 100 datasets with a particular spatial organization. We considered 105 

four scenarios comparing low vs. high detection probability and small vs. large populations. 106 

These scenarios were used to evaluate relative bias in parameter estimates, the precision and 107 

the coverage of 95% confidence and credible intervals (CI hereafter for Bayesian credible 108 

intervals or Frequentist confidence intervals indistinctively). Each dataset was created using 109 

the traps configuration from the monitoring of the lynx in the study area (see case study 110 

below) but we did not use any constraints to mimic lynx behavior simulating the datasets. The 111 

number of capture occasions was set to k = 15 and the actual population size to N = 10 or N = 112 

50 depending on the scenario. The simulations were based on the SECR model formulation. 113 

We simulated N individual activity centers using their coordinates. Then, we evaluated 114 

whether we could a posteriori reliably estimate from the model the actual number and 115 

location of activity centers we had simulated. We proceeded to the simulation in two steps, 116 

first a point process component that describes the spatial distribution of the centers of activity, 117 

second an observation process component that makes the connection between the detection of 118 

an individual and its center of activity given the spatial distribution of traps.  119 
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a) Point process 120 

We assumed a fixed and known number of activity centers si (similar to home range centers) 121 

with geographic coordinates si = (sxi, syi) for each individual i (i = 1, …, N) of the population. 122 

We assumed that these centers of activity were uniformly distributed over a region S, an 123 

arbitrary polygon containing the trapping array.  124 

si ~ Uniform (S) (Eq. 1) 125 

In order to simulate capture histories we assumed that the probability of each individual to be 126 

captured was a function of the distance between its activity center and the trap.  127 

b) Exposure to traps 128 

The detection probability of an individual at a given trap was a decreasing function of the 129 

distance from the activity center to that trap: the further the activity center was from the trap, 130 

the less likely the animal was exposed to capture. Thus, we first defined a distance matrix Di,j 131 

as the Euclidean distance between every activity centers i and trap j: 132 

Di, j = sxi - xj( )
2

+ syi - yj( )
2

  (Eq. 2)
 133 

Second, we modeled the exposure of each individual as a function of distance and two other 134 

parameters: 135 

E0i, j = l0 exp -Di, j

2 /s( )
 (Eq. 3)

 136 

where λ0 is the baseline encounter rate, i.e. the expected number of captures of individual i at 137 

trap j during a sampling occasion when an individual’s activity center si is located precisely at 138 

trap j, and parameter σ (in km) controls the shape of the distance function, reflecting how fast 139 
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the exposure decreases with distance. The greater σ is, the faster the exposure decreases with 140 

distance. 141 

c) Capture process 142 

If an individual i is exposed to trap j, we assumed a capture probability pi,j. The distance 143 

function allows the development of the capture process model. The increase of the exposure 144 

to traps translates into an increase of the capture probability and was modeled with an 145 

exponential function: 146 

pi, j =1-exp -E0i, j( )
  (Eq. 4)

 147 

We assigned two different values for λ0 (0.03 and 2) and one value to σ (1.5) depending on the 148 

scenario. All combinations of all levels of N, λ0 and σ were tested resulting in 4 scenarios. For 149 

each scenario and each simulated dataset, we constructed the distance matrix Di,j between the 150 

simulated activity centers and the traps location. The distance matrix was used to estimate for 151 

each individual a per trap capture probability pi,j. Then, we performed a binomial trial with 152 

parameters N and pi,j to determine whether the individual was captured or not. Since detection 153 

is not perfect, only n out of the N total individuals from the population were detected. We 154 

compiled for each of the J traps the number of occasions K an individual i was detected. Thus, 155 

for each trap and each individual, a code number ranging from 0 to K indicated how many 156 

occasions each individual was captured. These count histories were used to fit SECR models. 157 

Finally, we analyzed the capture histories of the n individuals under the standard and SECR 158 

models. 159 

Model formulation 160 

a) Standard CR models 161 
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We first calculated abundance estimates by accounting for detection probabilities using 162 

standard CR models. We considered different sources of variation in capture probabilities. In 163 

addition to a model with no variation in the detection probability (model M0), we considered 164 

behavioral responses to trapping (model Mb), differences in capture probabilities over time 165 

(model Mt), while the most complex models included among-individual heterogeneity in 166 

capture probabilities (model Mh) (Otis et al. 1978, Williams et al. 2002). In addition, we 167 

considered four models that were combinations of these sources of variation (Models Mbh, 168 

Mth, Mtb, and Mtbh). For each simulated dataset, the Akaike's Information Criterion (AIC) was 169 

used to select the model that best described our dataset (Burnham and Anderson 2002). These 170 

analyses were achieved via maximum likelihood with the R package Rcapture (Baillargeon 171 

and Rivest 2007). 172 

 b) SECR model implementation using a Bayesian approach  173 

Each camera trap reflected the location of capture, which, in turn, provided insight into the 174 

activity centers coordinates of each lynx. The SECR model has the advantage to incorporate 175 

spatial heterogeneity while estimating abundance (Royle et al. 2009a, Royle et al. 2011, Royle 176 

et al. 2009b). More specifically, the SECR model makes explicit the distinction between a) a 177 

latent component for the spatial point process of the (unknown) location of the activity centers 178 

(Eq. 1) and b) an observation component that describes how the observed data arise from the 179 

point process (Eq. 4).  180 

We adopted a Bayesian approach (McCarthy 2007) to fit the SECR model. It made the 181 

analysis convenient as the activity centers are treated as random effects that are relatively easy 182 

to deal with in the Bayesian framework (King et al. 2009). The Bayesian approach combines 183 

the likelihood with prior probability distributions of the parameters to obtain the posterior 184 

distribution of the parameters of interest based on Bayes’ theorem. We used Markov Chain 185 
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Monte Carlo (MCMC) methods to simulate observations from the posterior distributions. 186 

Regarding priors for parameters, we considered that we did not have any information about 187 

the spatial distribution of the activity centers of the simulated individuals thus we assumed 188 

they were uniformly distributed over S. We chose a Uniform(0,15) distribution for σ and we 189 

assigned a Gamma(0.1,0.1) distribution to λ0.  190 

To obtain an estimate of abundance, we used a data augmentation approach (Royle and Young 191 

2008). We augmented the data set with 100 individuals and we associated to every individual 192 

a latent indicator zi. The encounter histories of the 100 individuals initially contained only 193 

zeroes. Some of these individuals were not captured during the intensive camera trapping but 194 

belonged to the population. The zi indicator reflects the probability ψ of an individual to be a 195 

member of the population. We assumed a Uniform(0,1) prior for ψ that we added as an 196 

additional layer to our model. We defined zi as a binary variable equals to 0 when the 197 

individual i is not a member of the population and 1 otherwise.  198 

The abundance N was obtained as a derived parameter by adding all the presence indicators 199 

zi. These analyses were implemented in WinBUGS (Spieghalter et al. 2003) called from R 200 

using package R2WinBUGS (Sturtz et al. 2005).  201 

 c) Evaluating the performance of the two methods 202 

We evaluated the performance of the standard CR models and the SECR models by 203 

comparing the abundance estimates of the two methods used on each 100 datasets simulated 204 

to the true value of abundance. As a result, we were able to quantify the potential bias in 205 

parameter estimates obtained for both models. We looked at the relative bias in N̂ , the 206 

estimator of N, calculated as (E[ N̂ ] – N) / N which can be approximated as the average over 207 

the 100 iterations of the difference between the estimated abundance under the model 208 
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considered and the true parameter value N̂i /100 - N
i=1

100

å . To assess the precision, we 209 

calculated the Root Mean Square Error (RMSE) as )²)]ˆ(([ NNE  » (N̂i - N)2 /100
i=1

100

å . 210 

A low RMSE is characteristic of a good trade-off between low bias and high variance. Finally, 211 

we looked at the 95% confidence interval coverage by determining and averaging over all 212 

simulations whether the interval contained the true value.  213 

Eurasian lynx in French Jura Mountains 214 

Lynx is a solitary nocturnal species, living in forested areas. It can be individually identified 215 

based on the photographs of their unique pelage patterns (e.g., Zimmermann and 216 

Breitenmoser 2007). Our study area was located in the French department of Jura. A 480 km² 217 

zone was considered in the southern center of the Jura department between the Vouglans lake 218 

and the southern border of Doubs department. This study area was delimited using knowledge 219 

on lynx habitat and forest continuity. In order to maximize detectability, several steps were 220 

followed: 1) Camera traps were set at optimal locations (on game path, hiking trail, forest 221 

road) based on previous signs of lynx presence and on local knowledge; 2) In theory, all 222 

individuals should have a non-null detection probability to use standard capture-recapture 223 

models (Karanth and Nichols 1998). It is not necessary for SECR models (Royle et al. 2009a). 224 

Thus, the study area was divided into a grid of 2.7 km × 2.7 km cells (Zimmermann et al. 225 

2007) where one of two cells was sampled, leading to 33 cells sampled from February to 226 

April 2011. This grid size and sampling design ensure that at least one camera trap site is set 227 

in each potential lynx home range; 3) At each trapping site, two camera traps with infrared 228 

trigger mechanism were set in order to photograph both flanks of the animal allowing a high 229 

level of confidence in individual identification. Date, time and location of each photographic 230 

capture of a lynx were recorded; 4) Camera traps were checked weekly to change memory 231 
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cards and batteries. The sampling period was divided into 15 occasions, one occasion being 232 

defined as 4 successive trap nights. The results of the SECR model were used to build a 233 

density map of the lynx activity centers. For each of the MCMC iterations, we plotted the 234 

centers of activity of the individuals belonging to the population (zi = 1) on successive layers. 235 

For every layer, we divided the region S into squares of 500 × 500 m then we calculated the 236 

mean number of activity centers falling into each square. R and WinBUGS codes are 237 

available on request from the first author. 238 

RESULTS 239 

Simulation study to compare spatial vs. non-spatial models 240 

For each scenario and each simulated dataset, we reported the abundance posterior median 241 

estimate and its 95% credible interval for the SECR model and the abundance point estimate 242 

with its 95% confidence interval from the non-spatial model (Fig. 1). Scenario A represented a 243 

small population with a low detection probability mimicking the Eurasian lynx dataset. Both 244 

models similarly slightly overestimated abundance: the non-spatial model displayed a relative 245 

bias of 0.096 and the SECR model relative bias was 0.121. Scenario B represented a large 246 

population with a low detection probability. The non-spatial model clearly underestimated the 247 

population size with a relative bias of −0.08 while the SECR model slightly underestimated it 248 

with a −0.016 relative bias. Scenario C corresponded to a small population with a high 249 

detection probability. For most datasets, the non-spatial model provided estimates close to the 250 

actual abundance (relative bias around 0.007) but with large confidence intervals and the 251 

SECR model also provided unbiased estimates (relative bias around −0.02) and small credible 252 

intervals. Finally, scenario D represented an ideal situation with a large population and a high 253 

detection probability. The non-spatial model slightly overestimated abundance (relative bias = 254 

0.026) while the SECR model provided values close to the actual abundance (relative bias = 255 
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0.0002). RMSE clearly revealed that the SECR model provided a better balance between bias 256 

and variance for all scenarios than the non-spatial model. With regard to CI coverage, the 257 

confidence interval of the non-spatial model included the true abundance value in only 73 to 258 

78 out of the 100 simulated datasets depending on the scenario. The credible interval of the 259 

SECR model included the true value in 92 to 99 datasets (Table 1). Credible intervals of the 260 

SECR model provided better coverage than confidence intervals as provided by standard 261 

closed CR models. 262 

Lynx case study 263 

Data were collected between February and April 2011 from 33 trap sites resulting in 1980 trap 264 

nights. One site was found effective during less than 50% of the trapping nights. It was 265 

removed from the analysis reducing the theoretical effort to 1816 effective trapping nights. 266 

The study provided an encounter history for 9 individuals that were photographed on 14 of 267 

the 32 trap sites. Individuals were captured on up to six different sites and the maximum 268 

distance moved by one individual between captures was 27.6 km. Model selection ranked Mh 269 

incorporating individual heterogeneity in capture probability as the best model followed by 270 

M0 assuming constant capture probability. Average estimated detection (over individuals) was 271 

0.14 and the estimated abundance using Mh was 12 individuals (95% CI 7.14−20.27). For the 272 

SECR model, the baseline encounter rate at a given camera (λ0) was 0.05 photographs 273 

occasion
-1 

(95% CI 0.03−0.15) while the movement parameter σ was estimated to 1.45 (95% 274 

CI 0.16−0.58). The abundance was estimated to 12.04 individuals (95% CI 9.0−18.0). 275 

Posterior estimates of activity centers’ locations of the 9 individuals photographed are shown 276 

in Fig. 2. There was a lot of spatial variation in the location of estimated activity centers, most 277 

of them being concentrated in the center and in both south-eastern and western corners of the 278 

trap array.  279 
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DISCUSSION 280 

Information on wildlife population responses and dynamics are essential complements to the 281 

human dimensions, habitat, and ecosystem functioning that go into conservation planning and 282 

monitoring (Mills 2007). Using the Eurasian lynx as a case study, we demonstrated how 283 

cutting-edge analytical methods could be used to estimate and infer abundance of a rare and 284 

elusive species using sound monitoring protocols. This is a crucial step when implementing 285 

any conservation strategy so as to be able e.g. to characterize the population status before any 286 

action is undertaken, and re-evaluate it once management has been engaged. 287 

Comparison of abundance estimates from spatial vs. non-spatial models 288 

Albeit the difference in the relative bias between the non-spatial and the SECR model is 289 

trivial, the RMSE and the CI coverage both support the conclusion that the SECR model 290 

provides better estimates of abundance. Indeed, our simulations have highlighted that for 291 

scenario A, mimicking the lynx dataset, and scenario C, abundance estimates should be used 292 

with caution since the spatial model tended to overestimate the actual abundance while the 293 

non-spatial model appeared to be closer to the real abundance value. The positive relative bias 294 

may be caused by the proportion of individuals that move out or partially out of the trapping 295 

array creating an inflated estimate of abundance. Nevertheless, confidence and credible 296 

interval coverage and RMSE revealed that the SECR model performed best whatever the 297 

scenario we considered. For the other scenarios, B and D - representing a large population 298 

with respectively a low and high detection probability - abundance estimates were closer to 299 

the actual value when using the spatial model. The three deviation indices (relative bias, 300 

RMSE and interval coverage) supported this conclusion.  301 
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Spatially-explicit CR modeling is an emerging analytical tool that has mainly been used to 302 

estimate densities because it does not rely on the assumption of geographic closure (Efford 303 

2004). Obbard et al. (2010) and Gray and Prum (2012) evaluated the performance of the 304 

SECR models while estimating density by comparing density estimates using SECR with 305 

those obtained from conventional approach in which the effective survey area is estimated 306 

using a boundary strip width. SECR models were recommended in both studies but they could 307 

not infer bias since the actual density was unknown. Efford (2004) and Borchers and Efford 308 

(2008) assessed the performance of SECR by simulating data from a regular grid of trap. 309 

They used alternative methods for fitting the spatial detection model, that is inverse prediction 310 

and maximum likelihood while the current study used data augmentation and MCMC (Royle 311 

and Young 2008; Royle et al. 2009a, b). Regardless of the method, the importance of spatial 312 

nature of the sampling process in capture probability modeling is clearly supported by our 313 

findings. Modeling the capture probability also avoids substantial bias in estimating 314 

abundance. By making capture probability a function of both the location of the activity 315 

centers and their distance from the camera traps, SECR models allow efficient use of spatial 316 

information contained in CR data.  317 

We acknowledge that we could not cover all possible scenarios in our simulations. In 318 

particular, our results were obtained for scenarios that did not account for specificities of the 319 

species biology, such as sex-related differences in home range size for instance (Sollmann et 320 

al. 2011). Furthermore, we did not take into account the importance of traps configuration that 321 

can have large effects on the number of individuals detected. In our study, the traps were 322 

placed mainly on trails because lynx use the easiest way to go from one location to another. 323 

Further work is needed to determine the optimal number and location of traps in order to 324 

minimize the human and financial costs of fieldwork while maximizing the precision of 325 
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abundance estimates. Simulation studies like the one we have conducted here may help in that 326 

purpose.  SECR models allow the incorporation of variables affecting detection probability 327 

hence providing managers the opportunity to modify cameras distribution to improve capture 328 

success (Royle et al. 2011). 329 

Non-invasive sampling methods such as camera trapping or molecular tracking are commonly 330 

used to monitor elusive and wide-ranging populations of large carnivores, as neither of them 331 

requires physical captures. These methods can provide estimates of population parameters, 332 

like population size, dispersal distance, population growth rate (Marescot et al. 2011), survival 333 

(Cubaynes et al. 2010), recruitment and immigration rate (Karanth et al. 2006). They seemed 334 

particularly relevant for the Eurasian lynx whose individual coat patterns allow the 335 

identification on photographs that could be used with capture-recapture models to estimate 336 

abundance and density. Furthermore, the advantage of camera-trapping for estimating 337 

abundance is that it requires only a single sampling session, in other words repeated sampling 338 

is not required (Efford et al. 2009). However, this technique requires reliable photographs 339 

from which individuals can be univocally identified, otherwise risking bias in population size 340 

estimates (overestimation if two photographs belonging to the same individual are considered 341 

as two different individuals, underestimation if two photographs of different individuals are 342 

wrongly considered as a single individual). The issue of misidentification error has recently 343 

received interest (Yoshizaki et al. 2009; Morrison et al. 2011). 344 

Management implications 345 

With rare and elusive species, we recommend caution when using standard or even spatially-346 

explicit capture-recapture models since commonly few data are available. Even though 347 

previous studies have demonstrated the utility of non-invasive sampling methods (e.g., Petit 348 

and Valière 2006) and the analysis of data collected through CR techniques (e.g., Rees et al. 349 
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2011) when few data are available, the confidence and credible intervals still remain large. A 350 

preliminary simulation study is useful to determine which factors affect abundance estimates 351 

(number of camera traps and their location in particular). To help in this objective, we provide 352 

R code to reproduce our simulation exercise and adapt it for one’s own purpose (See 353 

Supplementary Information). Pending these precautions, spatially explicit CR models provide 354 

useful information that can be used to produce sound management strategies for carnivores. In 355 

particular, the density map of the posterior locations of activity centers could be confronted to 356 

livestock attacks distribution maps to determine whether correlations exist between hotspots 357 

of attacks on livestock and pools of lynx centers of activity. This might help to predict 358 

potential conflicts between human activities and predators.  359 
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 462 

CAPTIONS 463 

 464 

Table 1. Summary of the statistical performance of the non-spatial and SECR models. The 465 

RMSE is the Root Mean Square Error and CI is either the 95% confidence (non-spatial 466 

model) or the 95% credible (SECR model) interval. 467 
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Scenario Relative bias RMSE CI coverage

A 0,10 4,00 75%

B -0,08 9,38 76%

C 0,01 1,03 78%

D 0,03 5,08 73%

A 0,12 2,39 97%

B -0,02 5,49 92%

C -0,02 0,47 99%

D 0,00 0,89 96%

Non-spatial model

SECR model

 468 

 469 

Fig. 1. Comparison between abundance estimates obtained from non-spatial models vs. SECR 470 

models according to four scenarios (low detection probability (A,B) vs. high detection 471 

probability (C, D) and small population size (A,C) vs. large population size (B, D)). With grey 472 

dots and lines we displayed respectively estimates and confidence intervals for the non-spatial 473 

model. With black asterisk and black lines we displayed posterior means and 95% credible 474 

intervals obtained with the SECR model. The vertical dashed line indicates the actual value of 475 

abundance. 476 

Fig. 2. Map of posterior density of lynx activity centers in French Jura department. 477 

Specifically, the map shows E[N(i) | data], where N(i) is the number of activity centers 478 

located in pixel i. Colors code for the estimated number of activity centers in each 500 × 479 

500m pixel; triangles indicate mean activity center location for identified individuals; dots 480 

indicate camera trap locations; black ones indicate locations where lynx were photographed 481 

and grey ones where no lynx was captured.  482 

483 
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Fig. 1 484 
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Fig. 2 488 
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