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Understanding how rivers adjust to the sediment load they carry is
critical to predicting the evolution of landscapes. Presently, how-
ever, no physically based model reliably captures the dependence of
basic river properties, such as its shape or slope, on the discharge
of sediment, even in the simple case of laboratory rivers. Here, we
show how the balance between fluid stress and gravity acting on the
sediment grains, along with cross-stream diffusion of sediment, de-
termines the shape and sediment flux profile of laminar laboratory
rivers which carry sediment as bedload. Using this model, which
reliably reproduces the experiments without any tuning, we confirm
the hypothesis, originally proposed by Parker (1), that rivers are re-
stricted to exist close to the threshold of sediment motion (within
about 20%). This limit is set by the fluid-sediment interaction and
is independent of the water and sediment load carried by the river.
Thus, as the total sediment discharge increases, the intensity of sed-
iment flux (sediment discharge per unit width) in a river saturates,
and the river can only transport more sediment by widening. In this
large discharge regime, the cross-stream diffusion of momentum in
the flow permits sediment transport. Conversely, in the weak trans-
port regime, the transported sediment concentrates around the river
center without significantly altering the river shape. If this theory
holds for natural rivers, the aspect ratio of a river could become a
proxy for sediment discharge — a quantity notoriously difficult to
measure in the field.
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F lowing from mountains to oceans, rivers traverse immense1

distances across the land, eroding, transporting, and de-2

positing sediment along the way, thereby shaping much of the3

landscape we see on Earth (2–5). However, a precise under-4

standing of how rivers adjust their shape to the amounts of5

sediment and water they transport is lacking. This is partly6

due to the difficulty of collecting sediment flux measurements7

in the field, and partly due to the complicated coupling be-8

tween the flow and the sediment bed.9

In rivers that carry a small amount of sediment, sediment10

grains are typically close to their threshold of motion — below11

this threshold, any sediment carried by a river would be de-12

posited, building the river bed until it eventually reaches the13

threshold, while, above the threshold, uncompensated erosion14

of the bed would quickly bring the river back to the threshold15

(6). For this reason, early theories were formulated for inert16

rivers (rivers that do not transport sediment) and assumed17

that such rivers construct their own bed so that the grains on18

the bed surface are exactly at the threshold of motion (7–10).19

Under this assumption, they showed that the shape of the20

river channel is independent of its water discharge, which can21

only affect the size of the river. This threshold theory accounts22

for the observation that the width of rivers increases as the23

square root of their discharge, an empirical correlation known24

as Lacey’s law (10, 11).25

In active rivers (those that transport sediment), sediment26

transport is driven only by a small departure of the shear 27

stress from its threshold value (5, 9). The minuteness of this 28

departure makes the study of active rivers challenging. It 29

means that, to find the sediment flux, one needs to measure 30

or calculate the stress with high precision — simple order-of- 31

magnitude estimates are not sufficient (12). This is a daunting 32

task, since the stress sensitively depends on the river shape, 33

which, in turn, adjusts to the stress distribution. 34

Parker (1) first addressed the question of active rivers with 35

a model in which a turbulent river splits into inert banks 36

and a flat, active bottom. He found that the cross-stream 37

diffusion of momentum, which distributes stress from faster 38

flowing regions to slower ones, is essential to enable sediment 39

transport in a stable river channel. His model qualitatively 40

agreed with real rivers — he found that the stress on the river 41

bed is at most about 20% above critical, which limits the 42

intensity of sediment transport. It is, however, unclear why a 43

river should sharply split into inert banks and a flat bottom, 44

as required by Parker’s model. Moreover, it is unclear how a 45

river transitions from an inert, threshold channel to a singular 46

configuration of Parker as its sediment discharge increases. 47

Since field measurements are difficult, a good place to test 48

our understanding of rivers is the laboratory (13). However, 49

even laboratory investigations have been a challenge in them- 50

selves (14–16) — stable single-thread rivers were only recently 51

produced in a laboratory setting (17–19). Nevertheless, these 52

experiments have been enlightening — by focusing on straight, 53

laminar, stationary rivers, they presented strong support for 54

the threshold hypothesis of inert rivers. So far, however, they 55

have not been compared to Parker’s theory for active rivers. 56

Another key insight that arose from experiments is that the 57

grains that are carried as bedload (i.e. that are dragged along 58
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the river bed) (20) diffuse laterally by randomly hitting other59

grains on the bed surface along their way (21, 22). In analogy60

with a gas placed in a gravitational field, the balance between61

gravity and diffusion distributes the transported grains over the62

bed so that the concentration of moving grains exponentially63

falls off with increasing elevation above the channel centerline64

(22). This Boltzmann distribution of the moving grains relates65

the sediment flux to the shape of the river. The role of sediment66

diffusion was recognized early in rivers that transport their67

sediment in suspension (23), but these experiments have shown68

that this mechanism also applies to bedload transport.69

In this paper, we use the experiments of Abramian et al.70

(19) (section 1) to understand what sets the channel shape of71

active rivers. In our theory, the above mechanisms combine72

to shape the river — the shape of the channel determines73

the stress, the stress determines the sediment flux, while the74

Boltzmann distribution relates the sediment flux back to the75

shape (section 2). In equilibrium, these mechanisms are all76

coupled together, and their simultaneous coexistence deter-77

mines a unique river channel for given discharges of water and78

sediment (assuming the channel is straight and single-thread).79

Therefore, the problem can be solved self-consistently, at least80

in principle. However, this problem is difficult since the fluid81

stress anywhere on the bed depends on the entire shape of the82

river.83

We bypass this issue by simplifying the equation for the84

fluid stress, assuming that the aspect ratio of a river (ratio85

of width to depth) is large (section 3). We then formulate a86

model for the steady-state shape of a straight, laminar river87

with bedload transport by using this minimal representation88

for the stress, and including the Boltzmann distribution for89

the moving grain density. This model takes the form of a90

second-order boundary value problem (BVP) which can be91

analyzed numerically (section 4) and analytically (section 5).92

We note that this is a well defined problem only for a river in93

equilibrium (steady-state), so that it does not answer how the94

river reaches this equilibrium.95

In the limit of large water and sediment discharge, the96

river in our model splits into inert banks and a flat active97

bottom, exactly as prescribed in Parker’s (1) model. We, thus,98

show how Parker’s (1) model arises as a limit of our theory.99

We call this limit the “Parker regime” (section 6), and we100

define a condition for reaching it. Like Parker (1), we find101

that laminar rivers cannot exist far from the threshold of102

sediment motion and, thus, cannot accommodate a sediment103

flux (discharge per unit width) larger than a maximum. We104

find that this maximum depends only on the friction coefficient105

of the sediment, µt. Since the sediment flux is bounded, a106

river in the Parker regime has to widen to accommodate a107

larger sediment discharge. Moreover, we find that momentum108

diffusion in the flow plays a key role in sediment transport.109

We compare our results with laboratory experiments and110

find good agreement without any tuning. In this way, for111

the first time, we provide support for Parker’s hypothesis112

in a controlled setting. However, we also discover another113

qualitatively different regime, which applies to rivers with large114

water but small sediment discharge. In this “weak transport115

regime” (section 7), sediment transport relies on the diffusion116

of sediment, and a higher load is accommodated by increasing117

the sediment flux without altering the shape of the river which118

carries it.119
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Fig. 1. (a) Experimental setup of Abramian et al. (19). (b) Photograph of the sediment
bed taken with the overhead camera. Brown lines represent trajectories of tracked
grains.

In both theory and experiments, we find that the aspect 120

ratio of a river strongly depends on its sediment discharge. 121

This suggests that, in the field, the shape of the river could be 122

used as a proxy for its sediment load. To verify this, however, 123

our theory would have to be adapted for turbulent flows — a 124

task we leave for the future. 125

We also leave the mathematical details, tables for exper- 126

imental runs, and other results that are not necessary to 127

understand the main points of the paper to the Supplementary 128

Information (SI). 129

1. Experiments 130

In this section, we briefly describe the experiments of Abramian 131

et al. (19), which inspired the present theory. A schematic 132

and a photograph of the experiment are shown in Fig. 1, and 133

experimental parameters are summarized in Table S1 of the 134

SI. 135

The setup consisted of an inclined tank, 190 cm× 90 cm× 136

10 cm in size, filled with plastic sediment made up of grains of 137

diameter ds = 0.83± 0.2 mm and density ρs = 1490 kg m−3. 138

At the inlet, a mixture of water and glycerol was pumped 139
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Fig. 2. (a) and (b) River cross-sections from the experiments of Abramian et al. (19) (brown line) and the present model (blue lines). Aspect ratio is preserved. (c) and (d)
Corresponding sediment flux profiles, qs(y), for the experiments (red lines) and our model (blue lines). Panels on the left ((a) and (c)) correspond to an inert river (no sediment
discharge, Qs = 0), while the right panels ((b) and (d)) correspond to an active one (sediment discharge Qs ≈ 44 grains s−1). The transport width, WT = Qs/〈qs〉, with
〈qs〉 given by Eq. 1, as well as the maximum sediment flux, qs,max, are marked with arrows in panel (d). The downstream slope, S, could not be measured accurately, but it is
approximately S ≈ 0.005 for the inert river and S ≈ 0.01 for the active one.

into the tank, at a discharge Qw ≈ 1 l min−1, which was kept140

as constant as possible during all experimental runs. The141

density and viscosity of the fluid were ρf = 1160± 5 kg m−3
142

and ν = 10−5 m2 s−1. The high fluid viscosity, achieved by143

adding glycerol to the mixture, kept the fluid flow laminar (the144

Reynolds number remained below about 10 in all experiments).145

The fluid found its way to the outlet at the opposite end of the146

tank, meanwhile carving its own channel through the sediment.147

Additionally, dry sediment was injected into the system at148

a prescribed rate, Qs. Abramian et al. (19) performed 5149

experimental runs in which they varied the sediment discharge150

between 0 and 60 grains s−1.151

A typical river forms as follows. First, the experiment152

goes through a transient during which the fluid erodes more153

sediment than is injected at the inlet. At this stage, a sin-154

gle channel of width W ∼ 5 cm quickly forms, whose down-155

stream slope, S, slowly changes over time until it reaches156

steady-state at S ∼ 0.01. The duration of this transient, T ,157

roughly corresponds to the time to build a sediment channel158

of constant slope, S, and width, W , over the entire length159

of the tank, L ∼ 2 m, by exchanging sediment at a rate160

Qs ∼ 100 grains s−1 with the bed. A simple scaling analysis161

yields T ∼ L2WS/(d3
sQs) ∼ 5 h, consistent with typical tran-162

sients in the experiments. The exact duration of the transient163

depends on the initial setup of the experiment and can be164

shortened by, for example, setting the initial inclination of the165

tank close to the steady-state slope of the river. After reaching166

steady-state, the river transports as much sediment along its167

bed as is delivered by the sediment feeder. Sediment travels as168

bedload — grains roll, slip, and bounce on the sediment bed.169

The river channel typically appears to be roughly straight170

with only minor sinuosity, and, once formed, it does not move171

significantly. Moreover, the steady-state river is insensitive172

to the initial setup of the experiment — it selects its own173

width, W , depth, Dmax, and downstream slope, S, regardless 174

of the initial conditions. Beyond a certain value of sediment 175

discharge (about Qs ≈ 90 grains s−1), the channel destabilizes 176

into intertwined threads that form a braided river. The range 177

of Qs explored in these experiments covered the entire range 178

of sediment discharge for which a stable single-thread river 179

can form. 180

To characterize the shape of these experimental rivers, 181

Abramian et al. (19) measured the sediment bed elevation 182

along a cross-section with a laser sheet. They constantly 183

monitored the river using an overhead camera, and tracked 184

the trajectories of moving colored grains, which allowed them 185

to measure the profile of sediment flux, qs, across the river (to 186

avoid possible confusion, we emphasize here that the sediment 187

discharge, Qs, is the integral of the sediment flux, qs, over 188

the cross-section of the river). We show two rivers and their 189

sediment flux profiles in Fig. 2; profiles for the other runs 190

are shown in Fig. S1 and their properties are summarized 191

in Table S2 of the SI. Most sediment concentrates near the 192

channel center over a well-defined bed section of widthWT . We 193

define this transport width, WT , as the width that relates the 194

sediment discharge and the mean sediment flux, Qs = WT 〈qs〉. 195

To make WT a robust quantity resistant to experimental noise, 196

we define 〈qs〉 to be the average sediment flux over a probability 197

density function qs/Qs, so that 198

〈qs〉 ≡
1
Qs

∫ W/2

−W/2
q2
s(y)dy . [1]

Figure 3 and Fig. S2 of the SI illustrate how the characteristics 199

of laboratory rivers change as the sediment discharge, Qs, 200

increases: the rivers become wider, shallower, steeper, and 201

transport sediment more intensely. 202
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Fig. 3. River properties as a function of
the sediment discharge, Qs, normalized
by the characteristic discharge, Q∗

s ≈
74 grains s−1, given by Eq. 23. Red dots
represent the experiments (error bars esti-
mated in SI section S1). Blue lines rep-
resent the numerical solutions to Eq. 13
using the experimental parameters (see Ta-
ble S1 of the SI). Light blue shading corre-
sponds to the uncertainty in the parameter
estimates (Table S1 of the SI). The numeri-
cal solutions transition from the weak trans-
port regime (black dotted line) to the Parker
regime (black dashed line) when Qs ∼
Qs,t ≈ 8.6 grains s−1 (Eq. 29). (a) River
aspect aspect ratio, W/Dmax. The weak
transport regime assumes a fixed bed shape
so the aspect ratio is constant. (b) Down-
stream slope, S. The slope is too small for
direct measurement. As in panel (a), the fixed
bed shape in the weak transport regime leads
to a constant slope, while the Parker regime
follows from Eq. 24. (c) Normalized maxi-
mum sediment flux, qs,max/qµ, where qµ is
the prefactor of the sediment transport law
(Eq. 7). The weak transport regime corre-
sponds to Eq. 27 while the Parker regime
corresponds to Eq. 19. (d) Transport width,
WT ≡ Qs/〈qs〉, normalized by the total
width, W . The weak transport regime corre-
sponds to Eq. 28, while the Parker regime
follows from Eqs. 19, 20, and 24.

2. The mechanisms that shape a river203

Keeping in mind the rivers of Abramian et al. (19), the goal204

of the present paper is to understand how an active laminar205

river adapts its own depth and sediment flux profiles, D(y)206

and qs(y), to the fluid and sediment discharges, Qw and Qs,207

it carries. In this section, we will start by reviewing the208

equations which govern the flow and the transport of sediment209

in such a river. Throughout the paper, x will represent the210

downstream, y the cross-stream, and z the vertical coordinate,211

measured with respect to the surface of the river (Fig. 2a).212

We restrict our attention to a straight river that is uniform213

in the x-direction. Accordingly, we only need to consider its214

cross-section in the (y, z) plane.215

Stokes flow. In a straight river, the flow is forced by gravity216

that pushes the fluid down a slope, S. This slope is usually very217

small (for the experiments of Abramian et al. (19), S ∼ 0.01).218

The laminar flow in such a river obeys the Stokes equation219

ν∆u = −gS , [2]

where u is the downstream component of the velocity, g =220

9.81 m s−2 is the gravitational acceleration, S is the slope221

in the downstream (x) direction, and ∆ ≡ ∂2

∂y2 + ∂2

∂z2 is the222

Laplacian operator in the (y, z) plane. The boundary condi-223

tions are that the velocity vanishes on the bed (u = 0 when224

z = −D) and that there is no shear stress on the free surface225

(∂u/∂z = 0 when z = 0).226

The term gS in Eq. 2 is the force driving the fluid flow. In227

the experiments, the slope is not prescribed a priori. Instead,228

the river selects it while forming its own bed. It depends on229

the river’s discharges and we cannot prescribe it arbitrarily. 230

Importantly, the Stokes flow is scale-invariant — the flow in 231

two channels of a different size but the same shape looks the 232

same, and one can find one from the other by simple rescaling 233

of lengths and velocity. 234

If we can find the velocity in the channel by using Eq. 2, we 235

can also get the stress, τ , shearing the bed surface. This stress 236

is proportional to the gradient of u in the direction normal to 237

the bed surface, with the dynamic viscosity, ρfν, acting as a 238

constant of proportionality. To get an idea of how the stress 239

depends on the channel shape, we integrate Stokes law, Eq. 2, 240

along the vertical direction, and find an equation for τ : 241

τ =
(
ρfgSD + ρfν(ūD)′′

)
cosφ , [3]

ū ≡ 1
D

∫ 0

−D
udz , [4]

where primes denote y-derivatives, ū is the vertically averaged 242

flow velocity, and φ is the angle between the vector normal to 243

the bed’s surface and the vertical (see SI section S2.1 for a de- 244

tailed derivation). Equation 3 follows without approximation 245

from the Stokes equation. The first term of Eq. 3, ρfgSD, 246

is simply proportional to the weight of the water column. It 247

corresponds to the stress that the fluid would exert on a per- 248

fectly flat surface. It ignores the transfer of momentum across 249

stream and we will call it the “shallow-water component”, in 250

reference to the celebrated shallow-water approximation. The 251

second term, ρfν(ūD)′′, accounts for the viscous transfer of 252

momentum across the stream (along y), and we will call it 253

the “momentum diffusion component”. Finally, the term cosφ 254

accounts for the orientation of the bed surface. Equation 3 255
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is not closed — in order to find τ , we still need to solve the256

Stokes equation for u to get the vertically averaged velocity, ū.257

Since we hope to bypass the solution of the Stokes equation,258

Eq. 3 is not very useful in its present form; we will, however,259

close it by assuming the river is much wider than it is deep260

(section 3).261

Sediment transport. If the forces acting to dislodge sediment262

grains are too weak, the grains remain trapped on the river263

bed, and there is no sediment transport (24). The existence of264

this threshold force is an instance of Coulomb’s law of friction265

(17).266

On a flat bed, the fluid acts tangentially to the bed surface,267

dislodging the grains, while gravity acts normally, anchoring268

the grains to the bed. In such a case, the sediment flux depends269

on the so-called Shields parameter, θ, which is proportional270

to the ratio Ff/Fg of the fluid force acting on a single grain,271

Ff ∝ τd2
s, and the grain’s weight, Fg ∝ (ρs − ρf )gd3

s (24):272

θ ≡ τ

(ρs − ρf )gds
. [5]

The onset of sediment transport is a complicated phenomenon273

under active investigation (25–27). However, a simple repre-274

sentation of sediment transport is to assume that on a flat bed,275

there exists a threshold Shields parameter, θt, below which276

there is no sediment transport, while for small deviations above277

this threshold, the sediment flux, qs, increases linearly with278

the distance to the threshold (28),279

qs = q0(θ − θt) for θ > θt . [6]

The values of θt and q0 can be directly measured in experiments.280

The pre-factor q0 is of the order of the ratio of the velocity,281

vs, of a moving grain to its area, d2
s — q0 ∝ vs/d

2
s, where282

vs is proportional to the Stokes settling velocity, vs ∝ (ρs −283

ρf )d2
sg/ρfν (29, 30).284

On a rounded bed (as in Figs. 2a and b), we cannot simply285

use the Shields parameter as a criterion for grain motion, since286

gravity has both a normal and a tangential component with287

respect to the bed surface. Grains in such a configuration288

begin to move when the ratio, µ, of tangential forces acting289

to dislodge the grains to normal forces acting to keep them290

in place becomes greater than a certain value, µt, which we291

can roughly interpret as the friction coefficient (17). We292

can estimate this friction coefficient independently from θt in293

experiments, e.g. by building a heap of sediment and finding294

the angle at which its grains begin to topple. Abramian et295

al. (18) hypothesized that the transport law for the flat bed296

can be generalized to a curved bed — i.e. that the flux, qs, is297

proportional to the distance of µ to threshold, µt:298

qs = qµ(µ− µt) for µ > µt . [7]

To keep this expression consistent with Eq. 6 for the flat bed,299

we must have qµ ≡ q0θt/µt, since, on a flat bed, µ = µtθ/θt300

(17). Although Eq. 7 is difficult to test independently in301

an experiment, we will show that it is consistent with the302

experiments of Abramian et al. (19). Parameters θt, µt, and303

q0 depend on the grain shape and on the Reynolds number at304

the grain scale. Abramian et al. (18) found them to be θt =305

0.167±0.003, µt = 0.9±0.2, and q0 = 544±48 grains cm−1s−1
306

in their experiments.307

To find µ, we need to consider the forces acting on a grain 308

of sediment — the fluid force, Ff , acts tangentially, while 309

gravity has both a tangential (downhill) component, Fg sinφ, 310

and a component normal to the bed, Fg cosφ. Because the 311

downstream slope of a channel, S, is small, the gravitational 312

force is approximately perpendicular to the fluid shear force, 313

Ff , and the force ratio, µ, is therefore 314

µ =

√(
Ff

Fg cosφ

)2

+ (tanφ)2 , [8]

The ratio of fluid force to gravity, Ff/Fg, is proportional to 315

the Shields parameter. In particular, we must have Ff/Fg = 316

µtθ/θt, since, on a flat bed, µ = µt when θ = θt. With this 317

relation, using Eq. 3 for stress, and relating φ to depth as 318

tanφ = D′, we can express the force ratio µ from Eq. 8 as 319

µ =

√(
µtρfS

θt(ρs − ρf )ds

)2(
D + ν

gS
(ūD)′′

)2

+D′2 , [9]

Neglecting the cross-stream momentum diffusion, (ūD)′′, 320

yields a purely shallow-water model, which Seizilles et al. 321

(17) used to find the shape of inert rivers. 322

Sediment diffusion. Due to random interactions with the river 323

bed, grains traveling downstream also diffuse laterally, towards 324

areas of the bed where sediment transport is less intense 325

(21). This cross-stream diffusion of sediment opposes gravity, 326

which pulls the grains down towards the center of the channel. 327

Abramian et al. (22) showed that, in equilibrium, the downhill 328

flux of sediment due to gravity is balanced by this uphill 329

diffusive flux of sediment. Like the Boltzmann equilibrium 330

of a gas in a gravitational field, this balance leads to the 331

exponential distribution of the moving grains as a function of 332

the flow depth: 333

qs = qBe
D/λ . [10]

The last parameter in this equation, λ, is the characteristic 334

scale for sediment diffusion, and is analogous to the tempera- 335

ture in a gas. Since sediment diffusion is driven by the bed 336

roughness, λ scales with the grain size (λ ≈ 0.12ds ± 20% 337

(22)). 338

The prefactor, qB, is the sediment flux at the banks of 339

the river (D = 0). Since the flux at the banks is very small 340

compared with the flux at the bottom, qB does not yield 341

the correct scale for the sediment flux (qs,max/qB ∼ 1023 for 342

the experiment with Qs = 60 grains s−1). For this reason, 343

we rewrite Eq. 10 in a more convenient form by defining a 344

parameter ξ with units of depth, such that qB ≡ qµe
−ξ/λ, 345

where qµ is the prefactor of the sediment transport law, Eq. 7. 346

In this way, qµ gives the correct scale for the sediment flux, 347

while ξ is of the order of the maximum depth of an active river 348

(qs,max/qµ ∼ 0.2 and ξ/Dmax ∼ 1.05 for the experiment with 349

Qs = 60 grains s−1). As we will see below, the maximum river 350

depth, Dmax, is generally less than ξ, so the maximum flux in 351

a river is typically less than qµ. With this, Eq. 10 becomes 352

qs = qµe
(D−ξ)/λ . [11]

The parameter ξ controls the intensity of sediment flux and 353

ensures that the sediment discharge is the integral of the flux, 354

Qs = qµ
∫

exp((D − ξ)/λ)dy. As an integration constant, its 355
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value depends on the discharges transported by the river, but356

it is not immediately obvious how. A vanishing sediment357

discharge in rivers corresponds to ξ →∞, while finite values358

of the sediment discharge correspond to smaller values of ξ.359

Sediment transport in a river is significant when the difference,360

Dmax − ξ, between the river depth and ξ, is of the order of λ.361

This is why ξ of active rivers is of the order of the maximum362

depth, while it is much greater than the depth of inert ones. In363

the experiments of Abramian et al. (19), ξ is not set a priori,364

but only becomes measurable after the river has formed, and,365

in that sense, plays a similar role as the slope, S.366

Equation 11 relates the sediment flux, qs, to the river367

shape, D(y), and has been confirmed repeatedly in experiments368

(21, 22). We note that, unlike the gas which simply adjusts to369

the external field, the river selects its own potential (i.e. its370

own shape), D(y).371

3. Boundary value problem372

The relations for the flow, sediment flux, and sediment diffusion373

we introduced above combine to determine the equilibrium374

shape of a river. In particular, the Stokes law, Eq. 2, relates375

the river depth profile, D(y), to the vertically averaged fluid376

velocity profile, ū(y). Then, the sediment flux equations,377

Eqs. 7 and 9, relate this fluid velocity to the sediment flux378

profile. Finally, the Boltzmann distribution, Eq. 11, relates379

the sediment flux back to the depth profile, thereby closing380

the system of equations for D(y). However, solving these381

equations simultaneously to get a self-consistent depth and382

sediment flux profiles is a difficult task — one needs to solve383

a two-dimensional, partial differential equation with a moving384

boundary. Instead, in order to make sense of these equations,385

we propose to approximate the average velocity, ū.386

Seizilles et al. (17) showed that the shallow-water approx-387

imation accounts for the equilibrium shape of inert laminar388

rivers. This approximation, which assumes that there is no389

transfer of momentum between adjacent fluid columns, i.e.390

that we can neglect the y-derivatives of u in the Stokes equa-391

tion, is exact when the bed is completely flat. It also works392

well when depth variations occur on length scales that are393

much longer than the depth itself. In the case of our river,394

this would apply when the aspect ratio of the river is large.395

Neglecting the y-derivatives in Eq. 2, we find that the ver-396

tically averaged shallow-water velocity, ūsw, is proportional397

to the square of the depth, a result known as the lubrication398

approximation (31)399

ūsw = gSD2

3ν . [12]

On a flat bed, where Eq. 12 is exact, the fluid stress, τ , would400

only contain the shallow-water contribution proportional to401

depth, τsw = ρfgSD (Eq. 3). Approximating stress in this402

way would allow us to close the system of equations for the403

river shape, in a way similar to Seizilles et al. (17). However,404

it turns out that keeping only the shallow-water contribution405

to the stress yields unrealistic profiles for active rivers (i.e.406

when Qs > 0) (SI section S7.1). Parker (1) first suggested that407

the cross-stream diffusion of momentum plays an important408

role for bedload sediment transport in rivers. In line with409

his suggestion, we keep the momentum diffusion term, (ūD)′′,410

in the expression for the stress, but approximate ū with the411

shallow-water velocity, ūsw, given by Eq. 12. Then, combining412

Eqs. 7, 9, and 11, we get an ordinary differential equation 413

expressed solely in terms of the depth and its derivatives: 414√
S2

L2
s

(
D + 1

3 (D3)′′
)2 +D′2 − µt = e(D−ξ)/λ , [13]

where we have introduced a length scale of the order of the 415

grain size, Ls, that is a combination of parameters directly 416

measurable in our experimental setup: 417

Ls ≡
θt(ρs − ρf )ds

µtρf
. [14]

We discuss this approximation in detail in the SI sections S2.2 418

and S2.3, where we show that it is the first term in a series 419

expansion for large aspect ratio, W/Dmax — it corrects the 420

shallow water stress with a term of order D2
max/W

2. There, 421

we also show that the contribution of momentum diffusion, 422

(D3)′′/3, in Eq. 13 is of the same order as the contribution 423

of gravity, D′, so that it should not be neglected in a self- 424

consistent model of a river (SI section S2.2). Recognizing that 425

momentum diffusion is essential to form active rivers, and 426

finding a suitable approximation for it, is a major theoretical 427

contribution of our paper. In principle, Eq. 13 could fail to 428

be a meaningful approximation of the stress in a channel with 429

an aspect ratio of order one, but, in our case, it meaningfully 430

corrects the stress for rivers under all experimental conditions 431

we tested (even in the case of inert rivers with W/Dmax ∼ 4). 432

Equation 13 is an ordinary differential equation. To solve 433

this second-order problem, we need to specify two boundary 434

conditions. For a solution of Eq. 13 to be a river, the depth 435

needs to vanish on the banks and the center needs to be flat. 436

Therefore, Eq. 13 is a boundary value problem (BVP) with 437

boundary conditions D(y = −W/2) = 0 and D′(y = 0) = 0. 438

There are several parameters that enter our equation, some of 439

which are directly measurable in our experimental setup (µt, 440

λ, and Ls), while others depend implicitly on the discharges 441

of fluid and sediment and become apparent only after the 442

river has formed (S and ξ). Although the river width, W , is 443

unknown a priori, it is not an independent parameter — it 444

can be inferred through solving Eq. 13 for a given choice of 445

other parameters (SI section S3.1). We emphasize that Eq. 13 446

describes the equilibrium river profile, and, therefore, does not 447

convey anything about transient, time-dependent processes 448

that occur as the river approaches the equilibrium. 449

4. Dependence on water and sediment discharge 450

If we choose the parameters µt, λ, Ls, S and ξ, we can nu- 451

merically solve Eq. 13 to get a unique river profile, D(y) (SI 452

section S3.1). However, since S and ξ are not directly measur- 453

able in our experiment, we cannot immediately determine the 454

shape of the river by simply prescribing the discharge of fluid 455

and sediment in the same way as we would in an experiment. 456

The dependence of S and ξ on the discharges is complicated, 457

and, on the theoretical grounds, we can only say that the 458

inert river, Qs = 0, corresponds to ξ →∞, while active rivers 459

correspond to smaller values of ξ. Nevertheless, we can find 460

this dependence numerically as follows. For each solution, 461

D(y), of our equation that corresponds to a particular choice 462

of S and ξ, we can find the discharges of fluid and sediment as 463

Qw =
∫ W/2

−W/2

gSD3

3ν dy , Qs =
∫ W/2

−W/2
qµe

(D−ξ)/λdy , [15]
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www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


where we relate the fluid discharge, Qw =
∫
Dūdy, to the464

depth profile by approximating ū with the shallow-water ve-465

locity, ūsw (Eq. 12), and use the Boltzmann distribution466

(Eq. 11) to relate the sediment flux to depth. Keeping µt,467

λ, and Ls fixed to their experimental values, Qw and Qs are468

only functions of the parameters S and ξ. Inverting these469

relations numerically yields the model parameters as func-470

tions of the discharges of water and sediment, S(Qw, Qs) and471

ξ(Qw, Qs). This allows us to directly compare our theory to472

the experiments (SI section S3.2). We find that the theoret-473

ical cross-sections and sediment flux profiles resemble their474

experimental counterparts, without any fitting parameter (Fig.475

2).476

Encouraged by this result, we now describe how our theo-477

retical rivers depend on Qw and Qs (see also SI section S3.3).478

As we increase the water discharge, Qw, the width and depth479

of the river increase approximately as Q1/3
w , while its slope480

decreases roughly as Q−1/3
w (SI Fig. S5f), in accordance with481

the result of Seizilles et al. (17) for inert rivers. This 1/3482

exponent is a signature of the laminar flow in our rivers, in483

contrast with natural turbulent ones which scale with the 1/2484

exponent of the empirical Lacey’s law (10, 11). Though the485

size of a river in our model may vary by orders of magnitude486

under varying Qw, its shape, described for example by the487

aspect ratio, does not change much unless the river trans-488

ports a significant amount of sediment. On the other hand,489

increasing Qs while keeping Qw fixed makes the river wider490

and shallower, while affecting its overall scale only slightly. In491

short, the water discharge sets the size of the river, while the492

sediment discharge sets its shape.493

In Fig. 3, we show that our predictions fall within the494

uncertainty range of observations of Abramian et al. (19).495

The aspect ratio and the transport width, WT , increase with496

sediment discharge in both the model and the experiments497

(Figs. 3a and d). The sediment flux increases and saturates498

for large sediment discharge (Fig. 3c). This explains why499

the river becomes wider as we increase Qs — if the sediment500

flux, qs, saturates, the river needs to widen to accommodate a501

larger sediment discharge. At the same time, this widening502

forces the river to become shallower in order to maintain a503

constant fluid discharge, Qw, so that its overall size does not504

change much while its aspect ratio grows. The simple, nearly505

linear relationship between the aspect ratio and the sediment506

discharge shown in Fig. 3a means that this basic geometric507

property of the river shape can be used to infer the sediment508

load, at least in the case of straight, laminar, single thread509

rivers.510

Since the downstream slope, S, is very small, it cannot511

be measured directly in the experiments. Nevertheless, our512

theory makes a prediction for it, which we show in Fig. 3b:513

the predicted slope is of the order of 0.01, and increases almost514

linearly with Qs.515

5. Inert, active, and limiting river516

We can simplify our model by making Eq. 13 non-dimensional,517

thereby reducing the number of parameters that represent the518

river. To that end, we rescale all lengths by Ls/S519

ỹ ≡ yS

Ls
, D̃ ≡ DS

Ls
, λ̃ ≡ λS

Ls
, ξ̃ ≡ ξS

Ls
. [16]

z̃

D̃max,0

µt

Inert river (ξ̃ →∞)

1 unit

(a)

z̃

D̃max

Active river (ξ̃ > ξ̃c)

(b)

ỹ

z̃

D̃max,c

Infinite river (ξ̃ = ξ̃c)

(c)

Fig. 4. River solutions in the non-dimensional ỹ-z̃ space for µt = 0.9, λ̃ = 0.1,
and varying ξ̃. Black dashed lines in panels (b) and (c) represent the inert river from
the upper panel. Aspect ratio is preserved. (a) Inert river (ξ̃ → ∞). Brown dot
marks the non-dimensional inert river depth, D̃max,0. This depth is greater than the
friction coefficient, D̃max,0 > µt, marked by the horizontal dotted line. (b) Active
river (ξ̃ = 1.33 > ξ̃c). Brown dot marks the depth, D̃max. (c) Infinite limiting river
(ξ̃ = 1.3237 ≈ ξ̃c). Brown dot marks the limiting depth, D̃max,c.

In terms of these non-dimensional parameters, Eq. 13 becomes: 520√(
D̃ + 1

3 (D̃3)′′
)2 + D̃′2 − µt = e(D̃−ξ̃)/λ̃ , [17]

where, now, the primes stand for derivatives with respect to 521

ỹ. The non-dimensional depth, D̃, is of order one, regardless 522

of the size of the original river. Therefore, Eq. 17 describes 523

the river shape, while the ratio Ls/S sets its size. The river 524

shape depends on only three non-dimensional parameters — 525

µt, λ̃, and ξ̃. 526

When ξ̃ →∞ (Fig. 4a, SI section S4.3), the river becomes 527

inert as the exponential on the right-hand side of Eq. 17 528

vanishes. In this case, the dependence on ξ̃ and λ̃ vanishes, 529

so the river shape depends only on the friction coefficient, 530

µt. Since the friction coefficient is a fixed property of the 531

sediment grains, the fluid discharge, Qw, cannot change the 532

shape of such a river. Instead, the fluid discharge can only 533

affect its size by changing the scale factor, Ls/S. Physically, 534

this is because the laminar flow is scale-free, which makes 535

the inert river shape independent of its size. An inert river, 536

thus, reaches a maximum depth D̃max,0(µt). To calculate 537

its value, we need to numerically solve Eq. 17, but unlike 538

the complete theory of section 3, this is a straightforward 539

problem since it depends on a single, directly measurable 540

parameter. For µt = 0.9 which corresponds to the experiments, 541

we numerically find D̃max,0(µt) ≈ 1.1. From Eq. 17, we can 542

express this depth as D̃max,0 = µt − 1
3 (D̃3)′′|center, since the 543

gravity contribution, D̃′, vanishes at the river center. Thus, 544

the momentum diffusion contribution to the stress (the term 545
1
3 (D̃3)′′ in Eq. 17) ensures that the dimensionless inert river 546

depth is greater than the friction coefficient (D̃max,0 > µt) 547

— had we ignored the momentum diffusion, the inert river 548
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Weak transport regime (Qs = 5 grains s−1)

1 cm

(a)

Bank Bank
Flat

bottom

qs = 0 qs = 0qs > 0

Parker regime (Qs = 40 grains s−1)

(b)

−3 −2 −1 0 1 2 3

y [cm]

0.0

0.1

0.2

0.3

q s
/
q µ

Numerical solution
Weak transport regime

(c)

−3 −2 −1 0 1 2 3

y [cm]

Parker regime(d)

Fig. 5. Asymptotic regimes. Black dashed lines correspond to the Parker regime while the black dotted lines correspond to the weak transport regime. Top row panels ((a) and
(b)) show river depth profiles in our model. The brown lines are numerical solutions of Eq. 13 for two values of sediment discharge, Qs. The numerical and asymptotic depth
profiles are not distinguishable by eye and the error is of the order λ (or about 2% of the maximum depth) — the maximum deviation of the asymptotic approximation from the
numerical solution is about 0.05 mm ≈ 0.5λ in panel (a) and about 0.15 mm ≈ 1.5λ in panel (b). The vertical black lines in panel (b) split the river in three parts used to
construct the Parker river. Lower row panels ((c) and (d)) show the dimensionless sediment flux profiles, qs/qµ, that correspond to upper panels. Blue lines are numerical
solutions.

depth would have been exactly µt. Physically, the diffusion of549

momentum relieves some of the stress from the river center, so,550

to remain at the threshold of sediment motion, the river has551

to be deeper than it would be without momentum diffusion.552

In the next section, we will show that this fact is crucial for553

the transport of sediment.554

As ξ̃ decreases to finite values, the river becomes active555

(Fig. 4b). The banks of such a river largely retain the shape556

of the inert one, but its bottom part, which carries most of557

the sediment, widens, and the discharge of sediment increases.558

For a particular value of ξ̃, say ξ̃c, which depends on µt and559

λ̃, the river becomes infinitely wide and transports an infinite560

amount of sediment (Fig. 4c, SI section S4.2). Such a river561

has a finite, well-defined depth, D̃max,c(µt, λ̃). This means562

that, for given values of λ̃ and µt, there exists a river-solution563

with a highest possible sediment flux, qs,c = qµ(D̃max,c − µt).564

The existence of this limiting flux explains the saturation of565

qs for large values of total sediment discharge, Qs, that we see566

in Fig. 3c. It also means that, in our model, the distance to567

threshold in a river, µ − µt, is always less than D̃max,c − µt.568

Numerically, we find D̃max,c − µt ≈ 0.22 for experimental569

parameters (µt = 0.9 and λ̃ = 0.02). In the next section,570

we will estimate the limiting flux, qs,c, by assuming sediment571

diffusion is weak (λ→ 0), in which case qs,c only depends on572

the friction coefficient, µt.573

6. The Parker regime574

Moving grains accumulate at the bottom of the river due to575

gravity, while they climb back onto the banks by diffusion (22).576

The Boltzmann distribution, Eq. 11, implies that diffusion577

can pull the grains up by a height that is of the order of the578

length scale λ. Therefore, the region of the bed over which579

transport occurs has a depth that is within several λ of the 580

maximum, Dmax. Since λ is small (less than the grain size), 581

rivers that transport a significant amount of sediment need a 582

wide, and essentially flat bottom. Moreover, a small λ means 583

the sediment transport decreases rapidly towards the banks, 584

so the banks are nearly inert and, thus, close to the threshold 585

of sediment motion. If, following this reasoning, we neglect 586

sediment diffusion altogether by taking the limit λ→ 0, the 587

river sharply separates into a flat, active bottom and curved, 588

inert banks (Fig. 5b). We will call this simplified configuration 589

the “Parker regime,” after Parker (1) who constructed a similar 590

model for natural gravel-bed rivers. The limit λ → 0 is 591

equivalent to assuming that the fluid discharge is large (to 592

ensure that λ is small compared with the width of the inert 593

banks), and that the sediment discharge is large (to ensure 594

that λ is small compared with the width of the active, flat 595

bottom). 596

We begin the investigation of this regime by first finding 597

the depth, D(P )
max, of a Parker river (denoted by the superscript 598

(P )). The banks in this approximation are inert and, thus, 599

satisfy our model, Eq. 17, with the right-hand side set to zero. 600

Therefore, their non-dimensional depth matches that of an 601

inert river, D̃max,0(µt), and we can set, D̃(P )
max = D̃max,0(µt). 602

In dimensional units, this becomes 603

D(P )
max = LsD̃max,0(µt)

S(P ) . [18]

We note that this dimensional depth of a Parker river differs 604

from that of an inert river, since the slope of a Parker river, 605

S(P ), is different from the slope of an inert river, S0 — these 606

slopes depend on the shape of the entire channel, not only 607

on the banks. The non-dimensional inert river depth, D̃max,0, 608

depends only on the friction coefficient, µt (section 5). For 609
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this reason, the river depth given by Eq. 18 is inversely610

proportional to its slope, D(P )
max ∝ 1/S(P ), regardless of the611

fluid and sediment discharges. This is consistent with the612

original model of Parker, as well as with observations in natural613

rivers (1, 32).614

Once we know the depth of a Parker river, we can find its615

sediment flux. Since the bottom is flat, the cross-sectional616

profile of the sediment flux is a rectangle of height q(P )
s and617

width W (P )
T (black dashed line in Fig. 5d). The flat bottom618

feels only the shallow-water component of the stress so the619

force ratio on the bottom is µ = D̃
(P )
max (Eq. 9). According to620

the transport law, Eq. 7, this yields a sediment flux621

q
(P )
s

qµ
= D̃max,0(µt)− µt , [19]

where we used D̃(P )
max = D̃max,0(µt). Therefore, the sediment622

flux, and, correspondingly, the distance to threshold, µ− µt,623

depend only on the friction coefficient, µt, and have the same624

value regardless of the discharges of fluid and sediment — this625

is the gist of the Parker regime. Numerically solving Eq. 17 for626

an inert river (with µt = 0.9), we find D̃max,0 − µt ≈ 0.2. The627

sediment flux of a Parker river, q(P )
s , is an approximation of the628

limiting flux, qs,c, we discussed in section 5 — in fact, q(P )
s is629

the limit of qs,c as λ→ 0. For typical experimental parameters630

(µt = 0.9 and λ̃ = 0.02), qs,c is less than 10% higher than q(P )
s ,631

so the Parker regime approximates the numerical solution well.632

The sediment flux q(P )
s ≈ 0.2qµ we find for a laminar river633

corresponds to a fluid-induced stress on the river bottom634

that is about 22% higher than critical. Interestingly, this635

value of the stress is comparable to observations in natural636

rivers, and to the original Parker’s theory for turbulent rivers637

(1, 33). There is no reason to expect that this proportion638

should be exactly the same for laminar and turbulent flows.639

However, that it is independent from the water and sediment640

discharges, and of order one, is likely not a coincidence. The641

scale-independence of the flow ensures that the bank shape642

(i.e. D̃max,0(µt)) is independent of the discharges (section 5).643

Thus, the discharge-independent sediment flux likely results644

from the scale-independence of the flow, under both laminar645

and turbulent conditions.646

The difference D̃max,0−µt vanishes in the classical shallow-647

water approximation (section 5). As a consequence, if we648

ignored momentum diffusion, the river could not carry any649

sediment — sediment transport in the Parker regime is only650

possible because momentum diffuses across the stream. Indeed,651

this tends to homogenize the distribution of shear stress over652

the bed, especially on the banks, where the bed is curved.653

As a consequence, the deeper parts of the banks hand over654

some of the momentum to the shallower parts of the banks.655

This means that, in order to stay at the threshold of sediment656

motion, the banks need to be deeper than they would be in the657

absence of momentum diffusion. This increased depth then658

causes excess stress on the flat river bottom, which only feels659

the shallow-water component of the stress, thereby driving660

sediment transport (SI section S7). This is why we need to661

keep track of momentum diffusion, even in a minimal model662

of a river.663

The weakness of sediment diffusion, characterized by a664

small diffusion length, λ, ensures that rivers remain close665

to the threshold. For a small but finite λ, we numerically666

find that the maximal distance to threshold is approximately667

D̃max,c − µt ≈ D̃max,0(µt) − µt + Sλ/Ls (SI section S4.4). 668

The term Sλ/Ls is negligible for large rivers with a small 669

slope, such as the ones in the experiments we are considering 670

(Sλ/Ls ≈ 0.022 for highest experimental Qs). The fact that 671

rivers tend towards the Parker regime as the fluid and sediment 672

discharges increase is, thus, the reason they do not exceed the 673

threshold significantly more than D̃max,0(µt) − µt. In short, 674

it is the combination of significant momentum diffusion with 675

weak bedload diffusion that maintains the laboratory rivers of 676

Abramian et al. (19) near the threshold. 677

Once we have identified the sediment flux, q(P )
s , all other 678

properties follow straightforwardly. In particular, we can get 679

the width of the active bottom, W (P )
T , as 680

W
(P )
T = Qs/q

(P )
s . [20]

The total width of a Parker river,W (P ) = W
(P )
T +W (P )

0 , is then 681

the sum of W (P )
T and the bank width, W (P )

0 = W̃0Ls/S
(P ). 682

Here, W̃0 is the non-dimensional width of an inert river that 683

is only a function of µt (numerically, we find W̃0 ≈ 6.4 for 684

µt = 0.9). 685

From here, we can find the aspect ratio of a Parker river as 686

W (P )

D
(P )
max

= W̃0

D̃max,0
+ Qs

q
(P )
s D

(P )
max

. [21]

This equation shows how the geometry of a river can be used 687

to infer its sediment load. Namely, from Eq. 21, the sediment 688

discharge is 689

Qs = q(P )
s D(P )

max

(
W (P )

D
(P )
max
− W̃0

D̃max,0

)
. [22]

The quantities q(P )
s and W̃0/D̃max,0 are universal in that they 690

only depend on the properties of the sediment and the general 691

properties of the flow (such as its laminarity). As such, they are 692

independent of the discharges of fluid and sediment. All other 693

quantities on the right hand side of Eq. 22 are geometric (D(P )
max 694

and W (P )). Therefore, one can estimate the sediment load of 695

a river in the Parker regime by simply measuring its width and 696

depth. Equation 22 follows from general considerations that 697

allow the Parker regime to exist — such as, for example, that 698

the river splits into an active bottom and inert banks whose 699

shape is independent of the discharges. It is likely that these 700

conditions also apply to turbulent rivers. So, we speculate 701

that Eq. 22 holds for natural rivers in the Parker regime, 702

although with different values of q(P )
s and W̃0/D̃max,0. On an 703

ensemble of rivers with varying fluid and sediment discharge, 704

q
(P )
s would represent the maximum observed sediment flux, 705

while W̃0/D̃max,0 would be the minimum observed aspect ratio. 706

So, to estimate the sediment load of a natural river, one could 707

begin by estimating the minimum aspect ratio and maximum 708

sediment flux on a large dataset of rivers, and then measuring 709

the width and depth of a particular river. We demonstrate 710

the validity of this method on our experimental dataset in the 711

SI section S6. 712

The transport width of a Parker river becomes com- 713

parable to the river size when the sediment discharge is 714

Qs ≈ q
(P )
s Ls/S

(P ). This defines a characteristic discharge 715

in the Parker regime, Q∗s : 716

Q∗s = qµ

(
νQw
gLs

)1/3

, [23]
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where we approximated the slope with that of an inert river (Eq.717

S38 of the SI) and neglected dimensionless factors of order one.718

When the sediment discharge is much greater than Q∗s , the719

aspect ratio of a river grows with the sediment discharge, while720

for Qs much smaller than Q∗s , it becomes that of the inert river.721

In the experiments, we find Q∗s ≈ 74 grains s−1. Interestingly,722

this value is close to the discharge Qs ≈ 90 grains s−1 at which723

the experimental rivers destabilize into braids, suggesting that724

Q∗s may define an upper bound for the sediment load a single725

channel can carry. Determining this would, however, require726

an analysis that is beyond the scope of this paper.727

Finally, to find the slope of the Parker river, S(P ), we728

first compute its water discharge, Qw (Eq. 15). The water729

discharge of a Parker river is a sum of the the bank and the730

flat bottom contributions. In particular, we find (SI section731

S5)732

Qw = gL4
s

νS(P )3

(
Q̃w,0 +

QsS
(P )D̃3

max,0

3q(P )
s Ls

)
[24]

where Q̃w,0 ≡ 1
3

∫ W̃0/2
−W̃0/2 D̃

3
0dỹ, is the dimensionless discharge733

of an inert river with a depth profile D̃0(ỹ), and is, again,734

only a function of µt (Q̃w,0 ≈ 1.22 for µt = 0.9). The above735

equation can be inverted to get S(P ) as a function of Qw,736

Qs, and other measurable parameters, but, since the inverted737

expression is cumbersome, we do not show it here. To leading738

order, S(P ) ∝ Q
−1/3
w , so the Parker river inherits the basic739

scaling of laminar rivers (17).740

In Figs. 5b and d, we show that the cross-section and741

sediment flux profiles of rivers in the Parker regime capture742

well the numerical solutions of our model, Eq. 13, when the743

sediment discharge is large. In Fig. 3, we compare the Parker744

river properties to numerical solutions of the full theory and745

experiments (black dashed lines in Fig. 3). The slope and746

shape of numerical solutions are well approximated by the747

Parker regime for the entire range of sediment discharge (Figs.748

3a and b). Conversely, the sediment flux profile (qs and WT )749

for the Parker river is a good approximation of the full theory750

only when the sediment discharge is large enough. This is not751

surprising, since, according to the Boltzmann distribution, Eq.752

11, the flux is a sensitive function of the depth so, to get a753

reasonable estimate of the flux, we need to estimate the depth754

accurately with a precision that is of the order of the diffusion755

length, λ.756

When the sediment discharge is small, sediment diffusion757

becomes important, and the Parker regime cannot account758

for the sediment transport (Fig. 5c). In the next section, we759

consider this weak transport regime.760

7. Weak transport regime761

When the sediment discharge is small, the sediment flux concen-762

trates about the center of the river, and does not significantly763

alter its shape. The sediment flux profile in this case is analo-764

gous to the density of an ideal gas in a fixed potential — the765

fixed bed shape sets the potential well in which the traveling766

grains distribute themselves.767

A random walker that makes steps of length λ in a fixed768

potential well with a characteristic size L would spend the769

majority of its time moving around in an area with a size of770

the order of
√
λL. Therefore, we expect the sediment grains771

in this weak transport regime to concentrate in a region of a772

size WT ∼
√
λLs/S0, where Ls/S0 is the characteristic size 773

of an inert river. As a consequence, the sediment flux would 774

be about qs ∼ Qs
√
S0/λLs. Thus, unlike the Parker river 775

which changes its width to accommodate its sediment load, 776

the weak-transport river adjusts its sediment flux. 777

We can formalize this argument by first assuming that the 778

depth profile is approximately that of an inert river, D0. Close 779

enough to the center, we can approximate this depth with a 780

parabola, 781

D0 ≈ Dmax,0 −
κ

2 y
2 , [25]

where κ ≡ −D′′0 |center is the curvature of the bed at the center. 782

If only this quadratic part of the depth profile is relevant, the 783

Boltzmann distribution of traveling grains, Eq. 11, becomes a 784

Gaussian: 785

qs = qs,maxe
− κ

2λ y
2
. [26]

Here, qs,max is a constant that depends on qµ, λ, and ξ. This 786

approximation is valid when the sediment discharge is small 787

enough to leave the depth profile unaltered, and when the 788

fluid discharge is large enough to keep
√
λ/κ small compared 789

with the river size. 790

To specify the sediment flux profile, we first relate the 791

curvature at the river bottom, κ, to the depth of an inert river, 792

Dmax,0, using Eq. 13. Then, by integrating the sediment flux 793

profile, Eq. 26, we can find the maximum flux, qs,max, and 794

the transport width, WT = Qs/〈qs〉, as functions of Qs (we 795

find 〈qs〉 through Eq. 1): 796

qs,max = Qs

√
S0(D̃max,0 − µt)

2πλLsD̃2
max,0

, [27]

WT =

√
4πλLsD̃2

max,0

S0(D̃max,0 − µt)
, [28]

where S0 can be estimated from the fluid discharge, Eq. 15, 797

using the inert river profile (Eq. S38 of the SI). We can see that 798

qs,max ∝ Qs
√
S0/λLs and WT ∝

√
λLs/S0, as anticipated. 799

Unlike the Parker regime, the weak transport regime re- 800

quires sediment diffusion — it does not exist when λ vanishes. 801

Figures 3 and 5 show that the sediment flux profile in the 802

numerical model transitions smoothly from the weak transport 803

regime to the Parker regime. This transition happens when Qs 804

approximately equals qµ
√
λLs/S0, at which point the weak 805

transport sediment flux overcomes the limiting flux of the 806

Parker regime. This defines a transitional sediment discharge, 807

Qs,t, given by 808

Qs,t = qµ

(
λ3νQw
gLs

)1/6

. [29]

For the experiments we are considering, we find Qs,t ≈ 809

8.6 grains s−1. A large river (with λS/Ls → 0) remains in 810

the weak transport regime when Qs � Qs,t, and enters the 811

Parker regime if Qs � Qs,t. When λ vanishes, the tran- 812

sitional discharge tends to zero, and the river is always in 813

the Parker regime. Interestingly, the experiments span both 814

regimes — one experimental run of Abramian et al. (19) has 815

Qs ≈ 12.6 grains s−1, comparable to Qs,t. This means that 816

λ in the experiments is small enough for the two regimes to 817

be valid approximations, but still large enough for the weak 818

transport regime to be visible. 819
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8. Conclusions820

In this paper, we relied on a recent experimental success in821

obtaining single-thread laminar rivers, and we developed a822

physical theory that correctly represents the shape of a river823

as a function of its water and sediment discharges. In steady-824

state, the balance between gravity and the stress induced by825

the fluid flow, along with the diffusion of sediment across826

the channel, determines the shape of the river. We greatly827

simplify the problem of calculating the fluid stress, which in828

general depends on the entire channel shape, by relating it829

to the local river depth and its derivatives only. Although830

this model can be numerically solved relatively easily, the831

relationship between the river properties and the discharges of832

water and sediment is not immediately obvious. Fortunately,833

when the sediment discharge is small or large, the relationships834

between the properties of the river and its discharges reduce835

to simple algebraic expressions. When the sediment load of a836

river is large, we find that the diffusion of momentum across837

the stream generates an excess of stress on the river bottom,838

which drives sediment transport. Momentum diffusion, thus,839

plays a key role in determining the shape of the channel, in840

accordance with the model originally proposed by Parker (1).841

This is not the case in the weak transport regime, which relies842

on the diffusion of sediment.843

Rivers in our model never deviate much from the threshold844

of sediment motion. As their sediment discharge increases, the845

sediment flux approaches a maximum, which forces the river846

to widen and get shallower. This saturation of the sediment847

flux results from the weakness of sediment diffusion and the848

scale-independence of the flow. Most likely, natural rivers849

also meet these conditions, which is why the original model of850

Parker (1) has proven to be a fair representation of natural,851

gravel-bed rivers. According to our theory, however, there852

exists another, small discharge regime in which a river’s shape853

is independent of its sediment discharge, while its sediment flux854

is proportional to it. To our knowledge, this regime remains855

to be identified in the field.856

Although our model is aimed at a relatively narrow subset857

of rivers (straight, laminar rivers that transport uniform, non-858

cohesive sediment as bedload and with constant water and859

sediment discharge), it is tempting to extrapolate it to natural860

rivers which have been observed to maintain their channel861

close to the threshold of sediment motion. The common862

explanation for this is that hillslope processes, which feed863

rivers with sediment, are slow, so that rivers carry only a small864

sediment load. We show that this is not necessarily true —865

our rivers are always close to the threshold, regardless of the866

sediment discharge, due to the nature of the fluid-sediment867

interaction.868

Increasing the sediment discharge significantly beyond the869

last experimental point of Abramian et al. (19) destabilizes870

the rivers into several smaller channels that form a braided871

river. Curiously, this happens when the transport width of872

a river becomes comparable to its size. In the future, this873

may help us identify a mechanism for braiding, which is still874

debated (3, 6, 34).875

Our model provides a link between the shape of the river876

and its sediment load. It, thus, presents an opportunity for877

field measurements, whereby one could estimate the sediment878

discharge of a river by measuring its width and depth. Before879

this method can bed applied to natural rivers reliably, we880

should first extend the present theory to the case of turbulent 881

flow, which will be the focus of future work. 882
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Popović et al. PNAS | November 16, 2021 | vol. XXX | no. XX | 11


	Experiments
	The mechanisms that shape a river
	Boundary value problem
	Dependence on water and sediment discharge
	Inert, active, and limiting river
	The Parker regime
	Weak transport regime
	Conclusions

