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Abstract—In this paper, a new methodology for choosing
design parameters of level-crossing analog-to-digital converters
(LC-ADCs) is presented that improves sampling accuracy and
reduces the data stream rate. Using the MIT-BIH Arrhythmia
dataset, several LC-ADC models are designed, simulated and
then evaluated in terms of compression and signal-to-distortion
ratio. A new one-dimensional convolutional neural network (1D-
CNN) based classifier is presented. The 1D-CNN is used to eval-
uate the event-driven data from several LC-ADC models. With
uniformly sampled data, the 1D-CNN has 99.49%, 92.4% and
94.78% overall accuracy, sensitivity and specificity, respectively.
In comparison, a 7-bit LC-ADC with 2385Hz clock frequency and
6-bit clock resolution offers 99.2%, 89.98% and 91.64% overall
accuracy, sensitivity and specificity, respectively. It also offers
3x data compression while maintaining a signal-to-distortion
ratio of 21.19dB. Furthermore, it only requires 49% floating-
point operations per second (FLOPS) for cardiac arrhythmia
classification in comparison with the uniformly sampled ADC.
Finally, an open-source event-driven arrhythmia database is
presented.

Index Terms—level-crossing ADC, cardiac arrhythmia classi-
fication, convolutional neural networks, wearable sensors, event-
driven data

I. INTRODUCTION

IN recent years, the number of portable wireless biomed-
ical systems have grown exponentially facilitating better

health care monitoring and earlier diagnosis [1]. As a result,
high volumes of data are produced with increasing number
of biomedical sensors and long-term monitoring. In these
biomedical signal monitoring systems, the energy consump-
tion of wireless communication modules generally exceeds
all other modules combined, for example in [2], [3], it is
reported that the wireless module consumes up-to two-thirds
of the total power on-chip. To reduce energy consumption,
on-chip feature extraction and compression techniques are
applied after sampling from an analog-to-digital converter
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(ADC) [4]–[8]. Recently, a new class of ADCs, called level-
crossing ADCs (LC-ADCs), has been developed which embed
compression into the data acquisition stage [9]–[12]. LC-
ADCs utilize the time-domain sparsity of signals, such as,
electrocardiogram (ECG) signals, which remain inactive for
large time intervals. LC-ADCs produce asynchronous samples
of data triggered by the threshold crossings of the analog
signal. This reduces the sampling in low-activity regions of
the signal, thus reducing the data rate and energy consumption
on-chip. LC-ADCs have the advantage of built-in compression
and a corresponding potential reduction in processing costs in
comparison with Nyquist sampling ADCs.

The energy efficiency of a LC-ADC and traditional
successive-approximation (SAR) ADC using various biosig-
nals was studied in [9]. They concluded that LC-ADCs are
more energy-efficient than SAR ADCs for low-to-medium
resolution applications, while also producing less data for
transmission.Many low-power LC-ADC architectures have
been proposed in recent years for various biomedical appli-
cations, such as biomedical signal acquisition [3], [13]–[16],
ultrasound measurement systems [17], ECG signal acquisi-
tion [10], low-power QRS detection in ECG signals [11],
[18], low data rate image sensors [19], and a reconfigurable
event-driven wake-up system [20]. Moreover, classification
algorithms have been widely designed for various biomedical
applications using traditional SAR ADCs. A detailed review
of classification algorithms, their hardware designs and power
consumption is presented in [21]. Recently, ECG signals have
also been used for low-power authentication of devices which
also utilizes neural networks and compression techniques [22].
Using event-driven data from LC-ADCs, an artificial neural
network based arrhythmia classification has been presented
in [12].

This article builds on the work presented in [23], which
evaluated several level-crossing ADC models for cardiac ar-
rhythmia classification and compression performance. To the
best of our knowledge, no other performance analysis of LC-
ADC models for event-driven ECG classification is found
in the literature. In this article, we propose a new design
strategy for modeling LC-ADC parameters inspired by the
work presented in [3] and apply it to low-power event-driven
cardiac arrhythmia classification. In this context, the major
contributions of this paper are as follows: a) a new design
technique for modeling level-crossing ADC parameters is
presented that improves sampling accuracy and reduces data
stream rate from the LC-ADC, b) several LC-ADC models
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Fig. 1: (a) a level-crossing ADC architecture (b) event-driven
ECG samples (ECGout), the analog ECG signal (ECGin),
and horizontal lines indicating the quantization levels using a
7-bit LC-ADC. (c) illustrated threshold crossings with LSB
size, ∆v = 3q.

are simulated and their performance is analyzed in terms of
signal quality and compression using the MIT-BIH Arrhythmia
dataset [24], c) a deep learning model is proposed for event-
driven cardiac arrhythmia classification and, d) an open-source
event-driven ECG database derived from MIT-BIH database
using the proposed LC-ADC models with arrhythmia annota-
tions is presented.

The rest of the paper is organized as follows. Section II
presents the principles of event-driven sampling for ECG
applications including, LC-ADC architecture, and performance
metrics for evaluation of LC-ADC models. Section III pro-
poses a new design methodology for modeling LC-ADC
parameters and evaluates several models using performance
metrics. Section IV proposes a deep learning model for
classification of cardiac arrhythmias using event-driven ECG

Fig. 2: (a) The proposed new methodology for selecting LC-
ADC design parameters, inspired by the work presented in
[3]. The three design parameters (M, N, Fc) must meet the
respective design conditions before the LC-ADC can be evalu-
ated for acceptable SDR and CR. (b) The LC-ADC evaluation
methodology. ECG input is converted to event-driven signal
using selected design parameters, reconstructed using linear
interpolation and assessed for SDR and CR performance.

data. A complexity comparison with uniformly sampled data
is presented. An event-driven ECG dataset is also presented
in Section IV. Finally, in Section V, conclusions are drawn.

II. EVENT-DRIVEN ECG SAMPLING

This section presents the principles of level-crossing sam-
pling with an LC-ADC architecture and the performance
metrics for compression and signal-quality evaluation of LC-
ADC Models.

A. LC-ADC Architecture

The LC-ADC architecture is presented in Fig. 1a. The ECG
signal range is divided into a fixed number of quantization
levels. The LC-ADC sampling processing is implemented by
continuously comparing against an upper and lower threshold
voltage, U QL and L QL respectively, each of which is
quantized into LSBs each having size q Volts:

q ≜
AFS

2M
(1)

where AFS is the full-scale voltage range of the ECG signal,
M is the resolution of the LC-ADC and 2M is the total number
of quantization levels. The dynamic range of 10mVpp is used
as the full-scale voltage throughout this study, which ensures
industry standard of ambulatory equipment [3] and matches
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the dynamic range of the MIT-BIH Arrhythmia dataset [18]
used to evaluate models in this study. The difference between
the upper and lower threshold voltages, ∆v, is usually a fixed
integer number of LSBs:

∆v = k ∗ q (2)

where k ≥ 1 ∈ Z. Typically k = 1, but for higher resolution
LC-ADCs k is often larger so as to maintain a ∆v that is
greater than the noise thereby avoiding excessive threshold
crossings.

Whenever the ADC’s input signal crosses U QL a sample
is taken, i.e. we set ECGout = U QL and both threshold
are increased by q Volts (i.e. +1 LSB). Similarly when L QL
is crossed we set ECGout = L QL and decrease the two
thresholds by q Volts (i.e. -1 LSB). The control logic block
in Fig. 1 manages this process. This way, an LC-ADC creates
continuous-in-time discrete-in-amplitude ECG signals.

Compared to a uniform sampling ADC where the time-
stamp associated with each sample is implicit, a LC-ADC
however must output both the amplitude level ECGout and
the associated time, or equivalently the Time Interval (TI)
between each sample, as a tuple (ECGout, T I)n, where n is
an index meaning the nth tuple in time. In practice the Time
Interval TI is quantized w.r.t. a clock having frequency Fc

and is represented using an N bit word. Whenever the Time
Interval counter rolls-over, i.e. after (2N−1)

Fc
sec during which

time there were no level crossing events, an extra sample is
output where the previous amplitude is simply repeated.

Using a 7-bit LC-ADC, the analog ECG signal (ECGin)
with event-driven samples (ECGout) are presented in Fig.
1b. The horizontal grid lines represent the quantization levels
spaced at q volts. The gray highlighted region on the third
QRS peak is further illustrated in Fig. 1c with an LSB size of
∆v = 3q volts. While the distance between U QL and L QL is
always maintained at 3q volts, whenever a threshold crossing
occurs, the two thresholds are increased or decreased by 1q
volts only. Furthermore, it is worth noting the difference in
time intervals between the six event-driven samples illustrated
in Fig. 1c.

B. Performance metrics

To measure the signal distortion and compression in the LC-
ADC output, its output samples are interpolated using linear
interpolation to reconstruct the ECG signal, as in [3]. The two
performance parameters are as follows:

1) Compression Ratio (CR): The compression ratio is the
ratio of the average number of bits/sec in the signal
obtained from a uniform ADC to the average number
of bits/sec in the signal obtained from a LC-ADC.

2) Signal-to-Distortion Ratio (SDR): The temporal signal-
to-distortion ratio evaluates the distortion between the
original signal, x, and the reconstructed signal, x̂ is
defined as:

SDR =10 log10

(
(x− x̄)

2

)
− 10 log10

(
(x− x̂)

2

)
(3)

Fig. 3: The CDF of magnitude of slopes in the MIT-BIH
dataset with xo shown at 99.9%.

having units of decibels (dB).
In [25], the clinically acceptable values for SDR in ECG

signal reconstruction are also reported. “Good” quality signals
must follow the following criteria:

SDR ≥ 21dB (4)

III. LEVEL-CROSSING ADC MODELING AND EVALUATION

This section presents a new LC-ADC design and evaluation
methodology. In order to accurately model an LC-ADC, the
following design parameters must be considered: the resolution
of the LC-ADC, M , the counter clock frequency, Fc, and the
counter clock resolution N . These parameters simultaneously
impact the sampling accuracy of the level-crossing ADC as
well as accurate time tracking between two consecutive event-
driven samples. First, the resolution, M , maps the number of
quantization levels (2M ) in the LC-ADC. If M is too high,
too many level-crossings are triggered which might produce
more data than an SAR ADC [9]. If M is too low, important
level-crossings will be missed and the signal-to-distortion ratio
will be significantly decreased. For a fair evaluation, in this
section, we design and evaluate ten LC-ADC models using
resolutions M = 2, 3, . . . , 11, respectively. For each of these
resolutions, the ideal counter frequency and counter resolution
are modeled as presented in the following subsections.

A. Selecting the Counter Clock Frequency

The fastest signal variations in ECG signals can be seen
around the QRS complex as shown in Fig. 1b. In fact, these
amplitude variations are larger in ECG signals with patholog-
ical abnormalities than normal conditions. The counter clock
frequency should be able to keep up with these fast ampli-
tude variations between two consecutive LC-ADC samples.
Violation of this condition will lead to clipped shapes in
the QRS complex [3]. Furthermore, Fc should also be fast
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Fig. 4: Minimum Fc required to accurately model event-driven
data at different LC-ADC resolutions (M).

enough to minimize time-quantization errors in mapping TI
as described in Section IIA. In [3], a maximal slope condition
is used to determine Fc. In general the maximal obtained
from any random sample can be a statistically unreliable
measure and could lead to significant over or under estimates
of the typical maximum which is what, we argue, one should
design according to. Thus the approach we adapt here is to
estimate the CDF (Cumulative Distribution Function) of the
ECG slopes and take the 99.9% level as being a reliable
estimate of the typical maximum slope.

Consider the vector x⃗ containing the magnitude of slopes in
the entire MIT-BIH arrhythmia dataset. Through a cumulative
distributive function, find the value, xo, in x⃗, for which the
magnitude of slopes in the dataset are less than or equal to
xo, 99.9% of the time. Therefore, xo and corresponding Fc
can be calculated as:

P

(∣∣∣∣dECGin

dt

∣∣∣∣ ≤ xo

)
≃ 0.999 (5)

⇒ Fc ≥ xo

q
(6)

Fig. 3 shows the cumulative distributive function of magnitude
of slopes in the MIT-BIH dataset with xo shown at 99.9%.
Fig. 4 shows the value of Fc obtained in this manner as a func-
tion of the LC-ADC resolution (M ) obtained by simulation
over the entire MIT-BIH Arrhythmia dataset. These result are
also summarized in Section IIIC, Table I. As M is increased,
the LSB size, q decreases, thereby increasing the counter clock
frequency required to capture fast slopes in the ECG signal. At
M = 8 bits, the minimum required Fc is 4744.24Hz, which
is less than half of that used in [3] for the same LC-ADC
resolution.

B. Determining the Counter Clock Resolution

Lastly, the final design parameter, counter clock resolution
(N), directly impacts the number of bits per second generated
by the LC-ADC, defined as the stream-bit-rate (sbr). Mostly,
sbr is dominated by the level-crossing rate (lcrate), which
is the average sampling rate (i.e. the average level crossing
rate) of the LC-ADC. However, as described in Section IIA,
the LC-ADC design presented in this study can also output a
tuple at every clock rollover i.e, every (2N−1)

Fc
seconds if there

has been no level crossing during this time1. If N is chosen
to be very small, too many tuples are generated. Similarly, if
N is too high, the size of TI (N-bit word) will be large. In
other words, the number of bits per tuple increases linearly as
N is increased. It is worth noting that this approach does not
add any additional overhead in terms of the tuple transfer rate
as it occurs quite infrequently. We propose to find the optimal
value of N for which the sbr is minimum. The sbr can be
defined as,

tuple rate =max

(
Fc

2N
, lcrate

)
(7)

sbr =tuple rate ∗ (M +N) (8)

We simulated sbr over N = 3, 4, . . . , 16 using the resolutions,
M and counter clock frequency, Fc, pairs estimated in the
previous subsections. Fig. 5 shows the sbr for varying counter
clock resolution (N) over different LC-ADC resolutions (M).
In each sub-figure, the optimal choice of N for which sbr is
minimum is marked as No. It can be observed that as N grows
large, sbr grows linearly. When M and N are both small, sbr
is large due the tuple rate being dominated by the clock roll-
over samples. When M is large enough, however, tuple rate is
dependent on the LSB size. Fig. 6 summarizes the optimal N
choice for each resolution of the LC-ADC. It can be observed
that when M is big enough and the sbr is largely dependent
on the LSB size (q), the counter clock resolution (N) does
not need to be too large. However, when M is small, N must
be chosen higher so as not to generate too many tuples from
counter clock roll-over.

In the next subsection, the three chosen design parameters,
i.e. counter clock frequency (Fc) and counter clock resolution
(N ) for each LC-ADC resolution (M ) are evaluated for
compression performance and signal quality.

C. Evaluation of LC-ADC Models

The LC-ADC design parameters and the respective design
conditions they must meet are summarized in Fig. 2a. It
also presents the LC-ADC evaluation criteria using the two
performance metrics, compression ratio (CR) and signal-to-
distortion ratio (SDR), introduced in Section IIB. These can
help designers choose the right LC-ADC model for their ap-
plication. Fig 2b shows the LC-ADC evaluation methodology
used in this subsection. We converted the 48 recordings in

1Other design options include increasing N such that the smallest slope in
the ECG signal can be captured or to add an overflow flag in the hardware
design. However, these would add further complexity in the downstream
processing. Repeating a tuple is a simpler solution which adds very little
complexity.
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Fig. 5: The stream-bit-rate for varying counter clock resolution (N) over different LC-ADC resolutions (M).

TABLE I: Compression and Signal Quality Analysis of LC-
ADC Models

M Fc (Hz) N CR SDR (dB)
2 74.13 8 83.96 -2.93
3 148.26 8 60.04 -1.10
4 296.51 7 30.34 2.72
5 593.03 7 13.11 9.06
6 1186.06 7 6.46 15.61
7 2372.12 4 1.59 19.91
8 4744.24 3 0.46 24.94
9 9488.49 3 0.23 29.92
10 18976.97 3 0.12 34.54
11 37953.94 3 0.06 38.68

the MIT-BIH Arrhythmia dataset to event-driven data using
the ten (M, Fc, N) value sets summarized in Table I, then
reconstructed the signals to Fc using linear interpolation and
evaluated them using CR and SDR. The aim is to select LC-
ADC models that maximize the SDR subject to a CR greater
than 1.5.

Fig. 7 shows the compression ratio at different resolutions
of M. A CR of 1 indicates no compression, while for CR ≤
1, the LC-ADC model generates more samples than a Nyquist
Sampling ADC. A compression ratio greater than 1.5 would
indicate acceptable compression. It can be observed that for
M > 7 bits, the CR is less than 1, which means a Nyquist
sampling ADC will be better for high-resolution applications.
For models with M ≤ 7, good compression can be observed.

Ideally, an LC-ADC must maximize the SDR for a given
CR. We extend this condition to also include the signal quality
criteria presented in eq. (4). However, it must be noted that for

some ECG applications, an SDR less than 21dB might also
be acceptable. Fig. 8 shows the SDR at different resolutions
of M. The models with M ≥ 7 have SDR close to the 21dB
criteria. However, the most promising trade-off between CR
and SDR can be observed at M = 7. To study this LC-ADC
resolution further, we looked into varying the counter clock
resolution (N). The MIT-BIH Arrhythmia dataset is originally
sampled at 360Hz using an 11-bit ADC. In order, to sample
close to the Fc of 2372.12 Hz for M= 7 bits, we first up-
sample the entire database to 38160Hz. From this up-sampled
database, we then sample at Fc = 2385Hz, which is 0.54%
greater than the minimum required Fc at this resolution. Then
using M= 7 bits and Fc = 2385Hz, we varied N from 4 to
8-bits to search over the curve created with these values (see
M=7 bits in Fig. 5). Beyond 8-bit counter clock resolution,
the sbr starts increasing linearly and therefore, excluded from
analysis here. The results are summarized in Table II.

In all N we simulated the case where the step-size between
the two LC-ADC thresholds, ∆v, was set to q (i.e. 1 LSB) but
additionally for the N = 6 to 8 bits models were also evaluated
at ∆v = 2q as they have SDR > 21dB. From the eight models
summarized in this table, MDL6, MDL7, and MDL8 follow
the criteria of eq. (4). However, MDL8 gives the most ideal
CR and SDR trade-off at a slightly higher sbr of 1320.92 bps.
Moreover, MDL4, MDL5, and MDL6b, MDL7b, and MDL8b
with ∆v = 2q might still be acceptable for certain applications
with SDR > 20dB. All of these models are evaluated for event-
driven arrhythmia classification in the following section.

IV. CARDIAC ARRHYTHMIA CLASSIFICATION USING
EVENT-DRIVEN ECG

In this section, a new deep learning based classifier is
presented and the eight LC-ADC models summarized in Ta-



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBCAS.2021.3136206, IEEE
Transactions on Biomedical Circuits and Systems

6

TABLE II: Compression and Signal Quality Analysis of LC-
ADC Models at M = 7 bits and Fc = 2385 Hz

Model N LSB CR SDR (dB) sbr (bps)
MDL4 4 q 1.59 19.91 1036.82
MDL5 5 q 2.34 20.46 1074.44
MDL6 6 q 2.92 21.19 1147.75
MDL7 7 q 3.25 21.99 1233.14
MDL8 8 q 3.38 22.57 1320.92

MDL6b 6 2q 3.66 20.66 -
MDL7b 7 2q 4.45 20.75 -
MDL8b 8 2q 4.94 20.25 -

ble II are analyzed for event-driven ECG classification. Then,
a complexity analysis in terms of floating point operations
per second for each model is presented and a comparison is
made with uniformly sampled data. Lastly, an open-source
event-driven ECG dataset is summarized based on the best
performing LC-ADC models from this study.

A. Deep Learning Based Classifier

We designed a one-dimensional convolutional neural net-
work as illustrated in Fig. 9. This 1D-CNN model has three
convolutional layers followed by two fully-connected layers.
Each convolutional layer has 64 filters of size 3, each. A stride
of 1 is maintained throughout the network. Batch normaliza-
tion and max pooling is applied after each convolutional layer
to accelerate training and to reduce over-fitting. Max pooling
also helps reduce complexity of the network in subsequent
layers. To further ensure that over-fitting is minimized a
dropout of 50% probability is applied between the two fully
connected layers. Sparse categorical cross-entropy is used as

Fig. 6: Counter clock resolution (N) that minimizes the stream-
bit-rate over different LC-ADC resolutions (M).

Fig. 7: The compression ratio (CR) over the different LC-ADC
resolutions (M). A CR of 1 represents no compression.

Fig. 8: SDR vs LC-ADC resolutions (M). SDR = 21dB
represents the cross over line for ’good’ quality signals.

the loss function with an ADAM optimizer and a learning
rate of 0.001. The exponential decay rate for the 1st and 2nd
moment estimates is set to 0.9 and 0.99, respectively.

The size of the input layer varies for each model based
on the number of features. The output layer uses a softmax
layer and classifies each beat into one of the following four
categories: normal beat (N), supraventricular ectopic beats (S),
ventricular ectopic beats (V), and fusion beats (F). The promi-
nent morphological features of an ECG beat is contained in
approximately an 800ms window [12] centered around the
QRS peak as shown in Fig. 1b. For every model, we take
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Fig. 9: Proposed one-dimensional CNN for event-driven ECG classification

300ms before the R peak and 400ms after the R peak as a
feature set, the size of which is indicated by features variable
of the input vector in Fig. 9. For event-driven models, a second
channel containing time at each sample relative to the R peak
is added. The number of channels are indicated as depth of
the input vector in Fig. 9. Finally, to handle the extreme class-
imbalance inherent in the dataset, we use Synthetic Minority
Oversampling TEchnique (SMOTE) to statistically balance the
training set.

B. Classification Performance
A global training and verification approach is applied for

classification of arrhythmias in the MIT-BIH Arrhythmia
dataset. The four paced records 102, 104, 107 and 217 are
excluded from the analysis as recommended by the As-
sociation for the Advancement of Medical Instrumentation
(AAMI) [26]. All the beats from the remaining records are
split into 65% training set, 10% validation set, and 25% test
set. For a fair comparison, we have also tested the classifier
on uniformly-sampled data using the MIT-BIH database as is,
named MDL0 from here on. The MIT-BIH database is sampled
at 360Hz using an 11-bit ADC. Since time information is
implicit in uniformly sampled data, we only use the amplitudes
at each sample as input to the 1D-CNN. The input feature
vector for the uniform model is of the size 238x1 (features,
depth). While, all event-driven models have an input vector
size of 120x2 (features, depth). Accuracy (ACC), sensitivity
(SEN), positive predictivity (+PV), and false positive rate
(FPR) are used to assess the classifier performance and are
defined as follows:

ACC =
(TP + TN)

(TP + FP + FN + TN)
(9)

SEN =
TP

(TP + FN)
(10)

+PV =
TP

(TP + FP )
(11)

FPR =
FP

(FP + TN)
(12)

where TP, TN, FP, and FN are the number of true positives,
true negatives, false positive and false negatives per class.
The classification results for each using the eight event-driven
models and the uniformly sampled, MDL0, are summarized
in Table III. The classification performance of MDL0 is the
benchmark for comparison with ACC, SEN and +PPV, all
above 92%. In terms of overall performance considering all
four classification parameters, MDL5 has the closest perfor-
mance to MDL0. This is closely followed by MDL7b, MDL4
and MDL6b. If overall sensitivity is considered, MDL6b and
MDL5 at 89.99% and 89.98% SEN, respectively, are closest in
performance to MDL0. The overall sensitivity performance of
event-driven models can be further improved by using a better
class-balancing technique. Next, the overall +PV is greater
than 90% for all event-driven models except MDL8b, while
the FPR is lowest for MDL5 from all event-driven models.
Classification performance by itself is not a good indicator
for evaluation of event-driven models. We must also consider
the complexity, therefore, we now present complexity analysis
in the next subsection.

C. Accuracy-Complexity Trade-off
Table IV summarizes the complexity analysis of event-

driven and uniformly sampled 1D-CNN models. Since all
event-driven models summarized in Table II use an LC-
ADC resolution of 7 bits, their feature sets can be roughly
captured in 120 features with 2 channels (depth). Therefore,
the number of trainable parameters for the 1D-CNN classifier
are consistently 132,676 for all event-driven models. The
uniformly sampled model takes 238 features with 1 channel
(depth), yet the number of trainable parameters are doubled
at 255,748 compared to the event-driven models. We also
calculated the number of floating point operations per second
(FLOPS) required by the event-driven and uniformly sam-
pled models. The uniformly sampled model requires 4883224
FLOPS, while the event-driven models only require 49% of
this at 2397144 FLOPS. As expected, the uniformly sampled
model has superior classification performance compared to all
event-driven models.
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TABLE III: Arrhythmia Classification Summary

Model Class ACC SEN +PV FPR

MDL0

N 99.09 99.59 99.40 5.10
S 99.45 86.97 92.46 0.20
V 99.65 97.73 97.29 0.20
F 99.80 85.71 90.00 0.08

Average 99.49 92.40 94.78 1.39
MDL4 N 98.39 99.48 98.72 10.87

S 98.94 72.65 86.55 0.32
V 99.49 94.85 97.84 0.16
F 99.75 82.86 86.57 0.11

Average 99.14 87.46 92.42 2.86
MDL5 N 98.53 99.20 99.14 7.19

S 99.03 81.48 83.04 0.47
V 99.51 96.88 96.12 0.29
F 99.76 82.38 88.26 0.09

Average 99.20 89.98 91.64 2.01
MDL6 N 98.57 99.55 98.86 9.71

S 99.13 76.98 90.01 0.37
V 99.49 95.19 97.45 0.19
F 99.74 80.48 87.56 0.10

Average 99.23 88.05 93.47 2.59
MDL7 N 98.34 99.32 98.82 9.97

S 98.96 75.68 84.90 0.37
V 99.42 95.07 96.06 0.16
F 99.69 78.51 83.33 0.13

Average 99.10 87.14 90.77 2.66
MDL8 N 98.31 99.36 98.75 10.57

S 98.93 76.55 83.31 0.43
V 99.43 94.22 97.53 0.18
F 99.71 77.61 86.70 0.10

Average 99.09 86.92 90.42 2.82
MDL6b N 98.50 99.20 99.12 7.42

S 99.07 81.91 83.98 0.44
V 99.44 95.98 96.09 0.29
F 99.71 82.86 82.86 0.14

Average 99.18 89.99 90.51 2.07
MDL7b N 98.53 99.53 98.83 9.94

S 99.13 75.40 91.24 0.20
V 99.43 95.02 96.83 0.23
F 99.72 81.43 84.24 0.13

Average 99.20 87.84 92.78 2.62
MDL8b N 98.23 99.01 99.01 8.36

S 98.92 81.04 80.00 0.57
V 99.37 95.13 95.89 0.31
F 99.69 82.86 80.93 0.16

Average 99.05 89.51 88.95 2.35

In order to better understand the accuracy-complexity trade-
off in event-driven models, we have analyzed the four most
important parameters for a comparative analysis, namely the
classification performance and complexity of the classifier as
well as the compression and the signal quality of the ECG
data. Fig. 10 shows the comparison with sensitivity of all
models with their respective compression ratios. The models
that follow the signal quality criteria of eq. (4) are colored
blue, while those that do not are colored orange. Fig. 11
and Fig. 12 present a similar comparison using accuracies
and positive predictive values of all models. In terms of
accuracy, in Fig. 11, MDL6 offers the best accuracy and a

TABLE IV: Complexity Analysis of Event-Driven and Uni-
formly Sampled 1D-CNN Models

Type Input Vector Parameters FLOPS
Event-Driven 120x2 132,676 2397144

Uniform 238x1 255,748 4883224

Fig. 10: Sensitivity vs CR vs FLOPS for LC-ADC models

good SDR at >21dB. This is the 7-bit model at counter clock
resolution of 6 bits. MDL5 and MDL7b are close at 99.2%
accuracy, while these models use N=5 with ∆v=1LSB and
N=7 with ∆v=2LSB, respectively. Both MDL5 and MDL7
have SDR less than 21dB. Overall, MDL7b offers the best
compression at 4.45 compared to the CR of 2.92 and 2.34 in
MDL6 and MDL5, respectively. In this regard, considering
the overall classification accuracy, MDL7b offers the best
accuracy-compression-complexity trade off at SDR=20.75dB.
In terms of positive predictive value, in Fig. 12, MDL6 still
offers the best compression to signal-quality trade-off with
excellent +PV and SDR greater than 21dB. This is closely
followed by MDL4 and MDL7b, both of which have less
than 21dB SDR. However, at CR=1.59, MDL4 offers the
lowest compression. If higher signal compression is desired,
MDL7b offers a better trade off with SDR of 20.75dB, which
would still be acceptable for many applications. This higher
compression can be attributed to the larger step-size between
the upper and lower thresholds of the LC-ADC. It must be
noted that higher compression rates imply lesser sampling by
the LC-ADC and thereby, lesser power consumption in the
circuit.

For biomedical applications, sensitivity is often considered
the most important parameter as the cost of a misclassified
true positives is much higher than the cost of misclassified
true negatives. Therefore, in terms of sensitivity of different
sampling schemes presented in Fig. 10, MDL5, MDL6 and
MDL8b offer the best classification-compression trade off. All
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Fig. 11: Accuracy vs CR vs FLOPS for LC-ADC models

Fig. 12: Positive predictivity vs CR vs FLOPS for LC-ADC
models

three of these models offer greater than 20dB SDR. With
sensitivity at approximately 90%, MDL5 and MDL6 offer
a compression of 2.34 and 2.93, respectively. In comparison
with the uniformly sampled MDL0, MDL8b has 2.89% less
SEN but offers a CR of 4.94. Overall, considering all three
parameters, MDL6, offers the best performance with CR of
2.92 and SDR of 21.19. Therefore, a 7-bit LC-ADC with a
2385Hz counter clock frequency and a 6-bit counter clock
resolution will offer comparative classification performance
to a Nyquist ADC at 11-bits and 360Hz. The LC-ADC will
save power by reducing the average sampling rate while
maintaining good signal quality. Classification using the LC-

ADC will require only 49% of the FLOPS required by data
generated from a Nyquist sampling ADC.

D. Open-Source Event-Driven ECG Dataset

To the best of our knowledge, there is no publicly available
non-uniformly sampled ECG dataset with arrhythmia labels
for researching event-driven data processing and classification.
Therefore, in this study, we used the popular MIT-BIH arrhyth-
mia database and different LC-ADC models to derive a non-
uniformly sampled event-driven ECG dataset. The dataset is
generated using a MATLAB script and can generate LC-ADC
data at different LC-ADC resolutions, clock frequencies and
counter clock resolutions. The event-driven ECG dataset with
arrhythmia annotations and corresponding MATLAB scripts is
open-sourced in authors’ website2 to enable further research
on the topic.

V. CONCLUSIONS

A new LC-ADC design and evaluation methodology was
presented. For a given LC-ADC resolution, the minimum
required counter clock frequency was estimated using the
standard deviation means of 99.9 percentile magnitude of
slopes. Furthermore, the counter clock resolution was chosen
based on the number of bits that produce the minimum stream-
bit-rate per second. The stream-bit-rate was estimated using
the clock roll-over frequency, the average sampling rate of the
LC-ADC and the size of the tuples generated by the LC-ADC.
Using these design methodologies, ten different event-driven
models were analyzed in terms of compression and signal-to-
distortion ratio. Since the 7-bit LC-ADC model offered the
best compression and signal-quality, this model was further
analyzed at different counter clock resolutions and different
gaps between the LC-ADC thresholds. Then, a new 1D-CNN
model was presented for cardiac arrhythmia classification.
The event-driven models and a uniformly sampled model was
analyzed for classification performance using the 1D-CNN.
Then a thorough accuracy-complexity analysis was presented.
It was concluded that a 7-bit LC-ADC at 2385Hz counter clock
frequency and a 6-bit counter clock resolution offers the best
accuracy-compression-complexity trade off. With classifica-
tion performance comparable to a Nyquist sampled ADC, this
LC-ADC model offers 3x data compression while maintaining
the signal-to-distortion ratio of more than 21dB. Furthermore,
this model requires only 49% FLOPS for classification in
comparison with a uniformly sampled model. Therefore, the
new LC-ADC evaluation and design methodology presented in
this paper is a good tool for designers to choose an appropriate
LC-ADC model for their event-driven applications, which may
not be limited to ECG data. Finally, we developed an open-
source event-driven ECG database with arrhythmia annotations
for enabling further research on non-uniformly sampled data
processing.

2The open-source event-driven ECG dataset is available at
https://github.com/jedaiproject/Open-Source-Event-Driven-ECG-Dataset
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