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Abstract 

 
Since there are no systematic pauses delimiting words in speech, the problem of word   segmentation 

is formidable even for monolingual infants. We use computational modeling to assess whether word 

segmentation is substantially harder in a bilingual than a monolingual setting. Seven algorithms 

representing different cognitive approaches to segmentation are applied to transcriptions of naturalistic 

input to young children, carefully processed to generate perfectly matched monolingual and bilingual 

corpora. We vary the overlap in phonology and lexicon experienced by modeling exposure to 

languages that are similar (Catalan and Spanish) or more different (English and Spanish). We find that 

the greatest variation in performance is due to different segmentation algorithms and the second 

greatest to language, with bilingualism having effects that   are smaller than both algorithm and 

language effects.  Implications of these computational results for experimental and modeling 

approaches to language acquisition are discussed.  
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Is there a bilingual disadvantage for word segmentation? A computational modeling approach 

 

Unlike in written language, there are no spaces between words when we speak. In fact, there are 

no obvious and infallible cues that indicate word boundaries (e.g., Brent & Siskind, 2001). And yet we 

know infants must have found a solution to this difficult problem because they know the meaning of 

some words by 6 months (Tincoff & Jusczyk, 1999, 2012), and therefore they must have been able to 

learn at least those phonological sequences or word forms. What is more, some evidence suggests that 

infants do not wait to learn true words (i.e., form-meaning pairings), but instead start segmenting their 

input and memorizing high frequency sequences as early as 6 months, to the point that they accumulate 

a proto-lexicon of about 500 word forms by 11 months (Ngon et   al., 2013). The question of how 

infants approach the problem of word segmentation has been the focus of intensive cross-disciplinary 

research in the last years, combining experimental studies on infants and adults, mostly on 

monolinguals, and computational modeling. This paper is the first to investigate bilingual word 

segmentation using computational modeling. In the rest of this Introduction, we briefly introduce the 

problem of word segmentation and review other previous interdisciplinary research, before turning to 

our unique contributions. 

 

Laboratory evidence showing that infants engage in word segmentation 

 

A tradition of laboratory experiments suggests that infants can segment words from running 

speech. In these studies, infants are typically played a word in isolation, over and over, until they reach 

a certain listening time criterion. They are subsequently presented with two passages, one containing 

the word and another not, and their listening preference is measured. Some experiments invert the 

order of these experiences, familiarizing to passages and testing with words in isolation. Setting aside 

order effects, monolingual infants show a significant preference for test trials containing the 
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familiarized word, over test trials containing a foil, when they are as young as 8 months (Jusczyk, 

Houston, & Newsome, 1999). This paradigm and derivations of it based on artificial languages have 

been used in literally hundreds of experiments on monolingual infants, meta-analyzed by Bergmann 

and Cristia (2015) and Black and Bergmann (2017). 

 

The literature on bilingual infants is considerably scarcer, and results are not always   consistent 

(for recent reviews of bilingual early language acquisition, including word segmentation, see Höhle, 

Bijeljac-Babic, & Nazzi, 2020; Sebastian-Galles & Santolin, 2020). Polka and Sundara (2003) reported 

that English-French 7.5-months-old Canadian bilinguals were able to segment bisyllabic words in both 

their languages. However, a near replication suggested they may only succeed in French (Polka, Orena, 

Sundara, & Worrall, 2017). With extended exposure, however, 8- and 10-month-old Canadian 

bilinguals succeed marginally or significantly in both their languages (Orena & Polka, 2019). Studying 

bilingual Spanish-Catalan infants, Bosch, Figueras, Teixidó, and Ramon-Casas (2013) found 

successful word segmentation in both languages at 8 months of age, and further generalized this 

success to 6-month-olds.  Ibáñez (2017) replicates the positive finding for 6.5-, 8-, and 9.5-month-old 

Spanish-Catalan bilingual infants, using disyllabic target words. A recent analysis suggests that 

bilingual infants exposed to more frequent language mixing (including within-sentence switching) are 

more successful in segmenting words out of both of their languages (Orena & Polka, 2019). Moreover, 

monolinguals presented with a “bilingual” input in an artificial language setting failed to segment 

words from those languages (Antovich & Graf Estes, 2018,   2020), suggesting that in natural language 

acquisition, infants may lose the capacity to keep track of two sets of cues if exposed to a predominantly 

consistent input, or perhaps that multilinguals gain the capacity to track multiple sets of cues when 

exposed to variable input (see particularly follow-up analyses on frequency of mixing in Orena & 

Polka, 2019; and on proportion of bilingual speakers in the environment in Antovich & Graf Estes, 

2020).  Although many of these studies report significant preferences, it should be noted that the 

direction of preference is sometimes  toward familiarity (as in most previous word segmentation studies 

on monolinguals) and sometimes towards novelty (i.e., longer looking to the test stimuli with a foil 
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than with the familiarized word). 

 

Of course, such diversity in outcomes may be due to the small sample sizes  that many infant 

studies have, which make results hard to generalize (Oakes, 2017), in addition to the difficulty of 

recruiting homogeneous bilingual infants. This is one of the reasons why, we believe, it is particularly 

useful to lay the groundwork using methods that can establish the theoretical foundations, such as 

computational modeling. 

 
Segmenting words from bilingual input 

 

In this section, we briefly discuss conceptual arguments for and against the possibility that 

segmenting words from bilingual input poses additional challenges compared to the monolingual case. 

As will be explained in more detail in the next section, determining where words begin and end 

(word segmentation) may necessitate learning some aspects of the phonological system (phonological 

cues), as well as the way in which word forms are combined (lexical cues). Infants growing up in an 

environment where two languages are spoken are therefore exposed to two different lexical and 

phonological systems.  Assuming that the overall quantity of speech infants hear is the same, one can 

estimate that there is twice as much to learn with the same overall quantity of input. If the discovery 

of distributional regularities depends on frequency, bilingual environments should be more 

challenging. And if word segmentation is indeed challenging for bilinguals, we should expect, for 

instance, a delay in vocabulary learning. However, when properly matched, bilinguals and 

monolinguals know similar numbers of words in their vocabularies (see Gonzalez-Barrero, Schott, & 

Byers-Heinlein, 2020 for a recent article showing how different approaches quantifying vocabulary 

size in bilinguals can lead to different results). Another variable to take into account is that depending 

on the languages that children are exposed to, overlap in the lexicon and phonology across the two 

languages may vary. Even if the systems overlap to a great extent, this may not necessarily represent 
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an advantage: There is less to be learned, but also a greater potential for confusion between the 

languages, since the linguistic variants may be harder to tease apart. 

In addition, switching across languages is so common in multilingual environments that human 

language systems are developed in order to deal with that (Sitaram, Chandu, Rallabandi, & Black, 

2019). Speakers fluent in several languages may switch back and forth between them across utterances, 

or even integrate morphemes, words, or phrases from different languages within the same utterance. 

There is some discussion as to how frequently this occurs in child-directed speech, but one estimate 

based on direct observations of English-Spanish bilinguals talking to their infant in a baby lab in 

Maryland, USA, found about 15.7% of utterances contained a within-sentence language switch (Bail, 

Morini, & Newman, 2015), and this may be higher in communities in which multilingualism is more 

widespread. Even if parents do not switch languages within a sentence, unless they purposefully try to 

withhold speaking one of the languages in front of the child, they will speak some utterances in one 

language, and other utterances in the other language (see, for instance, Orena et al., 2019 for parents’ 

speaking in both languages according to reports versus observation). And even if they do not, the child 

will nonetheless be exposed to changes in the language being spoken when one speaker uses one 

language, and the next speaker uses a different language. 

 
Finally, phonetic implementation may help or hinder the process of distinguishing the two 

languages. That is, imagine that the two languages have totally different phonetic inventories and that 

speakers are always native. In this case, the child can use these phonetic cues to separate the languages. 

Nevertheless, sometimes speakers are non-native, and they will say the words of one language using 

the phonetic implementation of sounds in the other language. 

 

Up to here, we have presented arguments for the problem being harder when faced with bilingual 

than monolingual input. However, as we already mentioned, trajectories in lexical development are 

comparable between children exposed to one or two languages. In fact, it is also possible to argue for 

the prediction that there is no difference in terms of word segmentation specifically. If segmenting 
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words depends on learning the sequences of sounds and the sequences of words found within 

utterances, and if speakers in a community produce stable input (that is,enough sections of a single 

language where both phonotactics and distributional properties of words are predictable), bilingual 

input may not cause particular difficulties. 

In this project, we specifically control the amount of exposure to the languages as well as the 

prevalence of switching languages between utterances, assuming native speakers (i.e., with a native 

accent). We leave for future work the study of within-sentence code-switching, as well as the presence 

of non-native speakers. 

 

Modeling word segmentation 

 

Computational models are a good complement to experimental language acquisition research 

particularly to test the feasibility of hypothesized strategies. That is, if we propose that infants may use 

strategy X to segment words, then strategy X applied to a corpus of child-directed speech   should 

succeed in segmenting at least some words.  Models also uniquely facilitate cross-cultural  and cross-

linguistic analysis controlling for other variables (Monaghan & Rowland, 2017). Computational 

models are informative for studying the learnability properties of various language corpora, controlling 

for orthogonal aspects such as arousal, attention, and other performance factors. When laboratory 

manipulations become unfeasible (due to the number of participants or stimuli  that would be required), 

computational models may be the only way to approach a phenomenon. 

Most work which attempts to model infant word segmentation uses textual, phonologized 

transcriptions representing speech as a sequence of phones or syllables (for acoustically-based models 

that do not assume phones or syllables, see Frank, Monaghan, & Tsoukala, 2019; Ludusan, Seidl, 

Dupoux, & Cristia, 2015; Roy & Pentland, 2002). Orthographic transcriptions of child input are 

converted into phonological representations to create a “gold standard”, and then a version where all 
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utterance-internal word boundaries have been removed are fed into a segmentation algorithm. Since 

infants are thought to be able to detect utterance boundaries from very early on (e.g., Seidl & Cristià, 

2008), utterance breaks are typically not removed. The algorithm then returns the same corpus with 

word boundaries added. This output and the original “gold” are compared to determine to what extent 

the hypothesized words and their boundaries match those that were present in the original text. 

Algorithms are often categorized into a few classes as a function of the primary segmentation 

cues they rely on (for a similar classification and further discussion, see Brent, 1999; Daland & 

Pierrehumbert, 2011). Models can additionally be classified along other dimensions, including whether 

the basic units in the input are phones or syllables; whether hierarchical structure is explicitly 

represented; and how experience is integrated.  Importantly, there is no agreement on    how several 

strategies of word segmentation might be weighted across development (for instance, see the debate 

between Johnson & Jusczyk, 2001; and Thiessen & Saffran, 2003), and no evidence on whether this 

varies as a function of language exposure. In view of this uncertainty, we follow Cristia, Dupoux, 

Ratner, and Soderstrom (2019) in reasoning that it is more appropriate to model infant word 

segmentation using a wide array of strategies, allowing us to focus on results that are stable across 

models. Next, we introduce these strategies, discussing plausibility of each in turn. That said, we want 

to stress that we do not mean to argue in favor of any one strategy, as what is crucial to the present 

effort is that diverse strategies are represented. 

Baseline models. The simplest (baseline) models assume that infants treat every phrase, or 

every basic unit (a phone or a syllable), as a word. This strategy is very simple because it requires  no 

memory - in fact, the input does not need to be processed in any way (other than perceiving syllable 

edges, and perceiving phrase edges).  

Some believe these baseline models are plausible representations of what infants do, at least very 

early on. According to some developmentalists, memorizing whole utterances may be the only strategy 

available until late in the first year (DePaolis, Vihman, & Keren-Portnoy, 2014; Keren-Portnoy, 
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Vihman, & Fisher, 2018). Such a strategy would not get infants very far, since many words do not 

occur in isolation: They may learn proper names like this, but not body part words (both of which 

appear in 6-month-olds’ lexicon; Seidl, Tincoff, Baker, & Cristia, 2015; Tincoff & Jusczyk, 1999, 

2012). This is, of course, the limitation of these models, in that they will never suffice to learn the 

words of a language.  Nonetheless, these baseline models may capture very early and uninformed 

strategies. 

Sublexically-driven models. Most attention by infant experimentalists has been devoted to 

strategies that build on very local indices, rather than optimizing the resulting lexicon. In the 

computational literature, sublexically-driven models are those that have as a goal to segment the input, 

drawing primarily from local cues. Among these models, we recognize two large subclasses, one that 

builds on sound co-occurrences (phonotactics) and another that builds on syllable co-occurrences.  

Languages are typically described as having a small inventory of units (sounds or syllables), 

which are combined to form words. It is typically the case that only some combination of the basic 

units is legal, while other combinations are rare or illegal, particularly at word edges. For example, in 

English, the sequence tl can occur word-medially as in Atlantic, but not word-initially. Phonotactic 

cues are a good source of information to word edges because they indicate sequences of sounds that 

are frequent or infrequent at certain syllable or word positions (Jusczyk, Luce, & Charles-Luce, 1994). 

Evidence from American English learners suggests they can use phonotactics to extract word forms 

(Mattys, Jusczyk, & Luce, 1999). 

Infants could learn phonotactics in a few ways. Once they have learned a few words (e.g., those 

that occur in isolation), they can extrapolate from that small lexicon. Alternatively, viewing phrase 

boundaries as word boundaries can be a useful strategy while the proto-lexicon is being formed. 

Indeed, if the learner notices that a given sound sequence is more common between utterances than 

within utterances, then this is a very good indication that this sequence is an illegal word onset or offset 

in the language. In fact, there are many different slight variants in the computational modeling literature 
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depending on the size of the window (whether two phones or more are considered), the position of the 

window (everywhere, focusing on utterance edges, focusing on phones straddling the phrase boundary, 

or extracting them from a proto-lexicon), and other details of implementation. For the purposes of the 

present study, what remains crucial to retain is that these models tend to be extremely successful in 

English (e.g., Daland & Pierrehumbert, 2011), with mixed evidence for some other languages (Russian: 

Daland, 2009; Korean: Daland & Zuraw, 2013). 

A second type of statistical information has received even more attention than sequencing of 

phones, and that is the sequencing of syllables. Conceptually, this strategy is intermediate between 

sublexical and lexical approaches, relying on the intuition that when a sequence of syllables co-occurs 

frequently, then these syllables probably form a word. Nonetheless, we discuss it here because this 

intuition is commonly implemented via an algorithm that aims at positing boundaries: When a 

sequence of two syllables is infrequent, then one posits a boundary between them.  

This strategy has been studied extensively in infancy (e.g., Saffran, Aslin, & Newport, 1996; 

Aslin, Saffran, & Newport, 1998; Pelucchi, Hay, & Saffran, 2009; a review in Lany & Saffran, 2010), 

often (but not always) using artificial languages where all other cues (including phrase breaks) have 

been neutralised (a meta-analysis in Black & Bergmann, 2017).  Importantly, these cues are also 

employed by bilingual infants, who can keep track of two sets of statistics presented in interleaved 

utterances better than monolingual infants (Antovich & Graf Estes, 2018, 2020). 

Some computational research building on this idea (e.g., Gervain & Erra, 2012) employed an 

implementation that stayed close to Saffran’s description of the process: When a probability of a 

transition between two syllables is lower than that of the neighboring syllables, then a boundary is 

posited.  We will refer to this implementation as being based on a relative threshold:  Segmentation is 

decided by comparing a transition probability to others close by, and thus the threshold changes  for 

every triad of syllables. This relative thresholding makes it impossible to segment very short 

utterances: If there are only three syllables, and thus two potential boundaries within the utterance, 

then neither can be the “local minimum”. Notice that this strategy is not a problem in artificial 
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languages where there are no sentence breaks, or in materials that have been produced to always have 

more than three syllables in a given sentence. The problem only emerges in natural, spontaneous 

language, where utterances can be of any length (including 2 or 3 syllables long).  

Saksida, Langus, and Nespor (2017) proposed that infants can also use another threshold, based 

on the average transitional probabilities over the whole corpus. In a study with multiple languages, 

they show that segmentation scores are much better using this absolute threshold (for a systematic 

threshold exploration, see also Gervain & Erra, 2012). Additionally, Saksida et al.  (2017) document 

considerable cross-linguistic variation, although the precise reasons behind this variation are yet to be 

elucidated. 

Some connectionist models may be classified here because the model posits boundaries at 

specific points of the stream, typically when a unit in the network representing a boundary activates 

beyond a certain threshold (including Christiansen, Allen, & Seidenberg, 1998; Aslin et al., 1998). 

However, it is important to point out that these models do not explicitly attempt to capture and use 

phonotactics or transitional probabilities between syllables; instead, when these  and  other properties 

(e.g., lexical stress in Christiansen et al., 1998’s study of English) are informative, then  the network 

can successfully predict word edges. 

 
Lexically-driven models. We call lexical cues those that primarily serve the goal of finding 

the lexicon of word forms and/or which are based on the assumption that speech corpora contain a 

concatenation of words.  Some research suggests that, already by 6 months of age, American   English 

learners use words that function like proper names as wedges, using them to segment utterances 

including them (Bortfeld, Morgan, Golinkoff, & Rathbun, 2005; Mersad & Nazzi, 2012), rendering 

lexical algorithms plausible at least in principle. 

Lexically-driven algorithms are those that have as a primary goal to learn a set of “minimal 

word-level recombinable units” which are optimal to generate their input corpus. An early 

implementation of this idea was the Bayesian Minimum Description Length Chunker by Brent and 
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Cartwright (1996), who documented that such a strategy is quite successful at segmenting   American 

English child-directed speech. Goldwater, Griffiths, and Johnson (2009) generalized Brent and 

Cartwright (1996)’s proposal by showing that their implementation was formally equivalent to a 

unigram adaptor grammar, which in itself is a special case of adaptor grammars. 

These models assume a “grammar”, meaning a set of rewrite rules that may be as simple as three 

rules: 1) “All utterances are composed of words”, 2) “All words are composed of sounds”, 3) “Sounds 

are one of [a-z]”. This simple grammar can generate the present text (and, in fact, any text using Latin 

orthography). Typical adaptor grammars used to model unsupervised, infant-like word segmentation 

are hierarchical, probabilistic and non-parametric (Johnson, Griffiths, & Goldwater, 2007). These 

models are called “hierarchical” because the rules make reference to a hierarchy: utterances > words 

> sounds. Notice that, as a result, rules are actually equivalent to trees, and thus words can be described 

as subtrees in this context. The type of adaptor grammar currently employed is always probabilistic, 

meaning that each rule or tree may come to have an associated probability of reuse. They are called 

“non-parametric” when, instead of using a finite set of parameters (e.g., a fixed set of subtrees and 

their probabilities), they both generate subtrees and estimate their probability. 

Additional work using adaptor grammars has suggested that they are fairly successful at 

segmenting child-directed speech in various languages, including German, Spanish, Italian, Farsi, 

Hungarian, and Japanese (Phillips & Pearl, 2014), while still showing cross-linguistic differences as 

you would expect across languages where the syllable structure has different levels of complexity 

(Fourtassi, Börschinger, Johnson, & Dupoux, 2013; Johnson, 2008; Loukatou, Stoll, Blasi, & Cristia, 

2018). 

Many models of word segmentation may also be classified as relying primarily on lexical  cues, 

even though they have an implementation that may not explicitly have a long-term storage (or lexicon), 

and they may not explicitly model lexical cues. Notably, models that are presented as “chunkers”, 

including TRACX (French & Cottrell, 2014; French, Addyman, & Mareschal, 2011) MDLChunker 
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(Robinet, Lemaire, & Gordon, 2011), and the Retention & Recognition model (Alhama & Zuidema, 

2017) may be conceptually classified here because the creation of chunks (or word candidates) is their 

primary goal. Please note these models vary widely in their implementation, for instance relying on a 

neural network (French & Cottrell, 2014) or the symbolic sequential processing of input comparing it 

against an overtly defined long-term storage system (Alhama & Zuidema, 2017). 

 
Before moving on, we discuss two of the many experiments that have been carried out using 

TRACX, namely Simulations 9 and 10 of French et al. (2011). Those Simulations studied the 

segmentation of what the authors describe as “bilingual microlanguages”:  In both Simulations, there 

are 27 words in each of two languages, resulting from the combination of three symbols occurring in 

initial position, three in medial, and three in final (e.g., in one language, [a b c] are initial, [d e f] medial, 

and [g h i] final, with adg, aeh, afi being 3 of 27 possible words in the language). In Simulation 9, 

symbols do not overlap across languages (i.e., language beta: [j k l] are initial, [m n o] medial, and [p 

q r] final), whereas in Simulation 10 they do (specifically language beta is [d e f] are initial, [a b c] 

medial, and [p q r] final). Results show that TRACX correctly classified the words into two separate 

groups, including for a subset of words that had been held out from the training.  While these results 

are very interesting, the similarity between these “bilingual microlanguages” and input that bilingual 

infants may experience is not so much as to consider the question of bilingual segmentation closed. 

 
Hybrid models. Some models’ structure allows them to benefit from both sublexical and 

lexical cues (including Perruchet & Peereman, 2004; Monaghan & Christiansen, 2010). For instance, 

PARSER (Perruchet & Peereman, 2004) generates chunks (sequences of sounds or syllables) 

randomly, selecting the most cohesive chunks, strengthening their memory trace with repetition and 

weakening it with forgetting. Forgetting is implemented not just through decay, but also through 

interference with items appearing in the input stream that have some, but not all, of    the syllables 

present in the stored chunks. As a result, transitional probabilities present in the input directly affect 

the likelihood of a chunk being retained, and thus the performance of the model   when segmenting an 



MODELING BILINGUAL WORD SEGMENTATION – Preprint 15  

input stream. Another example is PUDDLE (Monaghan & Christiansen, 2010), introduced in more 

detail below, which breaks up the input stream if it recognizes in it a chunk in its long-term memory, 

except if the remainder of the sentence fails to respect the phonotactics that have been extracted from 

its long-term memory store. 

 
The present study 

 

In this study, we aim to model bilingual word segmentation. Modeling is an interesting approach 

for our understanding of bilingual language acquisition for several reasons. The most salient one is that 

we can study a complex problem with an unparalleled degree of control over variables that could lead 

to confounds. Variables such as the amount of exposure to each of the languages, the prevalence of 

language switching, and the presence of accents can be adjusted by   the experimenter in order to study 

effects on performance, while all else is held equal. It is especially useful to test whether universal 

mechanisms of language acquisition can be applied in contexts of great variation in the language 

environment, which is the case for bilingual children. Moreover, this methodology can easily be 

extended to several languages to measure specific phenomena cross-linguistically and as a function of 

specific language combinations. In this study we will look at Catalan, Spanish, and English to take into 

account the role of language distance by creating one bilingual corpus featuring a similar pair of 

languages (Spanish + Catalan); and another containing a more distant pair of languages (Spanish + 

English). 

Following much previous work, our computer simulations use as input phonological transcripts 

generated from linguistic corpora representing natural, spontaneous speech occurring around 

monolingual infants. In their original format, the linguistic corpora used are orthographic transcriptions 

of natural interactions between monolingual infants and their caregivers at home. We then combine 

transcripts into a pair of generated monolingual corpora (by mixing transcripts within each language 

separately) and a matching bilingual corpus (by mixing transcripts across languages). The advantage 
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of creating an artificial bilingual corpus from several monolingual transcriptions is that it protects our 

data from confounds (e.g., intrinsic differences in how different researchers define utterances across 

corpora; random variation in how talkative or lexically diverse the speech of different caregivers is). 

We could further control the proportion of experience with each language by setting it at    50% 

so as to model a perfectly balanced bilingual (i.e., 50%  Catalan  + 50%  Spanish;  50% Spanish + 50% 

English). Additionally, we varied the frequency of language switching while maintaining total 

proportions stable, by changing across the two languages every other utterance or every 100 utterances 

(see Figure 1 for an example). For example, in the Catalan and Spanish combination, the first type of 

switching would imply a Catalan utterance followed by a Spanish one, whereas in the second type   of 

switching this would happen every 100 utterances (100 utterances in Catalan would be followed by 

100 utterances in Spanish). We concatenated whole utterances from different languages, without 

mixing within utterances. 

Figure 1. Example of language switching every 100 utterances versus every other utterance for 

Spanish and Catalan. LA represents language A, in our study it could have been either Catalan or 

English (this example uses Catalan). LB represents language B, Spanish in this case. 

In general terms, two general hypotheses were postulated before the experiments were carried 

out: 
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The confusion hypothesis: Bilinguals have less input of each language, thus reducing the chances 

of accumulating relevant data. Moreover, the models used here do not assume that there  may be two 

distinct systems in the input, but just one. Thus, data are internally inconsistent. Based on this 

hypothesis, we predict that segmentation scores are lower for the bilingual corpus than both matching 

monolingual corpora. 

The robustness hypothesis: Since we only switch languages at utterance boundaries, information 

within those boundaries is always consistent.  Thus, it may still be possible to generate a lexicon and 

a set of statistics that is appropriate for the bilingual input. Based on this hypothesis, we predict that 

the performance for the bilingual corpus overlaps with that of the matching monolingual corpora. 

Before proceeding, we would like to make it clear that we do not claim to say that these 

algorithms represent faithfully what actual human infants do. Instead, the goal is to capture information 

in the input, and algorithms are one way to make sure that this information is plausibly useful. 

Therefore, the algorithms used here sample from the space of possibilities in terms of the type of 

algorithmic approach, with representatives of sublexical, lexical, and hybrid approaches. 

However, we have not integrated every computational model that has ever been proposed, a 

topic to which we return in the Discussion. Additionally, we stress that we use multiple algorithms in 

order to capture a variety of strategies infants may be using, and our goal is not to compare the 

algorithms between them to say which is “better” or “worse” for two important reasons. First, the 

comparison would be unfair because previous work that has more thoroughly explored these 

algorithms in English (e.g., Bernard et al., 2020) has found that their performance varies enormously 

as a function of different parameters that are used. Second, it is highly likely that the ranking in their 

performance varies as a function of language (and perhaps corpora) characteristics (Loukatou, Moran, 

Blasi, Stoll, & Cristia, 2019). Therefore, any discussion of the algorithms’ performance here is limited 

to providing a backdrop over which to interpret effects associated to bilingual exposure. 
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Methods 

 

This manuscript was produced using RMd (Baumer & Udwin, 2015) and Papaja (Aust & Barth, 

2017) on R (Team & others, 2013). The code, data, and supplementary materials (other than code that 

is part of the WordSeg package, by Bernard & Cristia, 2018) are available from Fibla & Cristia (2019). 

The processing and analysis of our data is performed with the following steps: First, we selected 

comparable monolingual corpora (Data). Then, orthographic transcriptions were converted into 

phonological form within each language (Phonologization). Next, we combined utterances across 

transcripts within language to generate the monolingual corpora, and across languages to generate the 

bilingual corpora (Concatenation). After removing word boundaries and representing the input in the 

appropriate unit, we separately apply each of algorithms (Segmentation). Finally, the results of the 

algorithms are evaluated (Evaluation). 

Data. 

 

Languages. Catalan and Spanish are two rather similar Romance languages. The 

phonological system of Catalan is composed of seven vowels, /a ɛ e i ɔ o u/, and 25 consonants (in the 

central Catalan dialect used here). Catalan has many monosyllabic words which can end in a consonant 

cluster. The syllabic structure of Catalan is the following: There is an optional syllable onset that can 

include up to two consonants; an obligatory syllable nucleus, consisting of a vowel that can be 

optionally preceded and/or followed by a semivowel; and an optional syllable coda that can include 

one, two, or even three consonants. 

The Spanish inventory consists of five vowel phonemes, /a e i o u/, and 21 consonants (in the 

Castilian dialect used here). The syllable structure is somewhat simpler: It consists of an optional 

syllable onset that can include one or two consonants; an obligatory syllable nucleus, consisting of    a 

vowel that can optionally be preceded and/or followed by a semivowel; and an optional syllable coda, 

consisting of one or two consonants. 
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Finally, North American English (or Standard American English) is a West Germanic language. 

The variety of English we considered has 13 vowels and 25 consonants. English has generally complex 

phonotactics. For example, it allows complex consonant clusters permitting a syllable to start with up 

to three consonants (e.g., strict /strɪkt/) and complex codas, since a syllable can end with four 

consonants (e.g., sixths /sɪksθs/). English requires an obligatory syllable nucleus, consisting of a vowel 

or syllabic sonorant that can be optionally preceded and/or followed by a semivowel. 

Corpora. From the CHILDES database (MacWhinney, 2009), we selected corpora 

gathered during interactions between infants and their caregivers in a natural environment such as the 

home, when children’s ages ranged from ten months of age to 4 years of age. More specifically, the 

selected Catalan monolingual corpora (Bel, 1999 ; Llinàs-Grau & Coll-Alfonso, 2001 ; Miquel  Serra, 

1989) contained speech to 9 children (6 girls and 3 boys; age range 0;10-3;0). The Spanish corpora 

(López, 1997; López Ornat, Fernández, Gallo, & Mariscal, 1994; Martínez, 1995; Miquel Serra, 1989; 

Vila, 1990) contained the transcriptions of speech to 6 children (3 girls and 3 boys; age range 0;10-

3;0). The English corpus (Providence; Demuth, Culbertson, & Alter, 2006) contains data from 6 

children (3 girls and 3 boys; age range 0;11-4;0). Some transcripts were excluded because the transcript 

was shorter than 100 utterances (the minimum given our switching requirements, to be explained in 

the Concatenation section), or because we found sentences in the other languages. 

Whereas our pre-processing method (explained below) allows us to match the corpora perfectly 

in size, we could not control for other properties. In particular, lexical diversity and utterance length 

was not directly controlled across the original corpora, as this would have meant disturbing their 

naturalness, and we simply report on these characteristics. It must be borne in mind that this lack of 

matching may lead to differences across the monolingual corpora that are difficult   to interpret (i.e., a 

difference between languages X and Y may reflect intrinsic differences in ease of segmentation, or a 

divergence in whether transcribers required few versus many indicators to decide that an utterance 

ended). However, the comparison between a pair of monolingual corpora and their corresponding 

bilingual corpus remains valid given the way the corpora are generated. 
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Phonologization. Phonological representations were generated from orthographic 

transcriptions with methods chosen to ensure a good quality transcription. This step and the next one, 

concatenation, are represented in Figure 2. 

For Catalan, we used the phonemizer package (Bernard, 2018) to call the text-to-speech tool 

eSpeak (Duddington, 2008), which contains a pronunciation dictionary complemented with 

orthography-to-phonology rewrite rules to deal with out of vocabulary items. Inspection revealed there 

were some systematic errors in the pronunciation, which were corrected using computational rewrite 

rules. 

Given the transparency of Spanish orthography, the Spanish corpora were phonologized using 

computational orthography-to-phonology rewrite rules. 
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Figure 2. Phonologization and concatenation steps. LA represents language A, in our study it could 

have been either Catalan or English. LB represents language B, Spanish in this case. 

 

Some of the algorithms require syllables as the basic representation unit.  For both Spanish and 

Catalan, syllabification was done through a script building on the Maximize Onset Principle (Phillips 

& Pearl, 2018), implemented in four steps as follows. 1) Each sentence is parsed from right to left. 2) 

Once a vowel nucleus is detected, the first consonant to the left of it is considered    as a potential onset. 

3) If this onset appeared as a possible onset in a list provided to the algorithm, then it is retained, and 

otherwise a syllable boundary is inserted. 4) The process continues with the consonant to the left of 
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that one, until the maximal onset cluster is established. 

 

For English, we chose the text-to-speech system FESTIVAL (Taylor, Black, & Caley, 1998) in 

the phonemizer package, which was preferred over eSpeak because it provides syllable boundaries. 

This is particularly important given the fact that one of the baseline calculations uses syllables, hence 

the advantage of needing them. FESTIVAL uses a dictionary where each word is looked up, and 

orthography-to-phonology rules for out-of-dictionary words. 

 

Next, rewrite rules were applied to match the phonemes across corpora (i.e., all phonemes   that 

are thought to be the “same” across Catalan and Spanish, or English and Spanish, are represented using 

the same character). For instance, if the voiceless postalveolar affricate sound /ʧ/ of the English word 

much /mʌʧ/ was tagged using T, the same tag was used for the same sound present in the Spanish word 

chocolate /ʧoko’late/ but not for the Catalan voiceless alveolo-palatal affricate sound /tɕ/ from the word 

fletxa /fletɕə/ which was taged using a different symbol (such as X). 

Concatenation. An artificial bilingual corpus was necessary so as to control for language 

exposure, frequency of language switching, and any potential confounds (differences in lexical 

complexity, sentence length, etc.) Since language switching necessarily entailed switching to a 

different transcript, therefore disrupting the naturalness of the “conversation”, we decided to apply the 

exact same switching procedure to the monolingual corpora. The procedure was as follows. Imagine 

that there are 4 transcripts, 2 Catalan (utterances A and B) and 2 Spanish (utterances p and q).  In the 

1-sentence switch condition, we switch after each sentence, such that the resulting   corpora will be: 

AB (Catalan monolingual); pq (Spanish monolingual); and ApBq (Catalan-Spanish bilingual). As clear 

in the example, this results in a bilingual corpus that is double the size of the monolingual corpora. To 

remove a confound that would entail the assumption that a bilingual child hears twice as many 

utterances as a monolingual child, we divided the bilingual corpus into two, and considered only the 

first half. The characteristics of the three generated corpora are shown in Table 1. 
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To assess whether differences between algorithms and between conditions (monolingual, 

bilingual) were reliable, we divided each corpus into 10 equally-sized subparts. Although these 10 

subparts are not completely independent (since perhaps the same transcript contributes to the end   of 

one of the parts and the beginning of the other), they suffice to provide a minimum bound of variation. 

Any difference across conditions that is within this range of variation is not greater than the within-

corpus variation, and thus cannot be seen as meaningful. 

Table 1 

Properties of the Catalan “cat”, Spanish “spa”, English “eng”, and bilingual corpora. Utts indicates 

the number of utterances, PSWU the percentage of utterances that were single words, WPU  

indicates the mean number of words per utterance, Tokens and Types refer to words, and MATTR is 

Moving Average Type to Token Ratio (window size of 10 tokens). 

 

 Utts PSWU WPU Tokens Types MATTR 

cat-cat 29400 22 3.84 112836 5273 0.89 

spa-cat 29400 20 4.02 118205 7117 0.937 

spa-spa 29400 18 4.33 127286 6112 0.907 

eng-spa 29400 22 3.87 113916 6425 0.953 

eng-eng 29400 23 3.89 114374 3938 0.926 

 

Segmentation. Before describing the segmentation algorithms, we would like to reiterate that 

we do not want to convince readers that actual human infants are using one of these specific algorithms. 

Instead, our goal is to use computational algorithms to capture information that infants could plausibly 

capture as well. Therefore, algorithms presented here are representative of different approaches of 
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infant processing. The plausibility of the approaches (at large, rather than specific implementations) 

was discussed in the Introduction. Bernard and Cristia (2018) released an open source package that 

facilitates this kind of informational study of word segmentation properties.  We used this package for 

corpus preparation and segmentation. Fuller description of the algorithms and this package can be 

found in Bernard et al. (2020) We will report on results for 7 implemented algorithms (see Results 

section as well as Table 2 for a summary of the algorithms included in this work). Please note that each 

conceptual strategy could be implemented in a  myriad ways, and here we only show some of these 

implementations. We do this to make sure our conclusions about bilingual exposure are robust to the 

algorithm and not to argue for or against a given algorithm or implementation. 

Baselines. Following Lignos (2012), we incorporate two simple segmentation strategies: 

Consider every utterance as a word, and consider every syllable as a word. 

Lexical algorithm. We drew one algorithm from the class of lexical models, and more 

specifically from the Adaptor Grammar (AG) family (Goldwater et al., 2009; Johnson et al., 2007). 

The grammar we used is the simplest that can be represented in the context of word segmentation, and 

it contains two main rewrite rules (an Utterance is one or more Words; a Word is a sequence     of 

Basic units), in addition to rules that write out basic units (e.g., Basic unit is a-z, for phonemes, or the 

list of syllables, when using syllable as unit). This model is called “adaptor” because the system can 

learn specific instances of these rewrite rules. In our implementation, Word is the only unit that the 

model adapts from the input, meaning that in addition to this general rule there are also specific 

instances such as “dog is the sequence of phones d o g”. This means that, when provided with a 

sentence containing the sequence “dog”, the algorithm can try to model it as a sequence of phones by 

applying the general rules, or representing using the shortcut rule just described.  We used WordSeg’s 

AG with its default parameters. As a result, 2000 sweeps of the segmentation over the corpus were 

done 8 times, pruning sweeps to avoid overfitting. Each pass induces a lexicon, a list of word types 

paired with the frequencies of occurrence in the corpus. Next, these different lexicons are used to 

generate likely segmentations of the corpora. Finally, Minimum Bayes Risk is used to adjudicate 
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between alternative parses by finding the optimal set of rules. 

 

Table 2 

Summary of the segmentation algorithms included in this work by Name: “utt” utterance baseline, 

“syll” syllable baseline, “ag” Adaptor Grammar, “dibs” Diphone Based Segmentation, “tprel” 

transitional probabilities with relative threshold, “tpabs” transitional probabilities with absolute 

threshold. Type indicates the class of algorithm. Unit indicates how the corpus was unitized: “n/a” 

not applicable,”syll” boundaries can only be posited between syllables, “phon” boundaries can be 

posited between phones. 

Name Type Unit Description 
 

utt baseline n/a treat every utterance as a word syll baseline syll

 treat every syllable as a word 

ag lexical phon find the word forms optimal to generate the corpus dibs

 sublexical phon break up sequences if low phonotactics 

tprel sublexical syll break up sequences if local TP minimum 

tpabs sublexical syll break up sequences if TP lower than global TP  puddle hybrid

 phon break up sequences if known subsequence found and 

what remains respects phonotactics, memorize otherwise 

 

 

Sublexical algorithms. Two algorithms belong to the family of sub-lexical models. The first is 

the Diphone Based Segmentation, DiBS for short (Daland & Pierrehumbert, 2011). Among the three 

DiBS algorithms proposed by Daland (i.e., baseline-BiBS, phrasal-DiBS, lexical-DiBS), we selected 

the one that required the least amount of supervision, namely phrasal-DiBS. Over the   whole corpus, 

this version of DiBS calculates the general frequency of every phone bigram, as well as its frequency 

straddling a phrase boundary. The intuition behind this algorithm is: If most occurrences of this phone 
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sequence straddle a boundary, then it is likely that these two phones cannot occur together, and thus 

when they do, this probably signals that the first phone belongs to one word, and the other phone 

belongs to another word.  DiBS requires one more parameter to   make the final decision of whether 

to segment or not.  At present, this is one aspect of this    algorithm that requires supervision, as this 

threshold is set by establishing the true likelihood of a word boundary (defined as the number of 

boundaries divided by the number of phones). 

 

We sampled four implementations from the Transitional Probabilities (TP) family (Saksida et 

al., 2017). Both rely on forward transitional probabilities on syllables. In addition to the TP based on 

a relative threshold that is most commonly discussed in the context of laboratory experiments, we also 

consider a TP algorithm based on an absolute threshold. We explain each using the example “baby 

cookie,” and focusing on the potential word boundary between the syllables “by” and “coo”. For both 

algorithms, the forward TP for “by + coo” is FTP (by + coo) = frequency (by + coo)/frequency (by). 

Next, we must decide whether this FTP is low enough to warrant a boundary being placed between 

“by” and “coo”. For the relative case, we measure the FTP of each surrounding bigram (in this example, 

the FTP of “ba + by” and “coo + kie”), and we posit a boundary if both these FTPs are higher than that 

of the key bigram. For the absolute case, the threshold is the average FTP for all bigrams in the corpus. 

 

Hybrid algorithm. The last algorithm is hybrid because it incorporates strategies from both 

sublexically-driven and lexically-driven models. The Phonotactics from Utterances Determine 

Distributional Lexical Elements (Monaghan & Christiansen, 2010), PUDDLE for short, builds a word 

form lexicon while using local cues to decide whether a given boundary is posited or not. There are 

two long-term storage components: 1) a lexicon, and 2) a list of beginning and ending phoneme pairs, 

which are generated from the lexicon.  

The model creates the lexicon as follows. The model considers one utterance at a time. Taking 

the first utterance, PUDDLE searches through it, from left to right, testing whether there is a 
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subsequence in the utterance that is identical to any of the stored lexical items.  Naturally, this will   be 

false for the very first utterance in the corpus.  Every time no subsequence match is found, then the 

whole utterance is entered into the lexicon, with an activation level of 1 (meaning it has been seen 

once). The algorithm then considers the next utterance. Let us imagine that the next utterance contains 

the first utterance – for instance, if the first utterance was “doggy” and the second “look at the doggy”. 

In this case, there is a subsequence match. When this occurs, the system considers positing a boundary 

around that match – in this case: “look at the + doggy”. This break will be posited only if the resulting 

subparts respect the phonotactics the system has extracted.  To check this, the system extracts initial 

and final diphones of all items in the lexicon – in our example, “do” and “gy”.  The parse does not 

respect the learned phonotactics because “lo” and “the”, which are    the initial and final diphones of 

“look at the”, have not yet been observed.  So the system again   enters the whole utterance into the 

lexicon. Now, however, “lo” is a previously-observed diphone, which will eventually allow the system 

to potentially break up utterances starting with this diphone. Imagine that the next utterance is “doggy”. 

This does match an item in the lexicon, and thus the activation of “doggy” is increased by one. The 

process continues precisely in this manner, with  items being entered into the lexicon, and/or with their 

activation being increased, and initial and   final diphones being used to filter out candidate parses. 

As clear from this description, PUDDLE shares features with both lexical and sublexical models.  

While PUDDLE does not overtly optimise minimal reusable units the way that AG    systems do, it 

does store a lexicon and uses their frequency when parsing. Like sublexical models, PUDDLE takes 

into account coherence in statistical information of subword units. However, the specific function is 

quite different. For instance, whereas DiBS looks at the continuous frequency distribution of the phone 

preceding and following a potential break so as to divide a bigram, PUDDLE assesses whether the 

initial and final phone bigrams in a given parse have been observed. 

 

Evaluation. Previous work has used a variety of metrics. In the context of word  

segmentation, many have used a word versus partword forced choice task (e.g., French et al., 2011). 
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While this is useful to compare against infant experiments, our goal here is not to argue for or   against 

a given algorithm, but to describe how easily a corpus can be segmented given an     algorithm. In this 

context, it seems less informative to use a handful of words and constructed partwords than to actually 

evaluate the whole corpus for segmentation accuracy. 

 

Therefore, we adopt the Natural Language Processing/Speech Technology standard and use 

token recall and token precision (e.g., Ludusan et al., 2014). This is also the approach adopted by 

previous work that attempts to compare the overall segmentability of different registers (child- versus 

adult-directed speech, Cristia et al., 2019; Ludusan, Mazuka, Bernard, Cristia, & Dupoux, 2017), and 

different languages (Caines, Altmann-Richer, & Buttery, 2019; Loukatou et al., 2019, 2018), or simply 

evaluate proposed algorithms (e.g., Daland & Pierrehumbert, 2011; Goldwater et al., 2009; Phillips & 

Pearl, 2014). These scores are calculated by comparing the output string,  which contains hypothesized 

word breaks an algorithm supplies, against the original sentence containing word breaks. Token recall 

represents what proportion of words in the input were recovered (i.e., number of words found divided 

by total number of words in the input). Token precision is the number of correct word tokens found 

out by the algorithm, divided by the number  of word tokens hypothesized by the algorithm (i.e., what 

proportion of the algorithm words were real words). We multiply each by 100, in order to refer to it in 

percentage points rather than proportions. The scale in both scores goes from 0 = catastrophic 

segmentation, to 100 = perfect segmentation. 

For instance, imagine that the original sentence was “a dog eats another dog” (5 word tokens), 

and the system returns “a dog eats a no therdog” (6 word tokens).  There are 3 correct tokens (a, dog, 

eats), leading to a precision of 3/ 6 * 100 = 40% and a recall of 3/ 5 * 100 = 50%. 

Based on token precision and recall, we can derive an F-score as the harmonic mean of the other 

two: 2*(precision*recall/(precision+recall)). F-score goes from 0 to 100%, with higher scores 

indicating better segmentation. For instance, in the example above, it is 2 * (40 * 50 / (40 + 50)) = 

44.44%. This represents overall performance concisely, but does not capture potential precision-recall 



MODELING BILINGUAL WORD SEGMENTATION – Preprint 29  

trade-offs. 

Except for PUDDLE, none of the algorithms has a “learning curve”. That is, provided with a 

corpus, they can process the whole corpus and return it containing hypothesized breaks, with no 

difference in performance for the beginning of the corpus compared to the end of the corpus. As a 

result, we can evaluate them on the whole corpus.  PUDDLE, however, does learn over the course   of 

exposure.  To represent its performance at the end of the learning period, we run the algorithm five 

times. The first time, we present it with the corpus exactly as it is, and calculate precision and recall in 

the final 20% of utterances.  We then take this final section, and move it to the beginning   of the 

corpus, and then repeat the learning and evaluation, now evaluating on what originally was   the 60-

80% section of the corpus. This process is repeated three more times, resulting in an evaluation of the 

whole corpus, with the level of performance achieved when 80% of the corpus    has been seen. This 

means PUDDLE has seen less of the corpus than the other algorithms. However, our goal here is not 

to compare the algorithms to each other, but rather we use multiple algorithms to assess the impact of 

algorithm choice on performance, and to check how different algorithms fare with bilingual as opposed 

to monolingual input. Therefore, we have prioritized comparability with previous work using 

WordSeg, which has always performed evaluation in this way, rather than changing the evaluation to 

occur based on holding out 20% of the dataset. We underline that this is not a problem because effects 

on performance by this extra experience are minimal (in the online Supplementary Materials, Section 

C shows that there are barely any differences when doing so versus the evaluation used here, Fibla & 

Cristia, 2019). 

 
Results 

 

A first analysis checked for an effect of switching frequency, i.e., whether we changed transcript 

every sentence or every 100 utterances. A paired t-test on token F-scores revealed no difference 

between the two, both when considering all corpora together [t(34) = -1.26, p = 0.22] and when testing 
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specifically the bilingual corpora [t(13) = -0.60, p = 0.56]. Henceforth, we focus on corpora put 

together by switching every sentence (see Table 3 for Token Precision and Recall). Section A of the 

online Supplementary Materials (Anonymized, 2019) provides more information on this. 

 

Table 3. Token Precision and Recall for the 7 algorithms, in the 5 language conditions. The 

acronyms stand for “eng” English, “spa” Spanish, “cat” Catalan, “utt” utterance baseline, “syll” 

syllable baseline, “ag” Adaptor Grammar, “dibs” Diphone Based Segmentation, “tpabs” transitional 

probabilities with absolute threshold, “tprel” transitional probabilities with relative threshold. Only 

the performance switching every utterance is shown, with overall length matched across the 

monolingual and the bilingual conditions. 

 
Precision Recall 

eng_eng eng_spa spa_spa spa_cat cat_cat eng_eng eng_spa spa_spa spa_cat cat_cat 

utt 23 6 22 6 18 4 20 5 22 6 

syll 68 82 46 66 32 52 36 56 40 61 

ag 67 53 63 59 61 61 63 63 67 65 

dibs 47 31 40 24 46 32 43 29 40 28 

tpabs 71 60 54 56 45 48 47 55 57 60 

tprel 43 25 42 28 41 30 40 29 44 31 

puddle 54 65 36 51 28 44 32 47 40 53 

 

Figure 3 shows performance for the different algorithms in terms of F-score (for figures 

separating precision and recall and algorithms, please refer to section D of the online Supplementary 

Materials; Fibla & Cristia, 2019). The error bars indicate 2 standard deviations across the ten subparts. 

If there is no overlap in these bars across two observations, we will say that they differ “significantly”.  

This word is thus not used in the sense of null hypothesis testing, but rather   to indicate that the 

difference is greater than what might be seen due to a conservative measure of within-corpus noise. 
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That is, if two such intervals overlap, we can be certain that the difference in performance is not 

meaningful.  The opposite, however, does not follow:  Since our measure of noise is conservative, it 

could still happen that that two intervals do not overlap here, but are actually not meaningful with other 

noise estimations. 

 

 

 
 

Figure 3. Token F-scores per algorithm (see Table 1 for acronym explanation) and corpus: pink “e” 

for English, brown “es” for English-Spanish, blue “s” for Spanish, green “sc” for Spanish-Catalan, 

gold “c” for Catalan. Error bars indicate 2 standard deviations over 10 subparts of the relevant corpus. 

The most salient result on Figure 3 is probably that there are marked differences in performance 

across the algorithms, with a maximum F-score difference of 52.45. This has been observed in much 

previous work (e.g., Cristia et al., 2019; Larsen, Cristia, & Dupoux, 2017; Ludusan et al., 2017), but it 

is interesting to bear this in mind when inspecting the size of the effect  of other factors, so we describe 

their behavior in some detail. The range of performance is nearly bounded by our two baseline 
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algorithms, with the strategy of considering every utterance a word doing poorest (median F-score 

8.91), and the strategy of considering each syllable as a word doing quite well (median F-score 48.52). 

Although we had expected the syllable-as-word strategy to do well in English child-directed speech, 

we were surprised by the Spanish and Catalan, two languages in which linguistic descriptions do not 

suggest a necessary and strong alignment between syllable boundaries and word boundaries. Our 

results additionally suggest that, for three languages and two bilingual settings, sublexical approaches 

do allow a learner to find some words, but they also segment out items that are not words (low 

precision), and other words (low recall), resulting in intermediate F scores. An exception concerns the 

strategy using transitional probabilities between syllables with an absolute threshold (median F-score 

54.78), which actually achieves much higher F-scores than the other sublexical approaches (DiBS 

median F-score 34.95; TP-rel median F-score 34.07). The hybrid algorithm achieved a level of 

performance similar to that of the sublexical algorihtms (median F-score 42.33). Better results are 

found with AG (median F-score 61.36), which is similar in performance to the syllable baseline, albeit 

with lower cross-language variability. 

Next, we focus on the comparison among monolingual corpora, to determine whether the three 

monolingual corpora were equally easy or hard to segment. For ease of expression, we refer to the 

corpora on the basis of the language, but we remind readers that they could also vary on other 

characteristics by chance (e.g., the corpus producers’ definition of when utterances end). Differences 

across monolingual corpora were sizable. Between Catalan and Spanish, the median difference (i.e., 

subtracting the Spanish score from the Catalan score within each algorithm separately) was 5.40% in 

precision, and 3.30% in recall, for an overall 4.34% difference in F-scores. Between English and 

Spanish, the median difference (i.e., subtracting the Spanish score from the English score withineach 

algorithm separately) across algorithms was 5.87% in precision, and 1.76% in recall, for an overall 

2.65% difference in F-scores. Overall, higher scores were obtained for Catalan and English than 

Spanish, and often significantly so. The only exception was DiBS, where Spanish scores are higher 

than those for Catalan (but not those for English) and TP-rel, where the trend is reversed, with higher 

scores for Spanish than Catalan. 
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Finally, we turn to our key research question. We had predicted that, if there is a bilingual 

disadvantage, then scores for the bilingual corpus should be below both of the matching monolingual 

corpora. In fact, this nearly never happens, as each bilingual corpus yields scores that are in between 

those of the corresponding monolingual corpora There is only one exception to this general pattern 

(see Supplementary Materials, section D, for analyses separating precision and  recall, as well as 

separating algorithms): DiBS for the English-Spanish bilingual corpus was lower than those for both 

English and Spanish monolingual, but with overlapping errors. In fact, if we calculate difference scores 

between two monolingual corpora and their corresponding bilingual corpus, the median difference 

across algorithms for the Catalan-Spanish case (i.e., subtracting the Spanish-Catalan score from the 

Catalan score and the Spanish score within each algorithm separately) was 1.56% in precision, 0.85% 

in recall, and 1.07% in F-scores. For the English-Spanish case, the median differences (i.e., subtracting 

the Spanish-English score from the English and the Spanish scores within each algorithm separately) 

were 1.00% in precision, 1.41% in recall, and 0.42% in F-scores. Notice incidentally that these 

differences are smaller than both algorithm and corpora differences discussed previously. 

 
Discussion 

 

We set out to establish if word segmentation was necessarily degraded by bilingual exposure 

compared to monolingual matched exposure, or whether several segmentation models were robust to 

language switching. Following the confusion hypothesis, we had expected degradation to show up as 

scores for the bilingual corpus that were below scores for both of the corresponding monolingual 

corpora. Based on two bilingual corpora, we can clearly declare that this prediction  does not bear out: 

It is nearly never the case that the bilingual corpora scores are below both of the monolingual ones, 

with the median difference being only about 0.68% in F-scores. Importantly, these results ensued 

regardless of the degree of similarity between the languages combined in a bilingual corpus. 

Further inspection of results revealed that the most important source of variance was algorithm, 

with the second most important source being language (or corpus) differences. Regarding the algorithm 
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effect, we remind readers that the purpose of the present study was not to argue for or against a given 

algorithm, as it is an open question whether infants use some or all of them. Instead, we sampled from 

all relevant types to make sure that our conclusions were stable along this dimension, over which we 

have no real control. Similarly, differences across the monolingual corpora may reflect language 

differences, but could also be due to corpora differences (in e.g., the definition of utterance boundaries). 

What is crucial is the following: Over the backdrop of algorithmic, cross-linguistic, and corpora 

variability, we can confidently state that the bilingual effect is smaller than all of these effects. 

How generalizable may results be? In a nutshell, we found that bilingual exposure did not 

have a massive negative effect on word segmentation. Some readers may wonder, what would results 

be if we had assumed that infants knew they were learning more than one language, and were able to 

discriminate between them? 

To answer this question, we can first refer to the current state-of-the-art knowledge on whether 

bilingual infants discriminate the two languages they are exposed to. Some of this research shows that 

infants (prenatally) exposed to bilingual input do sometimes discriminate their two languages. For 

example, Byers-Heinlein, Burns, and Werker (2010) showed that newborns prenatally exposed to two 

very different languages (English and Tagalog) have no difficulties in differentiating the two 

languages. Although to the best of our knowledge no research has investigated language differentiation 

in newborns prenatally exposed to Spanish and English, it is likely that these two languages can be 

differentiated at birth too. However, it is possible that some language pairs may not be discriminable 

by birth. No study has tested Spanish-Catalan discrimination in newborns (prenatally) exposed to both 

of these languages, but previous data suggests they may not be discriminated at birth (see Carbajal, 

Fér, & Dupoux, 2016 for relevant modeling results). Moreover, bilingual language exposure does not 

affect language discrimination abilities, since bilingual young infants show language differentiation 

capacities that are similar to those reported in monolingually-exposed infants across ages and language 

pairs that are more   versus less similar (e.g., Byers-Heinlein et al., 2010: English/Tagalog newborns; 

Molnar, Gervain, & Carreiras, 2014: Basque/Spanish 3.5 month-olds; Zacharachi & Sebastian-Galles, 
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2021: Spanish/Catalan 4-5 month-olds). That said, some evidence suggests that monolinguals and 

bilinguals may differentiate languages using different mechanisms (Bosch & Sebastian-Galles, 1997; 

Garcia, Guerrero-Mosquera, Colomer, & Sebastian-Galles, 2018: Spanish-Catalan 4-5 month-olds). In 

sum, the two language pairs we used in our study are likely to represent two quite different starting 

points in bilingual language learning, one in which discrimination is possible in human newborns, and 

the other in which (at least based on current research) it is not affected. Thus, a first response to this 

question is that our approach is reasonable because some bilingual infants do not discriminate their 

two languages, at least early on. 

As a second step, we approach the question logically: We found an unstable and minute 

difference between bilingual and monolingual exposure. Being able to discriminate the languages 

would have made the task, if anything, more similar to that of the monolinguals. But given that the 

difference between bilingual and monolingual artificial learners we observe is already negligible, any 

modeling effort that further attempts to assume language separation is bound to find exactly the same 

we already found. The opposite argument can also be made: If successful word segmentation crucially 

depended on initial language segregation, then a model that does not segregate should fail and show 

big differences between monolingual and bilingual model learners. Since we do not observe significant 

differences between monolingual and bilingual artificial learners (neither based on the language pair 

they are learning), perfect language segregation might not be essential for good segmentation. Thus, 

the results of our research provide important insights into the rather unexplored issue of how bilinguals 

start to build their two lexicons: If human infants exploit information similarly to our model learners, 

successful word segmentation does not depend crucially on initial language segregation. 

Similarly, some readers may worry about the fact that our text-based representation does away 

with prosody, which may cue infants as to which language is being used in each sentence. Our 

reasoning was similar: Had we “told” the models that each sentence had one or the other rhythm, then 

it would have been trivial if the bilingual model had performed comparably to the monolingual ones. 

Our two design choices (not “telling” our model learners that there were two languages, and not 
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providing them with prosody) made the problem more difficult for our models than what a human 

bilingual infant may expect. Indeed, bilingual infants may sometimes have additional cues, not only 

prosodic differences between the languages, but also contextual cues, whereby each language is used 

by a different set of talkers, at a different time or place, and/or when engaging in different routines. 

Our results show that, even without these additional cues, the informational cost of bilingual exposure 

is smaller than cross-linguistic or cross-corpora differences in word segmentation. 

Limitations and future directions. We see three main directions that we expect future 

research will engage in. First, one aspect of our results that we have not discussed in detail pertains to 

the fact that there were no differences between switching at every sentence, rather than every    100 

utterances. This may relate to the fact that many of our algorithms capture information, rather than 

modeling in precise terms the process of segmentation actual infants may have.  Specifically, we expect 

that models which rely on very local word repetition (for instance by instantiating strong memory and 

salience constraints) will be more sensitive to the structure of conversations. In addition to exploring 

other algorithms, future studies could create corpora with other conditions not explored here, notably 

switching within utterances (including within words). We expect both sublexical and lexical 

approaches to suffer to a greater extent when switches can occur in these domains, but this is something 

that may be difficult to study in as controlled a manner as we have used here. A more tractable 

extension involves incorporating accented speakers, via phonological rewrite rules. 

Second, some readers may feel that our choice of text-based modeling renders these studies 

implausible. Other computational modelers have argued that, since laboratory experiments show 

infants can access a given cue, then a model based on the cue is indirectly shown to be cognitively 

relevant (a line of argument pursued, for instance, by Daland & Pierrehumbert, 2011; and Phillips    & 

Pearl, 2014), and furthermore, recent research has added some more direct evidence for the relevance 

of text-based computational models through correlations with infants’ early lexicon (Larsen et al., 

2017) and experimental results (Ngon et al., 2013). While more such evidence would be welcome, 

computational models constitute an implementation of hypothesized algorithms, and can thus be used 
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to provide proofs of concept. 

Nonetheless, one may still argue that orthographic transcriptions do not capture the richness   of 

the input that children hear, and thus a future direction may involve exploring monolingual and 

bilingual segmentation when finer grained details are considered. We think this is interesting in theory, 

as, for instance, it would get around the choice of whether phones or syllables are used as input. 

However, we think this will not work in practice, since there are several stumbling blocks standing in 

the way of using word segmentation models from the raw acoustic signal. The first and most salient 

one is that such models are greatly under-developed, and perform extremely poorly even with high 

quality recordings (Ludusan et al., 2014). Second, for the study of bilingual acquisition, controlling the 

input will be a lot more difficult. We would need to control for variables such as the number of speakers 

and the background noise, since current-day acoustic representations cannot abstract from such details 

the way humans do. An alternative may be to continue to use phonological transcriptions, which allow 

us to control for low-level variables, while implementing aspects that are of interest. For instance, one 

could simulate accented speech by incorporating sound mergers in certain talkers but not others. 

Third, the most pressing avenue for research in modeling word segmentation involves studying 

more diverse languages (in the wake of Loukatou et al., 2019). Current evidence suggests sizable 

differences across languages, and this although only a tiny fraction of the world’s languages have been 

investigated. Similarly, it is unclear to what extent our results on bilingual language acquisition would 

generalize to languages that are more different. After all, all three languages studied here are Indo-

European and therefore share many typological features.  It would therefore    be interesting to explore 

combinations that are likely to trick current word segmentation algorithms. For instance, we believe a 

combination such as Mandarin Chinese and Sesotho could be confusing because morphemes tend to 

be monosyllabic in the former but polysyllabic in the latter, and all syllables are simple in both 

languages. This should lead to a high level of ambiguity, with any polysyllabic sequence being 

ambiguous between a series of Mandarin words or a single Sesotho word.  Combined with the rich, 

multilingual transcriptions of child-surrounding speech available  from CHILDES (MacWhinney, 
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2009), the existence of an open-source, multi-platform, and easy to use word segmentation system 

(Wordseg; Bernard & Cristia, 2018) should greatly facilitate such extensions. 

 
Conclusions 

 
This was the first paper to investigate bilingual word segmentation using computational 

modeling, an important tool to complement human infant research. Several simulations employed 

naturalistic corpora of child input to generate well-matched monolingual and bilingual corpora, which 

we then segmented with diverse cognitively-inspired algorithms. These simulations show that the 

bilingual cost in infant word segmentation is smaller than the difference found across languages, which 

was in its stead smaller than that found across algorithms. We invite extensions exploring more diverse 

languages and language combinations, and additionally modeling other aspects of bilingual experience, 

in particular within-utterance switching. 
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