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Summary. Capture-recapture models were developed to estimate survival

using data arising from marking and monitoring wild animals over time.

Variation in survival may be explained by incorporating relevant covariates.

We propose nonparametric and semiparametric regression methods for es-
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timating survival in capture-recapture models. A fully Bayesian approach

using MCMC simulations was employed to estimate the model parameters.

The work is illustrated by a study of Snow petrels, in which survival proba-

bilities are expressed as nonlinear functions of a climate covariate, using data

from a 40-year study on marked individuals, nesting at Petrels Island, Terre

Adélie.

Key words: auxiliary variables; Bayesian inference; demographic rates;

environmental covariates; penalized splines; WinBUGS.

1. Introduction

Understanding population structure and changes in that structure for wild

animals is essential for both species conservation and management. Because

of human activities, it appears crucial to explain and forecast the effects

of climatic and environmental perturbations on population dynamics. The

analysis of data arising from observations of marked animals is an important

tool for estimating demographic parameters that govern population change.

In the last forty years, a challenging research topic has been the estimation

of wild animal survival, and when possible, to explain variations in survival

using auxiliary variables such as time, age of animal or relevant covariates

like temperature or rainfall. Many traditional models exhibit a product-

multinomial likelihood structure, allowing inference in a unified context by

classical maximum likelihood (Lebreton et al., 1992) through user-friendly

software like MARK (White and Burnham, 1999) or M-SURGE (Choquet

et al., 2005). The Bayesian approach has been proposed as an alternative –

see Brooks et al., 2000 for a review.

To estimate survival probability, the modeling is usually embedded in the
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Generalized Linear Model (GLM) framework (Lebreton et al., 1992). A logit

link for survival probabilities is frequently used but other functions are possi-

ble (Williams et al., 2002); covariates may be readily incorporated, and here

we will focus on environmental covariates that vary over sampling occasions

but remain constant over individuals, as defined by Pollock (2002). Most fre-

quently, covariates are related to survival by a linear or a quadratic function,

on the logit scale. However, in general this may be unrealistic and we give

three examples to motivate a nonlinear alternative. First, it has been shown

that global indices such as the North Atlantic Oscillation (NAO) could relate

to population dynamics in complex nonlinear ways (Mysterud et al., 2001;

see also Stenseth and Mysterud, 2002 for a general discussion). Secondly,

survival can be nonlinearly related to population density via a threshold ef-

fect (Lima, Merritt and Bozinovic, 2002). Thirdly, survival as a function of

age may exhibit non-linear patterns, through senescence defined as a reduc-

tion in survival among old individuals (Loison et al., 1999; Catchpole et al.,

2004). In these examples and in many others, a nonparametric alternative

avoids strong parametric assumptions and is of interest in itself. It might

also suggest a new, scientifically relevant, parametric model if one is needed.

In this paper we applied Generalized Additive Models (GAMs) ideas pop-

ularized by Hastie and Tibshirani (1990) that extend the traditional GLM

framework. Rather than specifying a fixed link between survival and covari-

ates in the model, the shape of the relationship is determined by the data,

using penalized splines (Ruppert et al., 2003). Our choice has been guided by

the equivalence between a penalized spline formulation of the nonparamet-

ric problem with Generalized Linear Mixed Models (GLMMs) that simplifies
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further extensions.

The paper is organized as follows. In the next section, we give the likeli-

hood for classical survival models, and the nonparametric regression of sur-

vival probabilities on covariates is established. In Section 3, we consider

a natural extension to the nonparametric model, when a semiparametric

regression model for survival is introduced. As well as including the non-

parametric component, this allows us to model a parametric component at

the same time. Section 4 gives the details of the Bayesian inference and its

implementation through MCMC simulations. Section 5 gives the results of a

simulation study which validate the ability of our approach to capture various

nonlinearities in survival. Section 6 illustrates our method using data from

a 40-year study of individually marked Snow petrels (Pagodroma nivea), in

trying to relate their survival to a climate covariate. The last section gives

general conclusions and discusses the potential of our approach.

2. Theory

2.1 CJS likelihood

We assume here that our capture-recapture study includes I +1 sampling

occasions at which animals are caught or observed, so that I recaptures or

re-observations may actually be made. On each occasion, new unmarked

animals are given unique marks and then released. Previously marked ani-

mals can also be sampled, and after their identity is recorded they are also

released back into the studied population. This protocol gives rise to a set

of animal encounter histories, made up of 1 and 0 depending respectively

on whether an animal is detected or not. Cormack (1964), Jolly (1965) and

Seber (1965) independently derived the likelihood for such capture-recapture
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data, and this model is referred to as the CJS model. Schwarz and Seber

(1999) and Williams et al. (2002) give reviews of the CJS model and its ap-

plications. Note that the model includes time-variation in parameters, but

no age-variation. It may therefore be appropriate for describing the survival

of adult animals. Data are frequently summarized in an upper triangular ar-

ray, m, called the m-array, where mij, i = 1, . . . , I, j = i+1, . . . , I +1, is the

number of animals released at time ti and subsequently recaptured for the

first time at time tj. Also the column vector R contains the Ri, i = 1, . . . , I,

which are the numbers of marked animals released into the population at

times ti; these comprise newly marked animals and those previously marked

animals that are recaptured at time ti. Under the assumption that animals

are independent (see e.g. Williams et al., 2002 for a description of CJS

model assumptions and consequences of possible violation), the likelihood is

product-multinomial

[m|φ,p,R] ∝
I∏

i=1

χRi−ri
i

I+1∏
j=i+1

{
φipj

j−1∏

k=i+1

φk(1− pk)

}mij

(1)

where [X] denotes the distribution of X, φi, i = 1, . . . , I, is the probability

that an animal survives to time ti+1 given that it is alive at time ti and pj,

j = 2, . . . , I+1 denotes the encounter probability of being detected at time tj

(see e.g. Brooks et al., 2000). We adopt the convention that a null sequence

has product 1 so that for example
∏j−1

k=i+1 φk(1− pk) = 1 for j = i + 1.

Other terms involve ri =
∑I

j=i+1 mij, the number of animals subsequently

recaptured after release at time ti and χi, the probability that an animal,

alive at time ti, is not subsequently encountered. This can be calculated

recursively as χi = 1− φi {1− (1− pi+1)χi+1}, with χI+1 = 1 (e.g. Lebreton
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et al., 1992).

2.2 Nonparametric regression of survival

We consider a nonparametric regression model for the probability that

an animal survives from time ti to time ti+1 of the form

logit(φi) = f(xi) + εi, i = 1, . . . , I (2)

where xi is the value of the covariate for the ith sampling occasion, εi are

i.i.d N(0, σε), εi is independent of xi and f is a smooth function. Here,

the random effects {εi} allow us to model the residual sampling-occasion-

to-sampling-occasion variation not described by the covariates alone (Barry

et al., 2003). Variations on the model of Equation (2) include:

• Semiparametric regression models in which some of the predictors enter

linearly in the model, as illustrated in Section 3, and

• Models including interactions between covariates which are discussed

in the last section.

Penalized splines using the truncated polynomial basis (Ruppert, 2002) were

used to model the smooth function

f(x|η) = β0 + β1x + . . . + βP xP +
K∑

k=1

bk(x− κk)
P
+ (3)

where P ≥ 1 is an integer, η = (β1, . . . , βP , b1, . . . , bK)T is a vector of regres-

sion coefficients, (u)p
+ = upI(u ≥ 0) and κ1 < κ2 < . . . < κK are fixed knots.

The crucial problem in using relation (3) is the choice of the number and the

position of the knots. A small number of knots may result in a smoothing

function that is not flexible enough to capture variability in the data, whereas
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a large number of knots may lead to overfitting. Similarly, the position of

the knots will influence estimation. We used a penalized splines approach

inspired by the smoothing splines of Green and Silverman (1994). First, the

number of knots is chosen to ensure enough flexibility. Following Ruppert

(2002), we considered K = min{1

4
I, 35} and let κk be ”equally-spaced sample

quantiles” i.e. the sample quantiles of the xi’s corresponding to probabilities

k/(K + 1). Other choices are possible, such as equally spaced knots within

the domain of x, and Crainiceanu et al. (2004a) provide a simulation study

comparing these two alternatives with a discussion. Then, following Rup-

pert et al. (2003) a quadratic penalty is placed on b, which is here the set of

jumps in the P th derivative of f(•|η) so that with Equation (3) we associate

the constraint

bTb ≤ λ (4)

where λ is called the smoothing parameter. Equations (3) and (4) lead to

the so-called P-splines approach (see e.g. Lang and Brezger, 2004). Because

roughness is controlled by the penalty term (4), once a minimum number of

knots is reached, the fit given by a P-spline is almost independent of the knot

number and location (Ruppert, 2002).

P-spline models can be fruitfully expressed as GLMMs, which facilitates

their implementation in standard software (Ngo and Wand, 2004; Crainiceanu

et al., 2004b), and above all provides a unified framework for generalizations

of the nonparametric model. Indeed, we first note that the P-splines ap-

proach is equivalent to minimizing

I∑
i=1

{logit(φi)− f(xi|η)}2 +
1

λ
ηtDη , (5)
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where D is a known positive semi-definite penalty matrix. The truncated

spline penalty matrix is

D =

[
0P×P 0P×K

0K×P ΩK

]
,

where a standard choice for ΩK is IK . To avoid overfitting, the matrix D

penalizes only the coefficients of the spline basis functions (x − κk)
P
+. Let

φ = (φ1, . . . , φI)
T , X be the matrix with the ith row Xi = (1, xi, . . . , x

P
i )T ,

and Z be the matrix with ith row Zi = {(xi − κ1)
P
+, . . . , (xi − κK)P

+}T . If we

divide Equation (5) by the error variance σ2
ε we obtain

1

σ2
ε

‖logit(φ)−Xβ − Zb‖2 +
1

λσ2
ε

bTb ,

where β = (β0, . . . , βP )T and b = (b1, . . . , bK)T . Define σ2
b = λσ2

ε , consider

the vector β as fixed parameters and the vector b as a set of random param-

eters with E(b) = 0 and cov(b) = σ2
b IK . If (bT , εT )T is a normal random

vector and b and ε are independent, then an equivalent model representation

of the P-spline model in the form of a GLMM is

logit(φ) = Xβ + Zb + ε, cov

(
b
ε

)
=

(
σ2

b IK 0
0 σ2

εII

)
(6)

for which E(logit(φ)) = Xβ and cov(logit(φ)) = σ2
εV where V = II +λ2ZZT

(Brumback et al., 1999).

Note that the connection between the P-spline model and the mixed

model of Equation (6) allows us to extend the nonparametric model to in-

corporate other nonparametric components as well (Ruppert et al., 2003).

3. Semiparametric regression of survival

In the preceding section, a regression model for survival over a continuous

predictor modeled as a smooth function was considered. In this section, we
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extend this model by including qualitative predictors assumed to enter the

model linearly. Without loss of generality, we considered only one parametric

categorical component s with one non-parametric component smoothing a

continuous predictor x by linear P-splines. We want to let the relationship

between logit(φi) and xi vary differently but in parallel according to the

variable si taking discrete values, i.e.

logit(φi) = β0 + γsi + β1xi +
K∑

k=1

bk(xi − κk)+ + εi, i = 1, . . . , I. (7)

The GLMM representation can also be used to handle the semiparametric

model. Let us adjust the matrix X so that its ith row is Xi = (1, si, xi)
T and

β = (β0, γ, β1)
T , while the ith row of matrix Z is Zi = {(xi− κ1)+, . . . , (xi−

κK)+}T . Then the mixed model defined by Equation (6) can still be used

to describe the semiparametric regression defined in Equation (7) (Ruppert

et al., 2003).

4. Bayesian inference

In this section, we focus on the Bayesian analysis of the nonparametric model

defined in Section 2.2. However, within the GLMM framework introduced

before, the extension to additive and semiparametric models is straightfor-

ward (see Section 6).

The frequentist approach would require maximising the likelihood, which

is obtained by integrating the distribution [m|φ,p,R] over the random ef-

fects εi and bk. This is therefore a problem involving a high dimensional in-

tegral that could be handled by using approximations like Laplace’s method

(Chavez-Demoulin, 1999; Wintrebert et al., 2005) or asymptotic arguments
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(Burnham, 2002). For fitting our models, we opted for a Bayesian approach

through Gibbs sampling. Invoking conditional independence properties, a

first step is achieved by recursively factorizing the posterior distribution to

give:

[β,b, ε, σ2
b , σ

2
ε ,p,R|m]

∝ [m|φ,p,R][φ|β,b, ε][β][b|σ2
b ][ε|σ2

ε ][σ
2
b ][σ

2
ε ][p]. (8)

Even if one is only interested in the marginal posterior distribution of a

subset of parameters, high-dimensional integrations have to be carried out. In

general, such complex integrals are intractable analytically and we made use

of MCMC methods which provide powerful computer-intensive methods for

making approximations (e.g. Brooks, 1998). We employed Gibbs sampling

(e.g. Casella and George, 1992), however, in the context of capture-recapture

model parameter estimation, generally full conditional distributions are non-

standard (Brooks et al., 2000; Barry et al., 2003; Johnson and Hoeting,

2003), so that usual random variate generation algorithms cannot be used.

Instead, more elaborate algorithms are needed such as adaptive rejection

sampling or Metropolis-within-Gibbs sampling (see Gilks, 1996 for a review).

We therefore used software WinBUGS (Spiegelhalter et al., 2003), which

performs the latter.

5. Simulation study

Before turning to the real example, we conducted a simulation study to

provide empirical support for our approach. We considered two scenarios

with different forms for the underlying nonlinear regression function f of

Equation (2). Study 1 used the regression function f(x) = 2.2 if x ≤ −0.06
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and f(x) = 2.08−2 x otherwise. This function is a broken line which mimics a

threshold effect, for instance the covariate might represent an environmental

constraint on resources, which negatively affects survival only above a given

level. The xs were equally spaced on [−1.5, 1.5], and the error variance σ2
ε

was equal to 0.1. Study 2 used the regression function f(x) = 1.5 g((x −
0.35)/0.15)− g((x− 0.6)/0.1) where g(x) = exp(−x2/2)/

√
2π. This function

exhibits non-trivial non-linear patterns, which could correspond to complex

relationships between climatic conditions and survival. The xs were equally

spaced on [0, 1], and the error variance σ2
ε was equal to 0.02. For both studies,

we simulated 50 capture-recapture data sets covering 26 sampling occasions,

so that 25 survival probabilities had to be estimated, with 100 newly marked

individuals per occasion. The capture probability was set constant and equal

to 0.7.

For 5 randomly chosen data sets, we first ran two overdispersed parallel

MCMC chains to check if convergence was reached. As a result, we decided

to use 100,000 iterations with 50,000 burned iterations for posterior summa-

rization. Details on the priors used and the convergence assessment can be

found in Section 6. We then applied our non-parametric approach on each

data set, using linear P-splines with 6 knots. For each x value, we computed

the median along with a 95% confidence interval for the posterior medians

of f and then back-transformed in order to compare the estimated survival

curve to its true counterpart.

The results are shown in Figure 1. For each of the two examples, our ap-

proach was successful in capturing the nonlinearities in the survival function.

Note that in Study 1, a relatively simple regression function was specified,
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resulting, for the same number of knots and sample size, in better precision

than for Study 2.

[Figure 1 about here.]

6. Application to Snow petrels data

We illustrate the approach of the paper with data from a 40-year study on

individually marked Snow petrels, nesting at Petrels Island, Terre Adélie,

from 1963-2002. Two previous studies have showed that a large part of the

variation in annual survival was explained by climatic covariates such as the

extent of sea-ice and air temperature (Barbraud et al., 2000; Jenouvrier,

Barbraud and Weimerskirch, unpublished results). Here, for illustration, we

used only a subset of the whole dataset, from 1973-2002 (I = 29, 630 males

and 640 females), and considered the Southern Oscillation Index (a covari-

ate denoted by SOI) as a summary of the overall climate condition, with

positive (respectively negative) values of the SOI corresponding to cold (re-

spectively warmer) climatic conditions. While the NAO is a useful synthesis

of climatic variables that might affect ecology in the Northern hemisphere

(see Section 1), the SOI provides its counterpart for the Southern hemisphere

(see Stenseth et al., 2003 for a general discussion). The SOI is available from

the Climatic Research Unit (http://www.cru.uea.ac.uk/cru/data/soi.htm).

Preliminary analysis of goodness-of-fit of the CJS model identified lack

of fit due to the presence of transients (146 males and 169 females were seen

only once) (Pradel, Hines, Lebreton and Nichols, 1997) and trap-dependence

(Pradel, 1993). The transients were removed, and trap-dependence was han-

dled by considering different capture probabilities depending on whether a

capture occurred or not at the previous sampling occasion.
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We modeled the survival probability nonparametrically as a function of

the SOI using P-splines. The effect of this covariate was additively differen-

tiated according to the sex of individuals. We used linear splines (P = 1)

but quadratic or even cubic splines could have been used instead, resulting

mainly in a smoother estimated survival curve (Ruppert et al., 2003). We

used K = 6 knots chosen so that the kth knot is the sample quantile cor-

responding to probability k/(K + 1). Note that the covariate SOI was first

standardized in order to avoid numerical instabilities and to improve MCMC

mixing (Gilks and Roberts, 1996). We therefore considered the following

model

logit(φl
i) = β0 + γSEX + β1SOIi +

6∑

k=1

bk (SOIi − κk)+ + εi (9)

where φl
i is the survival probability over the interval [ti, ti+1] for l = male

(SEX = 0) or l = female (SEX = 1) and SOIi denotes the SOI in year i,

i = 1, . . . , I. The random effects {bk} are independent as well as the {εi}.
Let us denote φ = (φfemale

1 , . . . , φfemale
28 , φmale

1 , . . . , φmale
28 )T . Then, in ma-

trix notation, Equation (9) can be expressed in the form of Equation (6)

using

β =
(

β0 γ β1

)T

X =




1 1 SOI1
...

...
...

1 1 SOI28

1 0 SOI1
...

...
...

1 0 SOI28




for the fixed effects and

b =
(

b1 . . . b6

)T
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Z =




(SOI1 − κ1)+ . . . (SOI1 − κ6)+
...

...
...

(SOI28 − κ1)+ . . . (SOI28 − κ6)+




for the random effects.

The model proposed here differs from the semiparametric approach pre-

sented before in that the sex parametric component acts at the individual

level rather than on sampling occasions. The likelihood is therefore slightly

modified consisting of the product of two sub-components, one for each sex,

based on the product-multinomial structure of the m-array (e.g. Lebreton

et al., 1992).

To completely specify the Bayesian nonparametric model, we need to

provide prior distributions for all parameters. Specifically, we chose

[pi+1] = Beta(Ap, Bp), [εi] = N(0, σ2
ε), i = 1, . . . , I

[β0] , [β1] , [γ] = N(0, σ2
β),

[bk] = N(0, σ2
b ), k = 1, . . . , K,

where the parameter σb controls the degree of smoothing for the covariate.

Following Brooks et al. (2000), we chose Ap = Bp = 1 which leads to a

uniform distribution, while following Ruppert et al. (2003), σ2
β was set to

106, and priors for hyperparameters were chosen as

[
σ2

b

]
,

[
σ2

ε

]
= Γ−1(0.001, 0.001).

All priors were selected as sufficiently vague in order to induce little prior

knowledge, but can be easily refined if required. We generated two chains

of length 100,000, discarding the first 50,000 as burn-in. These simulations

took approximatively 25 hours on a PC (512Mo RAM, 2.6GHz CPU). Con-

vergence was assessed using the Gelman and Rubin statistic, also called the
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potential scale reduction, which compares the within to the between vari-

ability of chains started at different and dispersed initial values (Gelman,

1996). We found that the Markov chains exhibit moderate autocorrelation

but poor mixing regarding the parameters bks and βs. We thus tried low–

rank thin–plate splines because in that case the posterior correlation of the

parameters is generally smaller than for other bases. However, in our ex-

ample, this only improved the mixing slightly, so that we decided to retain

the truncated polynomial basis throughout, coupled with chains of adequate

length to achieve convergence. According to our experience, inference based

on P-splines within the Bayes framework may be sensitive to the choice of

priors, especially regarding σb (see Crainiceanu et al., 2004a for a discus-

sion of prior distributions for nonparametric P-spline regression). In order

to check for the robustness of our results, we ran our model using different

priors and in all cases there were only minimal changes.

We used the software WinBUGS (downloadable freely from http://www.mrc-

bsu.cam.ac.uk/bugs/) by calling it from software R through the package

R2WinBUGS (see R web site at http://r-project.org/ and Crainiceanu et

al, 2004b for implementation examples of nonparametric Bayesian P-splines

in WinBUGS). Priors and likelihood are specified with WinBUGS, while it

appears more useful in practice to process data, set initial values, check for

convergence and draw inference after the model is fitted using R. The codes

used for fitting the model are available from the first author on request.

Posterior medians, standard deviations, and 95% credible intervals are

given in Table 1.

[Table 1 about here.]
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Because it does not contain 0, the posterior credible interval for parame-

ter γ suggests that the sex of individuals affects the survival probability.

As demonstrated by other studies (Jenouvrier, Barbraud and Weimerskirch,

unpublished results), male petrels survive better than females, whatever the

climatic conditions (see Figure 2).

Of particular interest, it appears that survival is nonlinearly related to

the SOI covariate (Figure 2). When the SOI increases, survival first decreases

and then stabilizes. From a biological point of view, lower values of the SOI

may favor access to prey, whereas higher values may improve prey abundance

(Loeb et al., 1997), resulting in the non-linearity found.

[Figure 2 about here.]

In order to know if the nonparametric part our model was needed, we

compared the nonparametric model with the simple standard approach in

which the SOI is just entered linearly on the logistic scale. From Figure 2,

the linear curve (dotted line) differs clearly from the nonparametric curve

(solid line), but the 95% credible interval (dashed lines) for the latter partly

contains the former, which means that this difference is only marginal. This

conclusion was supported by the DIC values (Spiegelhalter et al., 2002) and

the credible intervals for the bks, which include zero. However the non-

linearity has a biological explanation, and as we can see from Figure 2, in

this example we require more years of data corresponding to large values of

SOI in order to discriminate better between the two models.

Note that the mean encounter probabilities were 67% for males and 61%

for females if a capture occurred at the previous occasion, and 62% for males
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and 58% for females if not. This sex-dependent positive trap-effect is in

agreement with a recent study on Snow petrels (Jenouvrier, Barbraud and

Weimerskirch, unpublished results).

7. Discussion

This paper presents a Bayesian approach for nonparametric modeling of sur-

vival estimated using capture-recapture data, where smooth functions were

modeled as penalized splines. Extensions such as additive and semipara-

metric models are straightforward within the unified framework based on

the mixed model representation. In addition, due to the hierarchical struc-

ture of our Bayesian approach, the degree of smoothness is data-driven and

controlled by the smoothing parameter estimated jointly with the unknown

regression parameters.

The modelling of this paper does not include interactions between co-

variates. For example, an interaction between sex and a climatic covariate

would involve considering different smooth functions for males and females

(Coull, Ruppert and Wand, 2001). Following the suggestion of a referee, we

considered this interaction for the real data but it did not appear to improve

the fit. An interaction between two continuous covariates can be achieved

by using bivariate smoothing (Ruppert et al., 2003). For example, it would

be interesting to include an interaction between population density and cli-

mate in a model (Coulson et al., 2001), requiring an extension of the power

truncated function basis to a tensor product basis (Green and Silverman,

1994).

In this paper we dealt with goodness-of-fit by first of all applying stan-

dard procedures to the CJS model, which identified transients, which were
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excluded, and the presence of trap-dependence, which was included in the

semiparametric model. Any further lack of fit was accommodated in part

through the inclusion of the random effect terms in Equation (2), which are

seen to be needed from the estimate of σε in Table 1.

The work of this paper has wider application than just to the CJS model,

e.g. in models with age-dependence of survival, including modelling senes-

cence (e.g. Catchpole et al., 2004).
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Résumé

Les modèles de capture-recapture servent à estimer la survie d’une population

sauvage, grâce à des données issues du marquage et du suivi dans le temps

d’individus. Il est d’une importance toute particulière de pouvoir expliquer

les variations de survie en fonction de variables judicieuses. Nous développons

des modèles de régression nonparamétriques et semiparamétriques pour la

probabilité de survie des modèles de capture-recapture. Nous nous plaçons

dans un cadre Bayésien, et l’estimation des paramètres s’effectue grâce à des

méthodes MCMC. Nous illustrons notre travail par l’étude de la survie de

Pétrels des neiges comme une fonction non-linéaire d’une variable climatique,
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en utilisant des données d’un suivi de 40 années concernant des individus

nichant sur l’ile des Pétrels, en Terre Adélie.
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Figure 1. Performance of the non-parametric approach for estimating non-
linearities in the survival probability (top: Study 1, and bottom: Study 2;
see text for details). For both scenarios, 50 simulated capture-recapture data
sets were used. The solid line is the true regression function, the dashed line
is the median of the 50 estimated posterior medians and the dotted lines
indicate the associated 95% confidence interval.
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Figure 2. Annual variations in survival of male (left) and female (right)
Snow petrels, as a function of the standardized Southern Oscillation Index
(SOI) using the semiparametric model (Equation (9)). Note that the two
vertical scales are different. Medians (solid line) with 95% pointwise credible
intervals (dashed lines) are shown, along with the estimated linear effect (dot-
ted line) on the logistic scale and the standardized covariate values (vertical
lines).
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Table 1
Posterior medians, standard deviations, and 95% credible intervals for the

semiparametric model applied to the Snow petrels data set (see
Equation (9)).

Parameter Median St. Dev. 95% Cred. Int.
β0 2.93 0.40 [1.93;3.55]
γ -0.26 0.10 [-0.45;-0.06]
β1 -0.47 0.38 [-1.39;0.07]
σb 0.23 0.36 [0.03;1.15]
σε 0.56 0.14 [0.35;0.91]
b1 0.01 0.23 [-0.52;0.51]
b2 0.00 0.33 [-0.83;0.62]
b3 0.08 0.35 [-0.29;1.01]
b4 0.08 0.42 [-0.39;1.38]
b5 0.02 0.45 [-1.43;0.75]
b6 0.03 0.44 [-0.50;1.23]
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