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ABSTRACT 

The exposome calls for assessing numerous exposures, typically using biomarkers with varying 

amounts of measurement error, which can be assumed to be of classical type. We evaluated the 

impact of classical-type measurement error on the performance of exposome-health studies, and the 

efficiency of two measurement error correction methods relying on the collection of repeated 

biospecimens: within-subject biospecimens pooling and regression calibration. In a simulation 

study, we generated 237 exposures from a realistic correlation matrix, with various amounts of 

classical-type measurement error, and a continuous health outcome linearly influenced by 

exposures. Measurement error decreased the sensitivity to identify exposures influencing health 

from a value of 75% down to 46%, increased false discovery proportion from 26% to 49% and 

increased attenuation bias in the slope of true predictors from 45% to 66%. Assuming that repeated 

biospecimens were available, within-subject pooling and regression calibration improved sensitivity 

(which increased to 63%), false discovery proportion (down to 37%) and bias (down to 49%) 

compared to an error-prone study with a single biospecimen per subject. Performances were poorer 

for the exposures with the largest amount of measurement error, and increased with the number of 

available biospecimens. Relying on repeated biospecimens only for the exposures with the largest 

amount of measurement error provided similar performance improvement. Exposome studies 

relying on spot exposure biospecimens suffer from decreased performances if some biomarkers 

suffer from measurement error due to their temporal variability; performances can be improved by 

collecting repeated biospecimens per subject, in particular for non persistent chemicals. 

 

Keywords: Biomarkers, exposome, measurement error, pooling, regression calibration. 
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INTRODUCTION 

The exposome concept was defined as encompassing the totality of environmental exposures 

from the prenatal period onwards (Wild, 2012). Exposome studies typically rely on 

biomarkers to assess chemical exposure from multiple sources (Calafat et al., 2006; 

Schisterman and Albert, 2012); often, a single biospecimen is collected in each subject 

(LaKind et al., 2019; Perrier et al., 2016). For chemicals with a short biological half-life, such 

as bisphenol A or phthalates, within-subject biomarker concentrations strongly vary over 

time. Whatever the accuracy of the measurement technique used, this will induce 

measurement error, mainly for the least persistent compounds (those with the lowest 

intraclass coefficient of correlation, or ICC), for which a spot biospecimen will provide a poor 

estimate of exposure over long time windows (Casas et al., 2018; Perrier et al., 2016; Preau et 

al., 2010; Vernet et al., 2019; Wielgomas, 2013; Ye et al., 2011). A realistic assumption is 

that chemicals exposure is measured by biomarkers with an independent additive error, such 

that the within-subject average of repeated measurements is an unbiased estimate of exposure. 

This type of measurement error corresponds to classical- type measurement error (Carroll et 

al., 2006). In a single exposure context, classical-type exposure measurement error can 

strongly impact the estimation of exposure-health relationships (Armstrong, 1998; Brakenhoff 

et al., 2018a; Carroll et al., 2006; de Klerk et al., 1989; Jurek et al., 2005; Perrier et al., 2016): 

naïve models not accounting for measurement error provide regression estimates that are 

attenuated, and have decreased statistical power compared to the ideal situation without 

measurement error (Carroll et al., 2006). Several statistical techniques have been developed to 

limit estimation bias when classical type exposure measurement error is present. Regression 

calibration (RC) (Carroll et al., 2006) is often used, and provides approximately consistent 

estimates (Buzas et al., 2005). It requires either a (within-subject) repeated assessment of 
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exposures, at least in a subset of the population, or an unbiased estimate of exposures’ ICC. 

An alternative, also relying on the collection of repeated biospecimens, is to pool samples 

within-subject and assess the exposures biomarker in the pooled sample, corresponding to the 

so-called within-subject biospecimens pooling approach (Perrier et al., 2016; Vernet et al., 

2019). In a single exposure context, within-subject biospecimens pooling, possibly followed 

by a posteriori disattenuation of coefficients estimates, is efficient to limit attenuation bias in 

the exposure-health association and to increase power (Perrier et al., 2016; Vernet et al., 

2019). 

The impact of classical-type exposure measurement error on bias and power_may be 

compounded in an exposome context. Indeed, in exposome epidemiological studies, 

efficiently identifying the exposures affecting health (i.e. with good sensitivity, or power; and 

low false detection proportion, or FDP) is generally a challenge, in particular when exposures 

show some correlation (Agier et al., 2016), which is a realistic assumption (Tamayo-Uria et 

al., 2019). Additionally, exposome studies can simultaneously consider several biomarker-

based exposures with differential measurement error (i.e. of different amplitudes across 

exposures) (Slama and Vrijheid, 2015); typically, persistent pollutants such as PCBs, for 

which a spot biospecimen provides a rather good exposure proxy, and non persistent 

chemicals, such as organophosphate pesticides or bisphenol A, with ICCs based on spot 

biospecimens in the 0.1-0.5 range (Casas et al., 2018), may both be included in the same 

study (Agier et al., 2020, 2019). This differential measurement error in exposome studies is 

likely to further affect the efficiency to identify exposures affecting health, beyond the 

performance loss due to the consideration of a large number of correlated compounds. Indeed, 

when applying a variable selection model in an exposome study relying on spot biospecimens, 

the chances of a given exposure being selected might be lower for compounds with a low ICC 

(Perrier et al., 2016; Vernet et al., 2019). In addition, in a multivariable situation, regression 



 6 

estimates can be biased in any direction as a consequence of classical-type measurement error 

(Brakenhoff et al., 2018b; Carroll et al., 2006). 

Up to date, three simulation studies have estimated the performances of specific variable 

selection methods in assessing exposure-outcome associations in a multi-exposure context 

with classical-type exposure measurement error. Guangning et al. tested several two-step 

approaches (applying a measurement error correction method and using the resulting 

exposure proxies in a variable selection method) in a 2-exposures context (Guangning, 2014). 

Vasquez et al. applied a corrected least absolute shrinkage and selection operator (LASSO) 

procedure to 100 uncorrelated exposures (Vasquez et al., 2019). Brown et al. compared 

LASSO to a novel variable selection method in a context where 10 exposures affected the 

outcome, were not correlated to the other 90 exposures, and jointly explained over 90% of the 

outcome variability (Brown et al., 2019), which is much higher than the outcome variability 

that a few environmental exposures are expected to explain. To our knowledge, no study 

assessed the impact of exposure measurement error on exposure-outcome relationship in a 

realistic exposome context, i.e. in a context with many exposures that are all correlated 

(Tamayo-Uria et al., 2019), with a small global explanatory power of exposures on the 

outcome. Moreover, the efficiency of the recently proposed within-subject biospecimens 

pooling approach (Perrier et al., 2016) has never been estimated in a multi-exposure context. 

Using a simulation approach relying on a realistic exposome correlation structure, we aimed 

to assess the performances of RC and of within-subject biospecimens pooling in handling 

differential classical-type exposure measurement error in exposome-health studies.  
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MATERIALS AND METHODS 

1. Overview of the simulation model 

We simulated an exposome study with p=1, 10 or 237 error-prone exposures in a fictitious 

population of 1 200 subjects (the approximate population size of the HELIX exposome 

project, which we mainly refer to for the design of this simulation study (Agier et al., 2020; 

Vrijheid et al., 2014)). We assumed that k=0, 1, 3 or 10 exposures linearly influenced a health 

outcome �, which is an assumption of rare (and weak, see below) features realistic for ‘omics 

data, including possibly the exposome (Donoho and Jin, 2008). We considered that all 

exposures suffered classical-type measurement error, with varying levels of error which were 

quantified from their intra-class correlation coefficient (ICC). Exposure-health associations 

were assessed using 2-step approaches. We first applied either RC or within-subject 

biospecimens pooling, assuming that 2, 5 or 10 error-contaminated biospecimens (collecting 

10 biospecimens per subject is now logistically feasible (Lyon-Caen et al., 2019)) were available per 

subject (we did not cover a greater range of values for the number of biospecimens per subject 

because our aim is to illustrate that repeated biospecimens collection is a solution, without necessarily 

trying to identify an optimum number of biospecimens per subject). With both these methods, we 

obtained a set of transformed exposures over which, in the second step, we applied a variable 

selection method (Deletion/Substitution/Addition algorithm, DSA, (Sinisi and van der Laan, 

2004)) to identify exposures associated with �. The performances of the RC and pooling 

approaches were quantified through their sensitivity, bias for causal exposures, and false 

discovery proportion, which were averaged over 200 datasets (or simulation runs). 

Performances were compared to those obtained when directly applying DSA either on the 

error-free exposures (which corresponds to the ideal approach); or on a dataset including a 

single error-contaminated measure of each exposure per individual, first without applying any 
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measurement error correction (named hereafter the naive approach, what epidemiologists 

ignoring measurement error would do, and which is expected to correspond to the least 

efficient approach), and second after applying RC using a priori known ICC values for all 

exposures.  

 

2. Generation of exposures  

We generated a matrix � = �����	
,…,
 of p error-free exposures from a multivariate normal 

distribution with covariance matrix � (i.e. �~��0, ��), in a fictitious population of N=1 200 

subjects. � was centered-reduced such that all exposures were generated with an average of 0 

and a variance of 1, and could easily be compared. For p=237 exposures, � was obtained from 

environmental factors measured in the INfancia y Medio Ambiente mother-child, or INMA 

cohort (one of the HELIX cohorts, Appendix A) (Guxens et al., 2012). For p=10 exposures, � 

was generated so as to include a mixture of low and high pairwise correlations (in order to 

cover the range of correlation levels observed for p=237). For p=1 exposure, its variance was 

also set to 1 (�=1). .  

Classical-type error assumes that the exposures are measured with independent additive 

errors. We thus generated, for each exposure ��, 10 error-contaminated biospecimens per 

individual, denoted ������	�,…,��, that were assumed to be collected at random time points 

within the exposure window of interest, using the same equation as in (Perrier et al., 2016): 

��� = �� + ���    Eq. (1) 

where ���~��0,  ���
� �, with  ���

� = � �
� ! �

"##�
− 1&, � �

�  being the variance and '((� the ICC of 

exposure Ti. We generated '((� in the [0.15, 1.00] range, from a balanced mixture of two 

normal distributions ��0.95, 0.15� and ��0.50, 0.20� (Appendix B). 
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3. Generation of the health outcome  

The health outcome - was generated as a function of the error-free exposures according to: 

- = ∑ β0�� + 12
0	�      Eq.(2) 

where 1~��0, ��� and where the regression coefficients β0 were set to 0, except for the 3 

true predictors (TP) that were assumed to be causally related to the outcome, for which βi was 

1. TPs were randomly selected amongst all exposures at each simulation run. The proportion 

of variance explained by the k TPs was set to R� = 3% × 3. 

4. Estimation of the exposure-health association  

Two methods aiming to correct for exposure measurement error were applied to the simulated 

data. In the within-subject biospecimens pooling approach (Perrier et al., 2016), all 

concentrations ��� that are considered available for each exposure �� are averaged at the 

individual level with equal weights; this measure is named hereafter �89::; = <=== =

�<>�>	
,…,9. In the RC approach (Carroll et al., 2006), in the absence of adjustment factors, 

proxies of exposures are obtained by predicting � = ����0	�,…,2 from all available error-

contaminated measures relying on a multivariate linear regression model:  

�8?@ =  ÂCD + �8E
F

�8EG�8H
��D − ÂCD �  Eq. (3) 

where ÂCD  is the exposure-by-exposure mean of <===, �8E is the estimated covariance matrix of 

the error-free exposures �, and �8H is the estimated covariance matrix of measurement error 

terms, with diagonal coefficients being divided by the average number of repeated 

biospecimens per subject for the given exposure. The estimated ICCs (named �'((I ���	�,…,J) 
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can be derived from �8K. When no repeated biospecimens are available, one has to assume that 

the ICCs for the given exposures are known from a previous study. 

We separately assessed the associations of �89::; and �8?@ with the health outcome - using the 

deletion/substitution/addition (DSA) algorithm (Sinisi and van der Laan, 2004). We selected 

this sequential variable selection algorithm for it was shown to have equivalent or better 

performances in comparison with other dimension reduction or variable selection approaches 

such as elastic net or exposome-wide association study in a simulation study based on a 

similar approach and similar hypotheses but without exposure measurement error (Agier et 

al., 2016). DSA model search process starts with the intercept model, and, at each iteration, 

considers removing a term, replacing a term by another, or adding a term to the current 

model. The final model is selected by minimizing the prediction root mean squared error 

using 5-fold cross-validated data (see Appendix C for considerations on the selection stability 

of DSA). We did not allow polynomial or interaction terms, and limited the maximum model 

size to 40 covariates, a number never reached in our simulations. 

5. Statistical performance assessment 

For each simulation run and scenario (defined by the number of exposures, the exposures 

correlation structure, the number of TP, and the number of biospecimen available per 

exposure and per subject), we assessed the performances of each approach by calculating the 

sensitivity, defined as the proportion of TP that were selected by the method; and the false 

discovery proportion (FDP), defined as the proportion of selected variables that were not TP. 

When no variable was selected, the FDP was given a value of 0. We also computed the mean 

absolute bias for TP, which measures the accuracy of the estimated coefficients by comparing 

the coefficient value β0 that was used to generate the outcome Y with its estimated value βL 0 

obtained by DSA, i.e. : 
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�
M ∑ |β0 − βL 0|2

0	� × β0   Eq. (4) 

(note that O� only takes values 0 or 1).  

Performances were averaged by scenario and measurement error correction method. We 

further investigated the effect of the ICC level by stratifying exposures by ICC decile and 

estimating these criteria values within each decile group.  

6. Additional scenarios 

Unbalanced designs: In order to limit the number of biospecimens to be collected, we 

considered: (i) collecting repeated biospecimens in a subset of the study participants only, i.e. 

in 10%, 40%, or 70% randomly selected subjects within our population; or (ii) collecting or 

assaying repeated biospecimens only for exposures known to have a high within-subject 

variability, i.e. exposures with an ICC lower than 0.4, 0.6 or 0.8 (in this case, RC requires an 

a priori known ICC value for each exposure without repeated biospecimens).  

Varying correlation levels: Three additional situations were considered with varying 

exposures correlation structures: one in which the off-diagonal elements of the covariance 

matrix of the true exposures � were divided by two (labelled �P); one in which they were 

multiplied by two (labelled �G) and one with a diagonal correlation structure (��). When 

needed, we computed the closest positive semi-definite matrix of the correlation structure 

before generating the exposures (Agier et al., 2016). 

These scenarios were tested in a p=237 exposures context only, with 100 simulation runs. 
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Analyses were performed using the R software (www.r-project.org). Computing code is 

provided in Appendix D.  
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RESULTS 

1. Low dimension exposure-health studies 

In an exposure-health study assuming that 10 exposures were assessed without measurement 

error and that a single TP affected the health outcome, sensitivity was 100%, mean absolute 

bias for TP was 0.15, and FDP was 18%. In the presence of uncorrected measurement error, 

sensitivity decreased to 94%, bias increased to 0.42, and FDP increased to 31%. Applying 

measurement error correction methods improved the performances compared to this naive 

approach, with efficiency raising as the number of repeated biospecimens increased and 

reaching, with both methods, values that were similar to the case without exposure 

measurement error (Table 1). Similar results were obtained when we considered 3 or 10 TP, 

or in a single exposure-health study (Appendix E).  

 

Exposure 

assessment  

Measurement error 

correction 

 1-exposure study 1  10-exposures study  237-exposures study 

 Sensitivity MAB 2   Sensitivity FDP MAB 2   Sensitivity FDP MAB 2 

Error-free 

exposures  

None  1.00 0.13  1.00 0.18 0.15  0.80 0.24 0.30 

Error-

contaminated 

biospecimens 

            

             
1 biospecimen None (naive approach)  0.98 0.41  0.94 0.31 0.42  0.49 0.40 0.63 

RC (ICCs provided)  0.98 0.18  0.90 0.24 0.26  0.56 0.41 0.52 
2 biospecimens  Pooling  0.99 0.29  0.98 0.24 0.31  0.60 0.39 0.53 

RC  0.99 0.15  0.96 0.22 0.19  0.62 0.37 0.47 
5 biospecimens  Pooling  1.00 0.18  1.00 0.19 0.21  0.68 0.34 0.43 

RC  1.00 0.14  0.98 0.17 0.17  0.76 0.26 0.34 
10 biospecimens Pooling  1.00 0.15  1.00 0.22 0.18  0.72 0.31 0.38 

RC  1.00 0.13  0.98 0.18 0.17  0.77 0.25 0.33 

Table 1. Performances in identifying exposure-health associations, scenarios considering either 1, 10, or 

237 exposures in total.  

Sensitivity, FDP and mean absolute bias for true predictors (MAB) are estimated, considering scenarios with the 
continuous health outcome being affected by a single true predictor that was randomly selected amongst all 
available exposures at each simulation run. Results are given for DSA directly applied on the error-free 
exposures and on one error-contaminated measure (naive approach); for DSA after applying RC on one error-
contaminated measure with ICCs values being provided; and for DSA after applying RC or the within-subject 
biospecimens pooling approach on error-contaminated measures with a balanced design with 2, 5 or 10 repeated 
measures per subject. Average values computed over 200 simulation runs are displayed. See Figure 1 and 
Appendix F for results with 237 exposures and more than 1 true predictor, Appendix E for results with 10 
exposures and more than 1 true predictor.  
Abbreviations: DSA: Deletion/substitution/addition algorithm; FDP: False discovery proportion; ICC: Intra-class 
correlation; MAB: Mean absolute bias for true predictors (variables that were not predictors were ignored); 
Pooling: Within-subject biospecimens pooling; RC: Regression calibration. 
1 FDP is not defined when there is a single exposure in the study and it is a true predictor (which means there is 
no exposure that is not a true predictor). 
2 MAB is estimated among true predictors only, for which the true parameter value O� was one. 



 14

2. Exposome-health studies 

When we considered an exposome context with 237 exposures and a single TP affecting the 

health outcome, in the absence of measurement error, sensitivity was 80%, FDP was 24% and 

bias for TP was 0.30. In the presence of measurement error, if no repeated biospecimen was 

available, the naive approach resulted in a strong performance deterioration: sensitivity 

decreased to 49%, FDP was 40% and bias for TP was 0.63. Assuming that external ICCs were 

available, RC allowed slightly improving sensitivity (56%) and bias (0.52), while FDP 

remained unchanged. When repeated biospecimens were available and a balanced design was 

considered (i.e. an equal number of repeated biospecimens for all subjects and exposures), 

performances of methods correcting for measurement error varied between those of the naive 

approach and those obtained in the absence of measurement error (without reaching the 

latter). RC was marginally more efficient than pooling, with a major improvement being 

observed when increasing the number of repeated biospecimens from 2 to 5, and almost no 

difference between the scenarios with 5 and 10 repeated biospecimens. In comparison, 

pooling displayed a more regular improvement in performances as the number of repeated 

biospecimens increased (Figure 1, Table 1). Similar observations were made when we 

considered 3 or 10 TP, except that performances were slightly decreased for all scenarios (an 

overall 13% decrease in sensitivity, 11% increase in FDP and 0.19 increase in bias when 

considering 10 TP compared to 1 TP, Figure 1). When we assumed that no exposure affected 

the health outcome, the chance to mistakenly select an exposure that was not a TP did not 

increase as a result of exposures measurement error, compared to a situation where exposures 

were measured without error (Appendix G).  
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Figure 1. Sensitivity and FDP, considering scenarios with the continuous health outcome being affected by 

1, 3 or 10 true predictors randomly selected amongst a set of 237 exposures.  

Results are given for DSA directly applied on the error-free exposures (red circle) and on one error-contaminated 

measure (naive approach, red cross); for DSA after applying RC on one error-contaminated measure with ICCs 

values being provided (red + sign); and for DSA after applying RC (triangles) or the within-subject 

biospecimens pooling approach (circles) on error-contaminated measures with a balanced design with 2, 5 or 10 

repeated measures per subject. Average values computed over 200 simulation runs are displayed (see also 

Appendix F).  

DSA: Deletion/substitution/addition algorithm; FDP: False discovery proportion; ICC: Intra-class correlation; 

Pooling: Within-subject biospecimens pooling; RC: Regression calibration; TP: True predictors. 

 

Plotting performances as a function of the exposures’ ICC (Figure 2) showed that for 

persistent exposures (those with an ICC close to 1), sensitivity and bias were close to the ones 
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observed in the absence of measurement error, even when using the naïve approach. The 

performances of both methods decreased as the exposure variability increased (i.e. when the 

ICC decreased), with a linear decline in sensitivity and a linear increase in bias (Figure 2 A, 

C). In contrast, the risk of false discovery (FDP, Figure 2B) was always greater than the one 

observed in the absence of measurement error, and varied little as a function of the ICC in the 

[0.4, 1.0] range: for a given number of repeated biospecimens and a given correction method 

(including no correction), all exposures with an ICC in the [0.4, 1.0] range had a similar 

chance to be mistakenly selected when they were not truly associated with the outcome. In 

comparison, the least persistent exposures (those with an ICC in the [0.15;0.40] range) had a 

high risk of being mistakenly selected, even when 5 or 10 repeated biospecimens were 

collected.  
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Figure 2. Sensitivity (A), FDP (B) and mean absolute bias for true predictors (C) amongst exposures inside 

each ICC decile, considering scenarios with the continuous health outcome being affected by 1, 3 or 10 

true predictors randomly selected amongst a set of 237 exposures.  

Results are given for DSA directly applied on error-free exposures (red circle) and on one error-contaminated 

measure (naive approach, plain thick line); for DSA after applying RC on one error-contaminated measure with 

ICCs values being provided (dashed thick line); and for DSA after applying RC (plain lines) or the within-

subject biospecimens pooling approach (dashed lines) on error-contaminated measures with a balanced design 

with 2, 5 or 10 repeated measures per subject. Average values per ICC decile computed over all simulation runs 

(200 simulation runs per scenario, pooled results) are displayed.  

DSA: Deletion/substitution/addition algorithm; FDP: False discovery proportion; ICC: Intra-class correlation; 

MAB: Mean absolute bias (variables that were not predictors were ignored); Pooling: Within-subject 

biospecimens pooling; RC: Regression calibration; TP: True predictors. 

3. Unbalanced designs 

The performances of the methods decreased linearly as the proportion of subjects with 

repeated biospecimens decreased from 100% to 40%; at 40% of subjects with repeated 

biospecimens, performances were similar to the ones observed with the naive approach; at 

10% of subjects with repeated biospecimens, measurement error correction methods 

displayed even some loss over the naive approach (Figure 3). RC performed better than the 

pooling approach, except when 2 repeated biospecimens were collected for less than half of 

the subjects. Sampling 5 biospecimens in 10% of the population, or 2 biospecimens in 40% of 

the population, the remaining subjects having a unique exposure measure (which corresponds 

to the same total number of biospecimens collected and assessed, 1.4 times the number of 

subjects) made no difference in terms of performance in capturing the exposure-health 

association (Appendix H). Repeated biospecimens collection could be restricted to exposures 

with an ICC lower than 0.6 (corresponding to 42% of exposures) without losing the benefits 

of measurement error correction methods (Figure 4); that is, performances were similar to 

those obtained when collecting repeated biospecimens for all exposures. Restricting repeated 
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biospecimens to exposures with an ICC below 0.4 inflicted a substantial performance 

decrease.  

 

Figure 3. Sensitivity (A), FDP (B) and mean absolute bias for true predictors (C) when repeated 

biospecimens were collected in a subset of subjects, considering scenarios with the continuous health 

outcome being affected by 1, 3 or 10 true predictors randomly selected amongst a set of 237 exposures. 

We considered the proportion of subjects with repeated biospecimens increased from 10% to 100%. Results are 

given for DSA directly applied on error-free exposures (red circle) and on one error-contaminated measure 

(naive approach, x symbol); and for DSA after applying RC (plain lines) or the within-subject biospecimens 

pooling approach (dashed lines) on error-contaminated measures with an unbalanced design with 2, 5 or 10 

repeated measures per subject being collected in a subgroup of the study population, a single biospecimen being 

collected otherwise. Average values computed over all simulation runs (100 simulation runs per scenario, pooled 

results) are displayed.  
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DSA: Deletion/substitution/addition algorithm; FDP: False discovery proportion; ICC: Intra-class correlation; 

MAB: Mean absolute bias (variables that were not predictors were ignored); Pooling: Within-subject 

biospecimens pooling; RC: Regression calibration; TP: True predictors. 

 

 

Figure 4. Sensitivity (A), FDP (B) and mean absolute bias for true predictors (C) when repeated 

biospecimens were collected in a subset of exposures, considering scenarios with the continuous health 

outcome being affected by 1, 3 or 10 true predictors randomly selected amongst a set of 237 exposures. 

We considered values for the ICC threshold above which no repeated biospecimen is collected increased from 

0.4 to 1 (1 meaning that repeated biospecimens were collected for all exposures). Results are given for DSA 

directly applied on error-free exposures (red circle) and on one error-contaminated measure (naive approach, x 

symbol); and for DSA after applying RC (plain lines) or the within-subject biospecimens pooling approach 

(dashed lines) on error-contaminated measures with an unbalanced design with 2, 5 or 10 repeated measures per 

subject being collected in a subset of exposures, a single biospecimen being collected otherwise. Average values 

computed over all simulation runs (100 simulation runs per scenario, pooled results) are displayed. 
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DSA: Deletion/substitution/addition algorithm; FDP: False discovery proportion; ICC: Intra-class correlation; 

MAB: Mean absolute bias (variables that were not predictors were ignored); Pooling: Within-subject 

biospecimens pooling; RC: Regression calibration; TP: True predictors. 

4. Exposures correlation levels  

The degree of correlation amongst exposures had a large impact on the models' performances 

(Appendix I). When relying on an existing exposome correlation structure (median [1st 

quartile, 3rd quartile] absolute value of the coefficients of correlation, 0.06 [0.03, 0.15]), over 

all scenarios investigated (including scenarios with error-free exposures), average (range) 

sensitivity was 61% (42%;80%) and average FDP was 38% (24%;57%). When correlation 

levels amongst exposures were double the initial values (�G correlation matrix), performances 

diminished: sensitivity decreased to 37% (16%; 66%) and FDP increased to 62% (41%; 78%). 

With correlation levels amongst exposures half the initial values (�P correlation matric), 

performances were higher: sensitivity was 86% (64%; 98%) and FDP was 14% (6%; 31%). 

Variable selection methods were almost perfectly efficient when exposures were uncorrelated: 

sensitivity was 90% (66%; 100%) and FDP was 6% (2%; 11%). The impact of the number of 

repeated biospecimens and of TPs on the performances was similar across all correlation 

matrices tested.   
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DISCUSSION 

To our knowledge, this study is the first to describe the impact of exposure measurement error 

in realistic exposome-health studies. The decrease of the performance of variable selection 

models due to measurement error is known to be substantial in low-dimension settings  

(Perrier et al., 2016; Vernet et al., 2019). We showed that this phenomenon is compounded in 

an exposome context, with increased false positive rates, false negative rates, and bias in 

dose-response functions; and that these problems aggravate when correlation within the 

exposome increases. Compared to single exposure studies of similar population size without 

measurement error, exposome studies ignoring issues related to measurement error suffer 

from a double source of performance loss, due to the increase in the number of exposures 

considered (and to the resulting exposures correlation), and to measurement error (Figure 5). 

The performance loss due to measurement error can in large part be recovered by collecting 

repeated biospecimens (the more biospecimens, the better the performances) and using 

methods such as regression calibration or within-subject biospecimens pooling. As expected, 

the impact of measurement error was larger for compounds with the largest variability, so 

that, for a given strength of association and assuming lack of other biases, exposome studies 

are more likely to correctly identify the effect of the most persistent compounds, compared to 

the least persistent ones – an issue that could be termed ICC-related differential sensitivity. 

On the other hand, most exposures, except the least persistent ones, had a similar risk of being 

mistakenly selected when they were not associated with the outcome. Limiting repeated 

samples to the least persistent exposures is an option to limit costs without affecting variable 

selection performances. 
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Figure 5. Sensitivity and FDP loss in exposome studies due to an increase in the number of exposures 

considered (the exposome correlation cost) and to exposures measurement error (the mismeasurement 

cost).  

We considered scenarios with the continuous health outcome being affected by a single true predictor randomly 

selected amongst a set of 1, 10 or 237 exposures. Results are given for DSA directly applied on the available 

data (in the presence of measurement error, DSA was applied on one error-contaminated measure without 

measurement error correction (naive approach)). Average values computed over 200 simulation runs are 

displayed. Since FDP cannot be defined when there is a single exposure in the study and it is a true predictor 

(which means there is no exposure that is not a true predictor), we assumed as a baseline value, a theoretical FDP 

(in the absence of measurement error) of 5%. 

DSA: Deletion/substitution/addition algorithm; FDP: False discovery proportion. 
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1. Mitigating the impact of measurement error in exposome studies 

Regression calibration allowed some improvement over the naive approach ignoring 

measurement error when repeated biospecimens were available, and a good recovery of the 

impact of exposure measurement error when five repeated biospecimens were available per 

exposure and subject; there was little gain in further increasing the number of biospecimens 

per subject. When no repeated biospecimens are available, we cannot strongly recommend 

using RC, for the method did not always provide a clear improvement over the naive 

(uncorrected) approach; moreover “external” ICCs (i.e., stemming from another population) 

are needed in this case, and ICCs are not always transposable from one population to another 

(Vernet et al., 2019). 

Our study can also be seen as a generalization in the exposome setting of the within-subject 

biospecimens pooling approach, which had previously been validated in a single-exposure 

context (Perrier et al., 2016; Vernet et al., 2019). We assumed that no source of error was 

introduced when pooling biospecimens. The performances of pooling were marginally lower 

than those of RC in our simulations. However, two things should be kept in mind: first, 

estimation bias can be improved by applying a posteriori disattenuation, which is efficient 

when an unbiased estimate of the ICC is available (preferably from a subgroup of the study 

population) (Perrier et al., 2016; Vernet et al., 2019). Second, RC implies to assay exposures 

in all collected biospecimens, as opposed to one per subject in the pooling approach. 

Consequently, biospecimens pooling can be achieved at a much lower cost, and allows 

reducing the issue related to limits of detection (LOD), as pooling limits the proportion of 

samples below the LOD (Schisterman and Vexler, 2008; Vernet et al., 2019). 

The number of biospecimens collected per subject can be reduced without affecting 

significantly the methods' efficiency, preferably by limiting the assessment of repeated 
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biospecimens to exposures with the lowest ICCs (with 0.6 appearing as a relevant threshold); 

but also by assessing repeated samples in a subgroup of the study population (with 40% of 

randomly chosen subjects appearing as a minimal threshold in our setting). In practice, one 

should collect repeated urinary biospecimens (urine being the matrix from which the 

compounds with high within-subject variability are generally assessed) but could afford to 

collect only one or a couple of blood samples per subject, compounds assessed in blood 

generally having higher ICCs. It is not possible to suggest an optimum number of 

biospecimens to be collected per subject, as this depends on several factors, including the ICC 

and likely the correlation with other exposures. Yet, in a single exposure context, about 18-35 

biospecimens per subject collected in the relevant time window were required to decrease bias 

in the dose-response slope down to 10% (Perrier et al., 2016; Vernet et al., 2019). 

2. Study limitations 

We considered a simple simulation design; specifically, we did not assume the existence of 

confounders (although these could be incorporated using our simulation code), of LODs (the 

performance gain of repeated biospecimen sampling might actually be larger if the LODs are 

high for some exposures, because collecting more biospecimens is generally a good strategy 

to limit issues related to LODs (Mumford et al., 2006)), nor of measurement error affecting 

the health outcome. We considered classical-type error only, which is typically what can be 

expected for biomarker-based exposures and which most existing statistical methods for 

measurement error are designed for. Yet departure from this type of error may be observed for 

exposures assessed by other means, such as atmospheric pollutants and meteorological 

conditions; and correlation in the errors across exposures may also exist (which RC can 

account for if the corresponding information is provided (Carroll et al., 2006)). Finally, we 

only considered linear effects of exposures on the health outcome; non-linear effects are likely 

to make the identification of true predictors even more challenging. 
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Regarding statistical approaches, we only investigated measurement error correction 

approaches that transformed the exposure variables, allowing flexibility in the algorithm to 

assess the link between exposures and the health parameter. Although we did not quantify it, 

we have no reason to believe that the impact of measurement error or of measurement error 

correction techniques would be different if another variable selection model was used at the 

exposome-health step. Several algorithms that jointly correct for measurement error and 

perform variable selection were recently developed (Liang and Li, 2009; Ma and Li, 2010; 

Sørensen et al., 2012; Wang et al., 2012), and can in principle be used in exposome studies. In 

practice, they are complex to implement, usually not available in standard statistical software 

and sometimes not applicable to all types of regression models or to all settings (Guangning, 

2014).  

Regarding our first step, instead of using RC for correcting for measurement error, moment 

reconstruction and multiple imputation may be considered. In the context of regression 

models without variable selection, a simulation study showed that RC carried efficiency gains 

that were sometimes dramatic over these two substitution methods (Freedman et al., 2008). 

Regarding the way RC was applied, here we have conducted RC correction only once for 

each individual scenario, including all available exposures measures in the model. Yet, unlike 

the pooling approach, RC is a multivariate model-based correction whose results depend on 

the set of exposures that are included in the model. Hence, ideally, RC correction should be 

refitted at each step of the DSA procedure with the updated set of retained exposures. This 

could improve the method performances, but appears cumbersome in practice. One alternative 

would be to correct each exposure independently. In balanced design scenarios without 

adjustment factors, this procedure is equivalent to the pooling approach when combined with 

a variable selection procedure, as the resulting exposure proxies are a rescaled version of the 

pooled biospecimens estimate, as we show in Appendix J. Finally, in the subsequent 
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exposure-health step, model’s parameters standard errors are biased for both the RC and the 

pooling approaches (they do not account for the fact that exposures are measured with error 

(Armstrong and Basagaña, 2015; Spiegelman et al., 2001)). Proper standard error estimates 

may be obtained by bootstrap. Yet, sensitivity, FDP and estimation bias performances 

obtained with our DSA approach are not affected by estimation bias of standard errors, as this 

variable selection method does not depend on the coefficients standard error, but relies on the 

model fit. 

3. Conclusions and possible strategy for future exposome studies 

As demonstrated here and in previous studies, the factors that negatively affect the 

performances of statistical methods in studies linking exposome and health are notably (i) a 

large number of exposures ; (ii) the existence of (even moderate) correlation between 

exposures; and (iii) differential measurement error (Figure 5). Schematically, an exposome 

study that considers both persistent and non-persistent biomarkers risks being short-sighted 

(underpowered) for the least persistent exposures if no specific efforts to correct the related 

unbalanced power is made. Collecting repeated biospecimens and using within-subject 

pooling or regression calibration on these repeated biospecimens allows improving 

performances up to a large extent when multiple biospecimens are collected per exposure and 

subject. If assay cost is an issue, then the within-subject biospecimens pooling approach, 

which allows improving performances without increasing assay cost (but with an increase in 

biospecimens collection and handling costs compared to the approach with one biospecimen 

per subject) should be preferred; limiting repeated samples to the least persistent exposures is 

a further option to limit costs.  

In conclusion, measurement error issues are compounded in exposome studies compared to 

smaller dimension exposure-health studies. Exposome research has the more or less overtly 
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stated aim to hierarchize exposures in terms of strength of their association with health; as we 

illustrated here (see in particular Figure 2), this aim is unlikely to be achieved without 

implementing, from the step of study design, specific measurement error correction 

approaches such as those relying on the collection of repeated biospecimens in each subject.  
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