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1. Introduction

Let (Bn)n∈N be a sequence of balls in R
d, d ≥ 1, endowed with any norm ‖ ·‖. Starting

from some simple geometric property of the set of points falling in infinitely many of the
Bn’s, i.e. lim supn→+∞ Bn, finding estimates for the Hausdorff dimension of the limsup
sets of shrunk versions of (Bn)n∈N into smaller sets is a natural and old question, which
has been studied in depth. The first result goes back to Jarnik and Besicovitch, who
proved that for every τ ≥ 1, the dimension of the set

⋂
k∈N∗

⋃
q∈N

∗

q≥k

⋃
p∈Z

B(p/q, 1/q2τ )

has Hausdorff dimension 1
τ (although the result was not stated in terms of sequence

of balls such that the limsup has full Lebesgue measure, the proof uses explicitly this
geometric fact).

It was first established by Jaffard [15] that if lim supn→+∞ Bn has full Lebesgue mea-
sure, then for every τ ≥ 1, the Hausdorff dimension of lim supn→+∞ Bτ

n (where for
a closed ball B = B(x, r) of center x and radius r ≥ 0, the ball Bτ is defined by
Bτ = B(x, rτ )) is bounded by below as follows:

dimH(lim sup
n→+∞

Bτ
n) ≥

d

τ
.

Thanks to this result, Jaffard was able to compute the multifractal spectrum of cer-
tain lacunary wavelet series [15]. This so-called ubiquity result was generalized by Dod-
son & al. in [10], where the notion of ubiquitous system is introduced, and further
refined by Beresnevitch and Velani in [6]. Given a metric space X and an Ahlfors regular
Radon measure µ (i.e. there exists α ≥ 0 such that for every ball B of radius r small
enough, one has C−1rα ≤ µ(B) ≤ Crα for some uniform constant C > 0), Bersenevich
and Velani prove that as soon as lim supn→+∞ Bn has full µ-measure, then one has
H

α
τ (lim supn→+∞ Bτ

n) = +∞, where H
α
τ denotes the Hausdorff measure of dimension

α
τ . Different approaches, using various distribution properties of the centres of the balls
Bn, were also developed intensively (see the monographs [9] and [11]).

The inhomogeneous case, i.e when the information about lim supn→+∞ Bn is not given
by the Lebesgue measure, or an Ahlfors regular one as in [15] and [6], but rather by a
multifractal measure possessing scale invariance like properties, has been studied by Bar-
ral and Seuret in [2, 3]. For instance, they proved that for a quasi-Bernoulli probability
measure µ (see Definition 2·3), if µ(lim supn→+∞ Bn) = 1, then the same type of result
stands. Namely, if dim(µ) denotes the dimension of the measure µ (see Definition 2·2 and
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Proposition 2·3 below), then one has

dimH(lim sup
n→+∞

Bτ
n) ≥

dim(µ)

τ
. (1·1)

This type of result has many applications to the multifractal analysis of functions, mea-
sures and capacities (see, e.g., [2, 4, 5]).

Recently, in an other direction, Wang and Wu, working with the ‖·‖∞ norm, dealt with
the anisotropic case, when the balls (which are Euclidean cubes) are shrunk into thin
rectangles and when the reference measure is the Lebesgue measure (or an Alhfors regular
one) in [18]. More precisely, for any sequence of balls (Bn =

∏d
i=1[x

i
n, x

i
n + rn])n∈N in

(Rd, ‖ ‖∞), given 1 ≤ τ1 ≤ τ2 ≤ ... ≤ τd, these authors consider the collection consisting
of the Bn’s shrunk into rectangles defined by

Rn =

d∏

i=1

[xi
n, x

i
n + rτin ], for every n ∈ N. (1·2)

They proved that if lim supn→+∞ Bn has full Lebesgue measure, then

dimH(lim sup
n→+∞

Rn) ≥ min
1≤i≤d

(
d+

∑
1≤j≤i τi − τj

τi

)
. (1·3)

Later, based on the remark that the technique used in [18] carries a certain form of
genericity, Rams and Koivusalo were able to deduce a general principle of computation
for balls shrunk into sets of arbitrary (open) shapes in [16].

The present paper aims at shedding some light on how anistropic settings can be
handled within the inhomogeneous case. As a consequence of our main result, following
the previous notations, we obtain that if lim supn→+∞ Bn has full measure for a quasi-
Bernoulli measure µ fully supported on [0, 1]d, then

dimH(lim sup
n→+∞

Rn) ≥ min
1≤i≤d

(
dim(µ) +

∑
1≤j≤i τi − τj

τi

)
.

2. Preliminaries and statement of the main result

2·1. Some notations.

The space R
d is endowed with the infinity norm ‖ ‖∞.

For x ∈ R
d and r ≥ 0, B(x, r) stands for the closed ball of center x and radius r,

and for t ≥ 0 and τ ∈ R, setting B = B(x, r), tB and Bτ denote the balls B(x, tr) and
B(x, rτ ) respectively.

If E ⊂ R
d, E̊ and ∂E denote its interior and its boundary, |E| its diameter, and if E is

a Borel set, B(E) denotes the trace of the Borel σ-algebra B(Rd) on E. Also, dimH(E)

and dimP (E) respectively denote the Hausdorff dimension and the packing dimension of
E (see, e.g., [12] for the definitions).
Ld stands for the Lebesgue measure on (Rd,B(Rd)), and P([0, 1]d) stands for the set

of Borel probability measures on ([0, 1]d,B([0, 1]d)). For µ ∈ P([0, 1]d), one denotes by
supp(µ) the topological support of µ.
Md(R) and Od(R) are the space of d × d real matrices and the group of orthogonal

matrices of Md(R).
If r1, . . . , rd are d real numbers, diag(r1, ..., rd) stands for the diagonal matrix A ∈
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Md(R) such that Ai,j = riδi,j for all 1 ≤ i, j ≤ d, where δi,j = 1 if i = j and δi,j = 0

otherwise.
Given µ ∈ P([0, 1]d) and T : [0, 1]d 7→ [0, 1]d a measurable function, one defines

Tµ = µ ◦ T−1.

For p ∈ N, Dp stands for the set of closed dyadic subcubes of [0, 1]d of generation p, i.e

Dp =

{
d∏

i=1

[ki2
−p, (ki + 1)2−p] : ∀1 ≤ i ≤ d, 0 ≤ ki ≤ 2p − 1

}
.

For D ∈ Dp, we also denote p by p(D). Observe that D ∈ Dp(D).

2·2. Some definitions and recalls

Definition 2·1. Let µ ∈ P([0, 1]d). For x ∈ supp(µ), the local lower and upper di-

mensions of µ at x are

dimloc(µ, x) = lim inf
r→0+

log(µ(B(x, r)))

log(r)

and

dimloc(µ, x) = lim sup
r→0+

log(µ(B(x, r)))

log(r)
.

One also sets dimH(µ) = essinfµ(dimloc(µ, x)) and dimP (µ) = esssupµ(dimloc(µ, x)).

It is known that (see [12] for instance)

dimH(µ) = inf{dimH(E) : E ∈ B([0, 1]d), µ(E) > 0}

and

dimP (µ) = inf{dimP (E) : E ∈ B([0, 1]d), µ(E) = 1}.

Definition 2·2. A measure µ ∈ P([0, 1]d) is said to be exact dimensional if there

exists α ∈ R+ such that for µ-almost all x ∈ [0, 1]d, one has dimloc(µ, x) = dimloc(µ, x) =

α, i.e. dimH(µ) = dimP (µ) = α. In this case α is simply denoted by dim(µ).

We now define quasi-Bernoulli measures associated with the dyadic cubes (our main
results easily extend to the case of b-adic cubes).

Definition 2·3. Let µ ∈ P([0, 1]d). For D ∈ B([0, 1]d) such that µ(D) > 0, define

µD =
µ|D
µ(D)

.

When D is a closed dyadic subcube of [0, 1]d, TD : D → [0, 1]d stands for the canonical

affine mapping which sends D onto [0, 1]d. In addition, when µ(D) > 0 one defines

µD = TDµD ∈ P([0, 1]d).

The measure µ is said to be quasi-Bernoulli when there exists a constant Cµ ≥ 1 such

that for every p ∈ N and every D ∈ Dp with µ(D) > 0, one has

1

Cµ
µ ≤ µD ≤ Cµµ. (2·1)
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The measure µD is the renormalized restriction of µ to D and µD is the rescaled version
of µD on the unit cube.

Exemple 2·1. Define Λ = {0, 1}, Σ = ΛN, σ be the shift operator on Σ, and endow Σ

with the standard ultra-metric distance. Let π the canonical projection of Σ onto [0, 1].

For any Hölder potential φ on Σ, denote by νφ the unique equilibrium state associated

with φ on Σ (see [8]). Then the measure µφ = νφ ◦π
−1 is quasi-Bernoulli, and νφ is also

called a Gibbs measure associated with ϕ. This follows from the fact that there exists a

number P (ϕ), the topological pressure of ϕ, and C ≥ 1, such that for all x ∈ Σ, for all

n ∈ N:

C−1 ≤
νφ ({y = (yi)

∞
i=1 ∈ Σ : yi = xi for all 1 ≤ i ≤ n})

e−nP (ϕ)+
∑n−1

k=0 ϕ(σkx)
≤ C.

Note that there exist quasi-Bernoulli measures obtained as projections of measures of

Gibbs type associated to potentials φ with much weaker regularity properties (see [17, 1]).

Remark 2·2. It is easily seen that a quasi-Bernoulli measure µ, if not supported on

an affine hyperplane, is such that µ(∂[0, 1]d) = 0. For otherwise its orthogonal projection

onto at least one of the sets {0}i × [0, 1] × {0}d−i−1, which is quasi-Bernoulli as well,

would have an atom at (0, . . . , 0) or (0, . . . , 0︸ ︷︷ ︸
i

, 1, 0, . . . , 0︸ ︷︷ ︸
d−i−1

). This should imply that it is a

Dirac mass, hence µ is supported on a hyperplane. This property will be used in the proof

of our main result.

Let us recall the following result.

Proposition 2·3 ([13]). A quasi-Bernoulli probability measure is exact dimensional.

2·3. Main statement

Our main result is the following. Recall our notations (1·2) for (Rn)n∈N.

Theorem 2·4. Let µ ∈ P([0, 1]d) be a quasi-Bernoulli probability measure fully sup-

ported on [0, 1]d. Let (Bn := B(xn, rn))n∈N be a sequence of balls in [0, 1]d such that

limn→+∞ rn = 0 and µ(lim supn→+∞ Bn) = 1.

Let 1 ≤ τ1 ≤ ... ≤ τd be d real numbers, τ = (τ1, . . . , τd) and (On)n∈N ∈ Od(R)
N be a

sequence of orthogonal matrices. For n ∈ N, set

Rn = xn +OnR̃n, where R̃n = diag(rτ1n , ..., rτdn ) · [0, 1]d (2·2)

and

s(µ, τ ) = min
1≤k≤d

(
dimH(µ) +

∑
1≤j≤k τk − τj

τk

)
. (2·3)

One has

dimH(lim sup
n→+∞

Rn) ≥ s(µ, τ ). (2·4)

Remark 2·5. (1) For convenience, in particular to follow the point of view adopted

in [18], the results are stated with R
d endowed with ‖ · ‖∞ and for balls shrunk into

rectangles with one vertex equal to the center of the shrunk ball. However, we emphasize

that, up to very slight modifications of the proof (essentially by adding constants at some

places), they still hold for another norm and if the balls are shrunk into rectangles or

ellipsoids containing the center of the initial cube.
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(2) Given τ > 1, by taking τi = τ for all 1 ≤ i ≤ d and On = Id for all n ∈ N, ,

Theorem 2·4 reduces to Barral-Seuret’s theorem [3] in the special case of quasi-Bernoulli

measures, i.e (1·1).

(3) By taking µ = Ld and On = Id for all n ∈ N, we recover the result established

in [18], i.e., formula (1·3).

Remark 2·6. The proof does not entirely use the exact dimensionality of µ, the key

property is the quasi-Bernoulli property 2·1. However, the fact that dimH(µ) = dimH(µ)

can be used to prove dimH(lim supn→+∞ Rn) ≤ s(µ, τ ) under additional assumptions.

The existence of upper bounds for the Hausdorff dimension of limsup of sets (e.g. of

rectangles) included in balls (Bn)n≥N will be achieved in an independent paper, in a

general setting.

3. Proof of theorem 2·4

Fix once and for all the quasi-Bernoulli measure µ, 1 ≤ τ1 ≤ ... ≤ τd and τ =

(τ1, ..., τd). Recall that α = dimH(µ) is the dimension of µ.
The lower bound of Theorem 2·4 is obtained by constructing a Cantor set included in

lim supn→+∞ Rn, and of dimension larger than or equal to s(µ, τ ). Before starting the
construction, two helpful results are recalled.

Proposition 3·1 (Mass distribution principle, see [12]).
Let A ∈ B(Rd) and µ ∈ M(R)d. Suppose that there exists C > 0 and r > 0, 0 ≤ s ≤ d,

such that for every ball of Rd B = B(x, r′) with r′ < r, µ(B) ≤ C(r′)s. Then Hs(A) ≥
µ(A)
C . In particular, if µ(A) > 0 then dimH(A) ≥ s.

The second one is a classical technical lemma.

Lemma 3·2. Let A = B(x, r) and B = B(x′, r′) be two closed balls, and q ≥ 3 be such

that A ∩B 6= ∅ and A \ (qB) 6= ∅. Then r′ ≤ r and qB ⊂ 5A.

Proof. Consider z ∈ A \ qB. One has

qr′ ≤ ‖z − x′‖∞ ≤ ‖z − x‖∞ + ‖x− x′‖∞ ≤ r + r + r′.

Hence q−1
2 r′ ≤ r, and in particular, one necessarily has r′ ≤ r and qr′ ≤ 2r + r′ ≤ 3r.

Furthermore, if y ∈ qB, then

‖y − x‖∞ ≤ ‖x′ − y‖∞ + ‖x′ − x‖∞ ≤ qr′ + r′ + r ≤ 5r.

This concludes the proof.

We construct thereafter a Cantor set K as well as a sequence of strictly positive real
numbers (εp)p∈N and a Borel probability measure η such that:

• K ⊂ lim supn→+∞ Rn and η(K) = 1,

• The sequence (εp)p∈N is decreasing with limp→+∞ εp = 0 and there exists a con-
stant C such that for any p ∈ N, there exists rp > 0 verifying, for any ball B ⊂ R

d

of radius r less than rp,

η(B) ≤ C.rs(µ,τ )−4εp . (3·1)
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Then, applying the mass distribution principle (Proposition 3·1), since η(K) = 1 one
deduces that, for any p > 0,

dimH(lim sup
n→+∞

Rn) ≥ dimH(K) ≥ s(µ, τ )− 4εp,

and letting p → +∞ concludes the proof.

The construction of (K, η) is decomposed into several steps. Without loss of generality
we assume that s(µ, τ ) > 0. Fix a decreasing sequence (εp)p∈N converging to 0 at ∞,
such that ε0 ≤ max(1, s(µ, τ )/4).

Step 1: Initialization

Let us start with a definition.

Definition 3·1. For ν ∈ P([0, 1]d), β ≥ 0, and ε, ρ > 0, define

Eβ,ε,ρ
ν =

{
x ∈ [0, 1]d : ∀ 0 < r ≤ ρ, B(x, r) ⊂ [0, 1]d and ν(B(x, r)) ≤ rβ−ε

}
.

Then set

Eβ,ε
ν =

⋃

n≥1

E
β,ε, 1

n
ν .

With β = α = dimH(µ), since µ(∂[0, 1]d) = 0 (due to Remark 2·2 and the assumption
that µ is fully supported), for all ε > 0, one has µ(Eα,ε

µ ) = 1. For all p ∈ N, consider
ρp ∈ (0, 1) small enough so that

µ(Eα,εp,ρp
µ ) ≥

1

2
. (3·2)

Now, recall the following covering theorem due to Besicovitch([7]):

Theorem 3·3. There exists a positive integer Qd, depending only on the dimension

d, such that for every E ⊂ [0, 1]d, for every set F = {B(x, r(x)) : x ∈ E, r(x) > 0}, there

are F1, ...,FQd
finite or countable collections of balls all contained in F such that:

• each family Fi is composed of pairwise disjoint balls, i.e ∀1 ≤ i ≤ Qd, L 6= L′ ∈ Fi,

one has L ∩ L′ = ∅,

• E is covered by the families Fi, i.e.

E ⊂
⋃

1≤i≤Qd

⋃

L∈Fi

L. (3·3)

For x ∈ Eα,ε1,ρ1
µ ∩ lim supn→+∞ Bn, consider nx ≥ 1 large enough so that x ∈ Bnx

,
4rnx

≤ ρ1, and

r−ε1
nx

≥ max
{
4Qd4

α−ε1 , ρ
−d/τd
2

}
. (3·4)

Set

Lx = B(x, 4rnx
). (3·5)

Doing so for every x ∈ Eα,ε1,ρ1
µ ∩ lim supn→+∞ Bn provides us with a Besicovith covering

F1 =
{
Lx : x ∈ Eα,ε1,ρ1

µ ∩ lim supn→+∞ Bn

}
such that for every x, the ball Lx is natu-

rally associated with an integer nx ≥ 1 such that x ∈ Bnx
and |Lx| = 8rnx

. Also, the
shrunk rectangle Rnx

verifies Rnx
⊂ Bnx

⊂ Lx. This is illustrated by Figure ??.
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Applying now Theorem 3·3, from the family F1 one can extract Qd finite or countable
families of balls F1

i , 1 ≤ i ≤ Qd, such that:

• ∀ 1 ≤ i ≤ Qd, ∀L 6= L′ ∈ F1
i , it holds that L ∩ L′ = ∅,

• Eα,ε1,ρ1
µ ∩ lim supn→+∞ Bn ⊂

⋃
1≤i≤Qd

⋃
L∈F1

i
L.

Since µ
(
Eα,ε1,ρ1

µ ∩
(
lim supn→+∞ Bn

))
≥ 1

2 , there exists 1 ≤ i1 ≤ Qd such that

µ
( ⋃

L∈Fi1

L
)
≥

µ(Eα,ε1,ρ1
µ ∩

(
lim supn→+∞ Bn

)
)

Qd
≥

1

2Qd
.

Denote by (L
(1)
k )k∈N the sequence of balls such that F1

i1
=
{
L
(1)
k

}

k∈N

, (x
(1)
k )k∈N the

sequence of points such that for all k ∈ N, L(1)
k = L

x
(1)
k

, and set r(1)k = r
x
(1)
k

. There exists

N1 ∈ N so that

µ
( ⋃

1≤k≤N1

L
(1)
k

)
≥

µ
(⋃

L∈F1
i1

L
)

2
.

Set F1 =
{
L
(1)
k

}

1≤k≤N1

. One has

µ
( ⋃

L∈F1

L
)
≥

1

4Qd
. (3·6)

Recall that with every ball L(1)
k are naturally associated the ball B

n
(1)
k

and the rectan-

gle R
n
(1)
k

, where n
(1)
k = n

x
(1)
k

; set R
(1)
k = R

n
(1)
k

. Then define K1, the first generation of

the Cantor set by setting

K1 =
{
R

(1)
k

}

1≤k≤N1

and K1 =
⋃

R∈K1

R.

Finally, measure η1 on the algebra generated by K1 is obtained by concentrating the
µ-measure of the balls Lx on the rectangle Rnx

. More precisely, for 1 ≤ k ≤ N1 set

η1(R
(1)
k ) =

µ
(
L
(1)
k

)

∑
1≤k′≤N1

µ
(
L
(1)
k′

) .

Since for all 1 ≤ k ≤ N1, the center x
(1)
k of L

(1)
k belongs to Eα,ε1,ρ1

µ , recalling that

|L
x
(1)
k

|/2 = 4r
n
(1)
k

≤ ρ1, the disjointness of the L
(1)
j , as well as the inequality (3·6), we

get that for all 1 ≤ k ≤ N1,

η1(R
(1)
k ) ≤ 4Qd

(
4r

n
(1)
k

)α−ε1
≤
(
r
n
(1)
k

)α−2ε1
, (3·7)

where (3·4) has been used.

Step 2: Constructing the second generation

This step consists of two sub-steps: First we associate a set of dyadic cubes with each
rectangle previously obtained, and then we work inside each of these cubes.
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Sub-step 2.1: A set of dyadic cubes inside each R of K1

Consider a rectangle R. There exists an orthogonal matrix O ∈ Od(R), a point x ∈

[0, 1]d and 0 < ℓd ≤ ℓ2 ≤ ... ≤ ℓ1 such that

R = x+OR̃, with R̃ =

d∏

i=1

[0, ℓi].

Set p = −
⌊
log2

(
ℓd

8
√
d

)⌋
. Intuitively, 2−p ≈ ℓd

8
√
d
, so that there are some cubes included

in R with side-length 2−p. We associate with R the set of dyadic cubes

C(R) =

{
D ∈ Dp : D ⊂ R, D =

d∏

i=1

[ki2
−p, (ki + 1)2−p], 8|ki, ∀ 1 ≤ i ≤ d

}
.

Observe that C(R) consists in dyadic cubes of generation p inside R that are quite far
from each other. This will ensure that the rectangles used at a given generation of the
construction of the Cantor set are well separated. Also, there exist a constant Cd ≥ 1

depending only on the dimension d, such that the side length 2−p of each C ∈ C(R)

satisfies C−1
d ℓd ≤ 2−p ≤ Cdℓd, as well as a constant κd ≥ 1 such that

κ−1
d

d∏

i=1

ℓi
ℓd

≤ #C(R) ≤ κd

d∏

i=1

ℓi
ℓd
.

Recalling (2·2), for every n ∈ N, one gets

κ−1
d · r

∑
d
i=1 τi−τd

n ≤ #C(Rn) ≤ κd · r
∑

d
i=1 τi−τd

n . (3·8)

Now we construct a measure η2, which refines the measure η1 by distributing the mass
uniformly between the cubes of C(R) for R ∈ K1. For every 1 ≤ k ≤ N1 and every
D ∈ C(R

(1)
k ), set

η2(D) =
η1(R

(1)
k )

#C(R
(1)
k )

.

By construction, η2(R
(1)
k ) = η1(R

(1)
k ). Recalling (3·7) and (3·8), one gets

η2(D) =
η1(R

(1)
k )

#C(R
(1)
k )

≤

(
r
n
(1)
k

)α−2ε1

κ−1
d ·

(
r
n
(1)
k

)∑d
i=1 −τd+τi

= κd ·
(
rτd
n
(1)
k

)α−2ε1+
∑d

i=1 τd−τi
τd . (3·9)

Sub-step 2.2: Construction in each cube of C(R)

We start with preliminary observations about the measure µ. Recall Definition 2·3.
Since µ is a quasi-Bernoulli measure, for every q ∈ N, every D ∈ Dq such that µ(D) > 0,
for every x ∈ [0, 1]d and r > 0 such that B(x, r) ⊂ D, due to (2·1) one has

µ(B(x, r)) = µ
(
T−1
D (TD(B(x, r)))

)
= µ(D)µD

(
B
(
TD(x),

r

2−q

))

≤ Cµ µ(D)µ
(
B
(
TD(x),

r

2−q

))
.

Thus, for all x ∈ [0, 1]d and r > 0 such that B(x, r) ⊂ [0, 1]d one has

µ
(
B(T−1

D (x), r2−q)
)
≤ Cµ µ(D)µ(B(x, r)). (3·10)
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Also, for every p ∈ N, (2·1) yields

µD(Eα,εp,ρp
µ ) ≥

µ(E
α,εp,ρp
µ )

Cµ
≥

1

2Cµ
. (3·11)

Moreover,

T−1
D (Eα,εp,ρp

µ )

=
{
T−1
D (x) : ∀ r ≤ ρp, B(x, r) ⊂ [0, 1]d, µ(B(x, r)) ≤ rα−εp

}

=
{
T−1
D (x) : ∀ r ≤ ρp, B(x, r) ⊂ [0, 1]d, µ

(
TD

(
B
(
T−1
D (x),

r

2q

)))
≤ rα−εp

}
,

and using (3·10), one gets

T−1
D (Eα,εq ,ρq

µ )

⊂

{
T−1
D (x) : ∀ r ≤ ρp, B(x, r) ⊂ [0, 1]d,

µ(B(T−1
D (x), r2−q))

µ(D)
≤ Cµr

α−εp

}

=

{
y ∈ D : ∀ r ≤ ρp2

−q, B(y, r) ⊂ D,
µ(B(y, r))

µ(D)
≤ Cµ

( r

2−q

)α−εp
}
.

It follows that if we fix p as above and set

E
εp
D = lim sup

n→+∞
Bn ∩

{
y ∈ D : ∀ r ≤ ρp2

−q, B(y, r) ⊂ D,
µ(B(y, r))

µ(D)
≤ Cµ

( r

2−q

)α−εp
}
,

(3·12)

then by Definition 2·3 and the fact that µ(lim supn→+∞ Bn) = 1, we have

µ(E
εp
D ) = µ(T−1

D (TD(E
εp
D ))) = µ(D)µD(TD(E

εp
D )) ≥ µ(D)

µ(E
α,εp,ρp
µ )

Cµ
≥

µ(D)

2Cµ
, (3·13)

where we used (3·11).

We now continue the construction. Consider R ∈ K1. Fix D ∈ C(R). Recall that p(D)

is the unique integer such that D ∈ Dp(D). The set Eε2
D is well defined since µ(D) > 0

(the measure µ has been supposed to be fully supported on [0, 1]d). For every x ∈ Eε2
D ,

consider nx large enough so that:

• x ∈ Bnx
,

• nx ≥ 2 and

4rnx
≤ ρ22

−p(D), and r−ε2
nx

≥ max
{
4CµQd · η2(D)(4 · 2p(D))α−ε2 , ρ

−d/τd
3

}
. (3·14)

Set Lx = B(x, 4rnx
), as in step 1 (see (3·5)). By repeating the same argument as in step 1,

one can extract from {Lx : x ∈ Eε2
D } a finite number ND of balls, L(D)

1 = L
x
(D)
1

, ..., L
(D)
ND

=

L
x
(D)
ND

such that for all 1 ≤ k1 6= k2 ≤ ND one has L
(D)
k1

∩ L
(D)
k2

= ∅ and by (3·13)

µ
( ⋃

1≤k≤ND

L
(D)
k

)
≥

µ(Eε2
D )

2
≥

µ(D)

4QdCµ
. (3·15)

and with each ball L(D)
k are associated the ball Bn

x
(D)
k

and the rectangle Rn
x
(D)
k

, that

we denote by B
(D)
k and R

(D)
k respectively; we also set r

(D)
k = rn

x
(D)
k

. Then define the
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collection of rectangles of second generation by setting

K(R) =
⋃

D∈C(R)

{
R

(D)
k

}

1≤k≤ND

and K2 =
⋃

R∈K1

K(R),

and

K2 =
⋃

R∈K2

R.

One extends further the measure η1 to the algebra generated by the elements of the
set K1

⋃⋃
R∈K1

C(R)
⋃
K2 by distributing the mass according to µ at that scale. More

precisely, for all R ∈ K1, D ∈ C(R) and 1 ≤ k ≤ ND, one sets

η2(R
(D)
k ) = η2(D)

µ(L
(D)
k )

∑
1≤k′≤ND

µ(L
(D)
k′ )

Note the following facts:

• If R ∈ K1, D,D′ ∈ C(R), 1 ≤ k ≤ ND and 1 ≤ k′ ≤ ND′ are such that R
(D)
k 6=

R
(D′)
k′ ∈ K(R), then 3B

(D)
k ∩ 3B

(D′)
k′ = ∅.

• If R ∈ K1, D ∈ C(R) and 1 ≤ k ≤ ND, using the second assertion of (3·14) and
the fact that the ball L(D)

k is centered on Eε2
D , then

µ(L
(D)
k )

µ(D)
≤ Cµ

(
4r

(D)
k

2−p(D)

)α−ε2

so that by (3·15) and the third assertion of (3·14), we get

η2(R
(D)
k ) ≤

(
η2(D)4QdCµ(4 · 2

p(D))α−ε2
)
· (r

(D)
k )α−ε2 ≤ (r

(D)
k )α−2ε2 . (3·16)

Further steps: Induction scheme

We proceed as in step 2. Suppose that p ≥ 2, and for all 1 ≤ q ≤ p, a set Kq and a
measure ηq, defined on the algebra generated by the elements of

⋃
1≤p≤q Kp

⋃
R∈Kp

C(R),
have been constructed in such a way that (3·7) holds and:

(i) For all 1 ≤ q ≤ p, Kq is a finite subset of {Rn}n≥q .

(ii) For all 2 ≤ q ≤ p, for all R ∈ Kq, there exists R′ ∈ Kq−1 and D ∈ C(R′) such that

R ⊂ D; one denotes by
{
R

(D)
k

}

1≤k≤ND

the family of rectangles of Kq included

in D.

(iii) For all 1 ≤ q ≤ p − 1 and R ∈ Kq, if rτd is the length of the smallest side of R,
then

(rτd)−εq ≥ ρ−d
q+1. (3·17)

(iv) For all 2 ≤ q ≤ p, R ∈ Kq−1, D ∈ C(R) and 1 ≤ k ≤ ND, with the rectangle R
(D)
k

are naturally associated a point x(D)
k ∈ E

εq
D , a ball L(D)

k = B
(
x
(D)
k , 4r

(D)
k

)
, as well

as some integer nk ∈ N, such that nk ≥ q, x(D)
k ∈ B

(D)
k := Bnk

= B(xnk
, rnk

),

R
(D)
k = Rnk

, r(D)
k = rnk

and 4r
(D)
k ≤ 2−p(D)ρq. In particular, due to (3·12), one

has

µ(L
(D)
k )

µ(D)
≤ Cµ

(
4r

n
(D)
k

2−p(D)

)α−εq

. (3·18)
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(v) For all 2 ≤ q ≤ p, R ∈ Kq−1, D,D′ ∈ C(R), 1 ≤ k ≤ ND and 1 ≤ k′ ≤ ND′ such

that R
(D)
k 6= R

(D′)

k′ , one has 3B
(D)
k ∩ 3B

(D′)
k′ = ∅.

(vi) For all 1 ≤ q ≤ q′ ≤ p and R ∈ Kq, ηq(R) = ηq′(R).

(vii) For all 2 ≤ q ≤ p, R ∈ Kq−1, D ∈ C(R) and 1 ≤ k ≤ ND, one has

ηq(D) =
ηq−1(R)

#C(R)
and (r

(D)
k )−εq ≥ 4CµQd · ηq(D)(4 · 2p(D))(α−εq). (3·19)

(viii) For all 2 ≤ q ≤ p, R ∈ Kq−1, D ∈ C(R) and 1 ≤ k ≤ ND, one has

∑

1≤k′≤ND

µ(L
(D)
k′ ) ≥

µ(D)

4Qd
(3·20)

and

ηq(R
(D)
k ) = ηq(D) ·

µ(L
(D)
k )

∑
1≤k′≤ND

µ(L
(D)
k′ )

. (3·21)

Notice that by (3·18), (3·19) (3·20) and (3·21), for all 2 ≤ q ≤ p, R ∈ Kq−1, D ∈ C(R)

and 1 ≤ k ≤ ND, one has

ηq(R
(D)
k ) = ηq(D) ·

µ(L
(D)
k )

∑
1≤k′≤ND

µ(L
(D)
k′ )

≤ ηq(D)
µ(L

(D)
k )

µ(D)(4Qd)−1

≤ ηq(D)
(
4r

(D)
k

)α−εq
4QdCµ

(
2p(D)

)α−εq
≤
(
r
(D)
k

)α−2εq
. (3·22)

Thus, for all 2 ≤ q ≤ p, R ∈ Kq−1 and D ∈ C(R), denoting by rτd the length of the
smallest side of R, by (3·7), (3·8), (3·19),(3·22) and (vi), one has

ηq(D) =
ηq−1(R)

#C(R)
≤

rα−2εq−1

κ−1
d · r

∑
d
i=1 −τd+τi

≤ κdr
α−2εq−1+

∑d
i=1 τd−τi

≤ κd

(
rτd
)α−2εq−1+

∑d
i=1 τd−τi

τd . (3·23)

Let us now explain the induction. Take R ∈ Kp and D ∈ C(R). For every x ∈ E
εp+1

D ,
consider an integer nx large enough so that:

• x ∈ Bnx
,

• nx ≥ p+ 1, 4rnx
≤ ρp+12

−p(D), and

r−εp+1
nx

≥ max

(
4α−εp+1

ηp(R)

#C(R)
4QdCµ2

p(D)(α−εp+1), ρ
−d/τd
p+2

)
.

Using Besicovitch covering Theorem 3·3, one can extract from the covering of E
εp+1

D ,
{
Lx := B(x, 4rnx

) : x ∈ E
εp+1

D

}
, a finite set of balls F(D) :=

{
L
(D)
k := L

(D)
xk

}

1≤k≤ND

such that

• ∀k 6= k′ ≤ ND, L(D)
k ∩ L

(D)
k′ = ∅. In particular, 3Bn

x
(D)
k

∩ 3Bn
x
(D)

k′

= ∅,
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• one has

µ
( ⋃

1≤k≤ND

L
(D)
k

)
≥

1

2
µ(E

εp+1

D ) ≥
µ(D)

4QdCµ
. (3·24)

Consider the collection of rectangles naturally associated with the balls L
(D)
k

Kp+1(R) =
⋃

D∈C(R)

{
R

(D)
k := Rn

x
(D)
k

}

1≤k≤ND

.

Then define

Kp+1 =
⋃

R∈Kp

K(R) and Kp+1 =
⋃

R∈Kp+1

R.

The probability measure ηp can be extended from the algebra generated by the el-
ements of

⋃
1≤p≤p Kq

⋃⋃
R∈Kp

C(R) to the algebra generated by the sets of the union⋃
1≤q≤p+1 Kq

⋃⋃
R∈Kp

C(R) as follows: For R ∈ Kp and D ∈ C(R), we impose that

ηp+1(R) = ηp(R) and ηp+1(D) =
ηp(R)

#C(R)
. (3·25)

And then, for R ∈ Kp, D ∈ C(R) and 1 ≤ k ≤ ND, we set

ηp+1(R
(D)
k ) = ηp+1(D) ·

µ(L
(D)
k )

∑
1≤k′≤ND

µ(L
(D)
k′ )

. (3·26)

It is easily checked that properties (i) to (viii) hold for p+1 and this ends the induction.

Last step: the Cantor set and some of its properties.

Set K0 = [0, 1]d and η0([0, 1]
d) = 1. Define

K =
⋃

p∈N

Kp and K =
⋂

p∈N

Kp.

By construction, item (i) of the recursion implies that K ⊂ lim supn→∞ Rn. Now, for
each p ≥ 1, let η̃p be the element of P([0, 1]d) supported on Kp and such that for every

R ∈ Kp the restriction of ηp to R has ηp(R)
Ld(R)

as density with respect to Ld
|R. It is easily

seen, due to the separation property of the elements of Kp, for all p ∈ N, that (η̃p)p∈N∗

converges weakly to a Borel probability measure η such that η(R) = ηp(R) for all p ∈ N

and R ∈ Kp.

Note that by construction the following properties hold:

• Uniform separation property: For all p ∈ N and n ∈ N such that Rn ∈ Kp,
if n1, n2 ∈ N are such that Rn1 6= Rn2 ∈ K(Rn) = {R′ ∈ Kp+1 : R′ ⊂ Rn}, then
one has 3Bn1 ∩ 3Bn2 = ∅. Indeed, in the case where Rn1 and Rn2 are elements of
the same D ∈ C(Rn), this follows from (v); otherwise, this follows from the fact
that two distinct elements D and D′ of C(Rn) are distant from each other by at
least 8 · 2−p(D), where, as before, p(D) is the unique integer such that D ∈ Dp(D).
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• The estimates (3·22) and (3·23) show (by induction) that for all p ∈ N
∗ and n ∈ N

such that Rn ∈ Kp one has

η(Rn) ≤ rα−2εp
n ,

and for all D ∈ C(Rn),

η(D) ≤ κd r
α−2εp+

∑
1≤i≤d

τd−τi
n = κd

(
rτdn

)α−2εp+
∑

1≤i≤d τd−τi

τd . (3·27)

Upper bound for the η-measure of a ball.

Let C be a ball (recall that it is an Euclidean cube) of side length r contained in [0, 1]d.
Several cases are distinguished.

• When C intersects Kp for at most finitely many p ∈ N, it is clear that η(C) = 0, and
we set pC = +∞.

• When C intersects a unique rectangle of Kp, say RnC(p), for infinitely many p ∈ N,

then η(C) ≤ η(RnC(p)) ≤ r
α−2εp
nC(p) for infinitely many p, so η(C) = 0. Again, we set

pC = +∞.

• Suppose now that we are not in one of the previous cases. There exists pC ∈ N such
that if p ≤ pC , C intersects a unique rectangle of Kp and if p ≥ pC + 1, C intersects at
least two rectangles of Kp. Denote by RnC

the unique rectangle in KpC
intersecting C.

Let v > 0 be such that r = rvnC
. Again, several cases are distinguished.

(i) Suppose r ≥ rτdnC
(i.e. v ≤ τd): Suppose, moreover, that r < rnC

, i.e. 1 < v ≤ τd.
Recall that for D ∈ C(RnC

) one has (see (3·27))

η(D) ≤ κd

(
rnC

)α−2εpC+
∑

1≤i≤d τd−τi
.

Also, there exists κ̃d > 0, depending on d so that

# {D ∈ C(RnC
) : D ∩ C 6= ∅} ≤ κ̃d

∏

i:τi<v

(rvnC

rτdnC

) ∏

i:τi≥v

(rτinC

rτdnC

)

≤ κ̃d r
−dτd+

∑
i:τi<v

v+
∑

i:τi≥v
τi

nC .

Provided that κd was chosen larger than κ̃d at first, one gets
This gives the following upper bound for η(C):

η(C) ≤
∑

D∈C(RnC
):D∩C 6=∅

η(D)

≤ (# {D ∈ C(RnC
) : D ∩ C 6= ∅}) · κd

(
rnC

)α−2εpC+
∑

1≤i≤d
τd−τj

≤ κ2
d

(
rnC

)−2εpC
(
rnC

)−dτd+α+
∑

i:τi<v
v+

∑
i:τi≥v

τi+
∑

1≤i≤d
τd−τi

≤ κ2
d

(
rnC

)−2εpC
(
rnC

)α+∑
i:τi<v v−τi

≤ κ2
d

(
r−2εpC

)
r

α+
∑

i:τi<v v−τi

v .

The mapping f : v 7→
α+

∑
i:τi<v

v−τi

v reaches its minimum at one of the τi, say τi0 with
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1 ≤ i0 ≤ d. This can be rephrased as s(µ, τ ) = min1≤i≤d(
α+

∑
1≤j≤i τi−τj

τi
) = f(τi0). It

follows that

η(C) ≤ κ2
d r

s(µ,τ )−2εpC . (3·28)

On the other hand, if r ≥ rnC
, i.e. v ≤ 1, then by (3·22), one has

η(C) ≤ η(RnC
) ≤ r

α−2εpC
nC ≤ rα−2εpC ,

and (3·28) holds as well, since α = f(τ1) ≥ s(µ, τ ).

(ii) Suppose now that r < rτdnC
(i.e. v > τd):

Recall that rτdnC
is the length of the smallest side of the rectangle RnC

. Since C has
side length less than rτdnC

, and the side length of the cubes of C(RnC
) is larger than or

equal to C−1
d rτdnC

, one deduces that C intersects at most C̃d of those cubes, where C̃d

depends on d only. For all D ∈ C(RnC
), such that C ∩D 6= ∅, denote by R

(D)
k1

, ..., R
(D)
kNC,D

the rectangles included in D that intersect C.

• Suppose first that 20r ≤ 2−p(D)ρpC+1 (where D ∈ Dp(D)): Note that for all 1 ≤

i 6= j ≤ NC,D, 3B
(D)
ki

∩ 3B
(D)
kj

= ∅. Also, C intersects both B
(D)
ki

and B
(D)
kj

, and by

construction, since L
(D)
ki

∩ L
(D)
kj

= ∅ and |L
(D)
kj

| = 4|B
(D)
kj

|, we have r ≥ r
(D)
kj

. By Lemma

3·2 applied to each pair {A = C,B = B
(D)
kj

} and q = 3, one gets
⋃

1≤i≤NC,D
3B

(D)
ki

⊂ 5C.

In particular,
⋃

1≤i≤NC,D
L
(D)
ki

⊂ 10C since L
(D)
ki

⊂ 5B
(D)
ki

for each i. Consequently,
∑

1≤i≤NC,D

µ(L
(D)
ki

) ≤ µ(10C).

Further recall that, by item (iv) of the recurrence scheme, for any 1 ≤ i ≤ NC,D the

ball L(D)
ki

is centered on E
εpC+1

D . Thus there is x ∈ E
εpC+1

D ∩ 10C. Since one has 10C ⊂

B(x, 20r) and 20r
2−p(D) ≤ ρpC+1, by (3·18) we get

µ(10C) ≤ µ(B(x, 20r)) ≤ Cµ µ(D)
( 20r

2−p(D)

)α−εpC+1

. (3·29)

It follows from (3·24), (3·26) and (3·29) that

η(C ∩D) ≤
∑

1≤i≤NC,D

η(R
(D)
ki

) ≤ η(D)
∑

1≤i≤NC,D

µ(L
(D)
ki

)
∑

1≤j≤ND
µ(L

(D)
j )

≤ η(D)
∑

1≤i≤NC,D

µ(L
(D)
ki

)

(4Qd)−1µ(D)

≤ 4Qd
η(D)

µ(D)
µ(10C)

≤ Cµ η(D) 4Qd

( 20r

2−p(D)

)α−εpC+1

.

This yields

η(C) ≤
∑

D∈C(RnC
):C∩D 6=∅

η(C ∩D)

≤ C̃d Cµ max
D∈C(RnC

):C∩D 6=∅
η(D) 4Qd

( 20r

2−p(D)

)α−εpC+1

.
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Moreover by (3·23), for each D ∈ C(RnC
) such that C ∩D 6= ∅,

η(D) ≤ κd 2
2p(D)εpC 2−s(µ,τ)p(D),

hence

η(C) ≤ C̃d Cµ κd 4Qd 2
2p(D)εpC

(
2−p(D)

)s(µ,τ) ( 20r

2−p(D)

)α−εpC+1

.

Since Cd 2
−p(D) ≥ rτdnC

≥ r and the sequence (εp)p≥1 is decreasing and bounded, it follows
that for some constant γ depending only on the dimension d and µ, one has

η(C) ≤ γ r−3εpC
rα

2−p(D)(α−s(µ,τ ))
= γ r−3εpC

( r

2−p(D)

)α−s(µ,τ )

rs(µ,τ ).

Thus, as Cd2
−p(D) ≥ r and s(µ, τ ) ≤ α (so that t > 0 7→ tα−s(µ,τ) is non decreasing), we

finally obtain

η(C) ≤ γ C
α−s(µ,τ )
d rs(µ,τ )−3εpC ≤ γ Cα

d rs(µ,τ )−3εpC .

• Suppose now that 20ρpC+1 2
−p(D) ≤ r < rτdnC

: Again, by definition of p(D), one has
rτdnC

≤ Cd2
−p(D). Consequently, C is covered by at most ⌊(Cd/20ρpC+1) + 1⌋d cubes of

side length 20ρpC+1 2
−p(D). Denoting these cubes by D1, . . . , Dk, and recalling (3·17),

the previous estimate yields

η(C) ≤
k∑

i=1

η(Di) ≤ ⌊(Cd/20ρpC+1) + 1⌋d γ Cα
d

(
20ρpC+1 2

−p(D)
)s(µ,τ )−3εpC

≤ γ1ρ
−d
pC+1 r

s(µ,τ )−3εpC ≤ γ1 r
s(µ,τ )−4εpC

for some constant γ1 depending only on d and µ (we used that 20ρpC+1 2
−p(D) ≤ r to

get the third inequality, and (iii) as well as the inequality εpC
≥ εpC+1 to get the fourth

one).

To conclude the proof, note that due to the uniform separation property outlined after
the last step of the construction of (K, η),

p(r) = inf{pC : C is ball of radius r included in [0, 1]d}

tends to +∞ as r tends to 0.
Combining the previous estimates, setting γ̃1 = max

{
γ1, γ.C

α
d , κ

2
d

}
, we finally get

η(C) ≤ γ̃1r
s(µ,τ )−4εp(r) .

In particular, for any p ∈ N, setting rp = 1
2 sup {r : p(r) ≤ p}, it holds that for any r ≤ rp,

any ball C of radius r,

η(C) ≤ γ̃1r
s(µ,τ )−4εp .

By Lemma 3·1, since η(K) = 1, it holds that

dimH(K) ≥ s(µ, τ )− 4εp.

Letting p → +∞ proves Theorem 2·4.
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