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cDepartment of Economics and Management, University of Brescia, Brescia, Italy

Abstract

The Inventory Routing Problem with Logistic Ratio (IRPLR) is a variant of

the classical IRP where, instead of the total distribution cost, the ratio between

the total distribution cost and the total delivered quantity is minimized, giving rise

to a fractional objective function. An exact algorithm is known, solving instances

with up to 15 customers. We propose an iterative exact algorithm where, at each

iteration, an IRP with a linear objective function is solved. Experiments show

that the proposed algorithm is faster when the number of vehicles is small, solving

instances with more customers and a longer planning horizon.

Keywords: Inventory routing problem, logistic ratio, exact method.

1. Introduction

In this paper the Inventory Routing Problem with Logistic Ratio (IRP-LR) is

studied. The IRP is the problem of determining the minimum cost distribution plan

of a commodity from a supplier to a set of geographically dispersed customers over

a finite planning horizon. The planning horizon is discretized in periods and, for the

ease of explanation and without loss of generalization, we consider periods as days.
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Customers have a daily demand and the distribution is performed through a fleet

of capacitated vehicles that start and end their route at the supplier location. No

stockout is allowed, and the objective is to design a distribution plan that minimizes

the total distribution cost, which is usually the sum of the routing and inventory

cost. For an exhaustive literature review on the IRP, we refer the reader to the

recent tutorials and surveys [9, 10, 11, 22], and to [3] for an overview of applications

of the IRP. The interest in studying the IRP is motivated by the large benefits

that can be achieved by integrating distribution and inventory management, as

demonstrated in [4]. Different exact solution approaches have been proposed for the

optimal solution of the IRP. Most of them are based on branch-and-cut algorithms

(see Coelho et al. [19, 20], Coelho and Laporte [17], Adulyasak et al. [1], Archetti

et al. [6], Coelho and Laporte [18]). To the best of our knowledge, only one exact

solution approach is based on branch-and-price, namely the one proposed in [24].

Surprisingly, the literature on heuristic approaches is scarcer than the one on exact

algorithms. Recent contributions and variants of the problem include the works of

[7] on a new heuristic, [16] for an algorithm for a problem involving also assembly and

production, [27] for an application dealing with liquefied natural gas, and [29, 13] for

a multi-depot contributions. Finally, the field of dynamic IRPs consider that some

information arrives (or is realized) over time. Most algorithms rely on heuristics

such as those of [21, 12, 30, 14, 35, 33]. For more detailed information we refer to

the surveys of Ritzinger et al. [32], Roldán et al. [34].

The classical IRP focuses on minimizing the overall cost, composed of routing

and inventory holding. Recently, other objectives have been proposed with the aim

of improving the performance of the whole chain, or to shape solutions towards a

specific goal. Escalona et al. [26] used a different objective function to drive the

solution towards different replenishment policies. Rau et al. [31] uses a more com-

prehensive objective function encompassing inventory holding and handling, besides
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fixed and variable vehicle costs. This allows for measuring not only inventory man-

agement contributions to the total cost, but also to obtain a proxy for gas emissions.

Also with a focus on emissions, Cheng et al. [15] extends it to consider the effect of

a heterogeneous fleet into the cost and emissions of an IRP. The logistic ratio, as

considered in this paper, is another type of objective function which aims to deliver

more than the minimum necessary by minimizing the cost per unit delivered.

The IRP-LR, recently studied in Archetti et al. [8], is a variant of the IRP in

which, instead of the total distribution cost, the logistic ratio, i.e., the ratio between

the total distribution cost and the total delivered quantity, is minimized. The logis-

tic ratio can be interpreted as the average cost of delivering one unit of commodity

to the customers. As explained in Archetti et al. [8], the motivation for using the

logistic ratio as objective function instead of the classical total distribution cost is

twofold. On one side, the logistic ratio tends to smooth the ‘end-of-horizon’ effect

that typically affects the solutions obtained through the minimization of the total

distribution cost. The end-of-horizon effect appears when solving the problem over

a finite planning horizon and is a tendency to let the inventory levels to decrease

significantly towards the end of the horizon. This has the disadvantage that the

next planning cycle will start with all customers having very low initial inventory

levels. In addition, the logistic ratio is popular in companies as a performance mea-

sure. This is witnessed by the real application which inspired the ROADEF/EURO

Challenge 2016 (ROADEF [2016]) proposed by Air Liquide. Although recently in-

troduced in the literature, the logistic ratio has been used as an objective function

in Giroudeau et al. [28] for optimizing bulk distribution of gas, and as an evaluation

criterion in Alvarez et al. [2], Darvish et al. [23]. As shown in Archetti et al. [8], the

use of the logistic ratio as objective function instead of the classical sum of inventory

and distribution costs helps in mitigating the end-of-horizon effect. This motivates

our study whose aim is enriching the literature on the IRP-LR. We tackle the prob-
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lem as defined in Archetti et al. [8]. The problem is extremely difficult to solve and

research is needed to acquire knowledge useful for the solution of the problem itself

and of related (and more complex) variants.

The IRP-LR is the optimization problem arising in the applications mentioned

above (ROADEF [2016], Giroudeau et al. [28]), where simplifying assumptions are

made in order to obtain a ‘tractable’ problem for which solutions can be obtained

in a reasonable computing time. In particular, the problem formulation relaxes all

side constraints apart inventory and vehicle capacity, and it is assumed to have

deterministic information over all values of data. Finally, the objective function is

clear and well-defined, i.e., minimizing the unit distribution cost. In the IRP-LR

three main decisions have to be taken, namely, the schedule of visits to customers,

the quantities delivered at each visit and the routes that the vehicles have to travel

when performing the deliveries, with the goal of minimizing the logistic ratio of the

distribution plan.

In this paper we focus on the IRP-LR studied in Archetti et al. [8]. Differently

from most IRPs studied in the literature, the total cost considered in Archetti et al.

[8] consists of the routing cost per unit only, as no inventory cost is accounted for.

While generally the objective of the IRPs is to minimize the total cost consisting of

the sum of distribution and inventory holding (at the supplier and at the customers),

the only costs of interest in this variant are the delivery costs. This is consistent

with the case where the unitary inventory cost is equal at all customers and at

the supplier. In fact, in this case, the distribution plan does not affect the total

inventory cost which is a constant. In Archetti et al. [8], a path-flow formulation

is proposed for the IRP-LR and the problem is solved through the Dinkelbach’s

algorithm (see [25]). This algorithm iteratively solves an IRP where the objective

function is the difference between the total routing cost and the quantity delivered

multiplied by the logistic ratio found at the previous iteration. Each IRP is solved
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through the branch-price-and-cut algorithm proposed in Desaulniers et al. [24]. This

work differs from what is done in Archetti et al. [8] in the solution approach proposed

for the solution of the IRP-LR. In fact, instead of using the Dinkelbach’s algorithm

as done in Archetti et al. [8], we exploit the structure of the problem to derive an ad

hoc exact algorithm that works based on iteratively solving a linear maximization

problem and a linear minimization problem. The convergence of the algorithm is

guaranteed. It finishes in a finite number of steps with an optimal solution. In

particular, the solution approach we propose consists in solving a sequence of IRPs

with a linear objective function, where either the routing cost is minimized or the

total quantity delivered is maximized. The algorithm stops when an optimality

condition is satisfied. Acceleration techniques to speed-up the exact algorithm are

also proposed. Computational tests are performed on the instances introduced in

Archetti et al. [8]. The results show that the proposed algorithm outperforms the

one by Archetti et al. [8] when the number of vehicles is small. In addition, it is able

to solve instances with a larger number of customers and a longer planning horizon.

The paper is organized as follows. In Section 2 we provide the problem descrip-

tion and a mathematical formulation. Section 3 describes the exact algorithm and

the acceleration techniques. Computational results are presented in Section 4 while

conclusions are drawn in Section 5.

2. Problem description and formulation

Let G = (N,E) be a complete undirected graph where N = {0}∪N ′ is the set of

locations (nodes) and E is the set of edges between locations. Node 0 is the depot

corresponding to the supplier location and N ′ is the set of customers. A cost cij is

associated with each edge < i, j >. We assume that costs cij satisfy the triangle

inequality. The planning horizon T = {1, . . . , H} is composed of H days. Each

customer i ∈ N ′ is associated with inventory capacity Ui and a daily demand rit,
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i ∈ N ′, t ∈ T . The quantity produced at the depot at period t is denoted as r0t

while Ii0 is the initial inventory level at location i ∈ N . A fleet K of homogeneous

vehicles of capacity Q is available to distribute the goods from the depot to the

customers. The IRP-LR is the problem of determining the distribution plan that

minimizes the logistic ratio while satisfying all customer demands and not violating

any constraint. In particular, the following constraints are considered:

1. Vehicle capacity is not exceeded.

2. No stockout occurs at any node in each time period.

3. The maximum inventory level at customers is not exceeded.

We now propose an arc-flow formulation for the IRP-LR involving the following

variables:

• Iit: Inventory level at location i at the end of period t;

• yktij : Number of times edge < i, j > is traversed by vehicle k in period t;

• qkit: Quantity delivered to customer i by vehicle k in period t;

• zkit: Binary variable equal to 1 if location i is visited by vehicle k in period t.

For a subset of customers S ⊆ N ′, let E(S) = {< i, j >∈ E | i, j ∈ S}. Using

this notation, the IRP-LR is formulated as follows:

min
∑
k∈K

∑
<i,j>∈E

∑
t∈T

cijy
kt
ij

/∑
k∈K

∑
i∈N ′

∑
t∈T

qkit (1a)

s.t. I0t = I0,t−1 + r0t −
∑
k∈K

∑
i∈N ′

qkit t ∈ T (1b)

Iit = Ii,t−1 − rit +
∑
k∈K

qkit i ∈ N ′, t ∈ T (1c)

Iit ≥ 0 i ∈ N, t ∈ T (1d)
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∑
k∈K

qkit ≤ Ui − Iit−1 i ∈ N ′, t ∈ T (1e)

qkit ≤ Uiz
k
it i ∈ N ′, k ∈ K, t ∈ T (1f)∑

i∈N ′

qkit ≤ Qzk0t k ∈ K, t ∈ T (1g)∑
k∈K

zkit ≤ 1 i ∈ N ′, t ∈ T (1h)∑
j:<i,j>∈E

yktij = 2zkit i ∈ N, k ∈ K, t ∈ T (1i)∑
<i,j>∈E(S)

yktij ≤
∑
i∈S

zkit − zkst S⊆N ′, s∈S, k∈K, t ∈T (1j)

zkit ∈ {0, 1} i ∈ N, k ∈ K, t ∈ T (1k)

qkit ≥ 0 i ∈ N ′, k ∈ K, t ∈ T (1l)

yktij ∈ {0, 1} < i, j >∈ E, k ∈ K, t ∈ T (1m)

ykt0j ∈ {0, 1, 2} j ∈ N ′, k ∈ K, t ∈ T. (1n)

The objective function (1a) is the logistic ratio, i.e., the ratio between the total

routing cost and the total quantity delivered. Constraints (1b)–(1c) are inventory

balance constraints for the supplier and the customers, respectively. In particular,

the inventory level at time t at the supplier is equal to the inventory level at time

t − 1, plus the quantity produced at time t, minus the quantity distributed to all

customers at time t. Similarly, the inventory level at each customer at time t is given

by the inventory level at time t− 1, minus the demand at time t, plus the quantity

received at time t. Constraints (1d) establish that stockout is not permitted at the

supplier and at the customers. (1e) are the maximum inventory capacity constraints

at customers, i.e., the quantity delivered at time t should be not greater than the

difference between the inventory capacity and the inventory level at time t− 1. (1f)

link q and z variables while (1g) are vehicle capacity constraints. Constraints (1h)

state that no split delivery is allowed, i.e., each customer can be visited by one vehicle

at most in any time period. Constraints (1i)–(1j) are classical routing constraints.
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In particular, (1i) establish that exactly two edges incident to each visited node

must be traversed in any time period. Subtours are eliminated through (1j) which

work as follows: for any subset S of customers, any time period and any vehicle, the

number of edges traversed by the vehicle linking two customers belonging to S have

to be not greater than the number of customers in S minus one. As the number

of subsets S is exponential, subtour elimination constraints (1j) are exponentially

many and, consequently, have to be separated dynamically when violated. Finally,

(1k)–(1n) define the domain of the variables.

3. Exact algorithm

The main idea of the exact algorithm is to sequentially solve different IRPs with a

linear objective function which alternates between the routing cost, to be minimized,

and the quantity delivered, to be maximized, until an optimality condition is met.

As will be seen, convergence is guaranteed and an optimality condition exists, after

which the algorithm stops.

Let us introduce the following definitions and notations.

Dmax: The maximum quantity that can be delivered:

Dmax = min

{
HQ|K|,

∑
i∈N ′

max

{
0,
∑
t∈T

rit − Ii0

}
+
∑
i∈N ′

(
Ui − riH −max{0, Ii0 −

∑
t∈T

rit}

)}
.

(2)

Dmax corresponds to the maximum quantity that can be delivered by all vehicles over

the entire planning horizon. It is the minimum of two terms. The first corresponds to

the total vehicle capacity (HQ|K|). The second term is the sum, over all customers,

of the maximum quantity that can be delivered to each customer on the basis of the

demands and inventory capacity. This quantity is given by the sum of two terms:
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the difference between the total demand over the planning horizon and the initial

inventory level (max
{

0,
∑

t∈T rit − Ii0
}

) and the maximum quantity that can be

delivered in the last day, i.e., day H (Ui − riH −max{0, Ii0 −
∑

t∈T rit}).

FRIRP : Feasible region of the IRP defined by inequalities (1b)-(1n).

z(R): Total routing cost: ∑
k∈K

∑
<i,j>∈E

∑
t∈T

cijy
kt
ij . (3)

z(D): Total quantity delivered: ∑
k∈K

∑
i∈N ′

∑
t∈T

qkit. (4)

z∗(R): Minimum total routing cost. It corresponds to the optimal solution over FRIRP

when the objective function corresponds to (3) (as detailed in phase 1 below).

z∗(D): Maximum total quantity delivered. It corresponds to the optimal solution over

FRIRP when the objective function corresponds to (3) (as detailed in phase 3 below).

LBn: Lower bound on the value of the logistic ratio at iteration n.

Dmin
n : Minimum quantity that has to be delivered at iteration n.

rbest: Current best value of the logistic ratio.

Each iteration n of the algorithm is associated with a minimum quantity that

has to be delivered Dmin
n . This quantity is initially set to 0 and is incremented

at every iteration. Then, each iteration consists in first determining the solution

with minimum routing cost z∗(R) delivering a quantity which is at least Dmin
n , and

then the solution with routing cost z∗(R) delivering the maximum possible quantity.

More in details, the main phases of each iteration of the algorithm are the following:
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1. Determine the solution with minimum total routing cost, i.e., minimize z(R),

subject to FPIRP and z(D) ≥ Dmin
n . If the problem is infeasible the algorithm

stops and the best logistic ratio found is the optimum. The infeasibility is

caused by the introduction of constraint z(D) ≥ Dmin
n , i.e., there exists no

solution in FPIRP satisfying this constraint. Otherwise, let z∗(R) be the value

of an optimal solution.

2. Update the lower bound LBn. At each iteration n, z∗(R) is a lower bound

on the routing cost of solutions obtained from iteration n on. Thus, a valid

lower bound on the logistic ratio for solutions found from iteration n on is

z∗(R)/Dmax.

3. As there may be different solutions in FRIRP with a value of z(R) equal to

z∗(R), the next step is to search for the solution in FRIRP with a routing cost

equal to z∗(R) for which z(D) is maximized. Thus, the problem of maximizing

z(D) subject to FRIRP and z(R) ≤ z∗(R) is solved. The corresponding logistic

ratio is calculated and the best current value of the logistic ratio is possibly

updated. In case the solution is lower than or equal to the lower bound, then

the algorithm stops: the optimum has been found. Otherwise, Dmin
n is set

to z∗(D) + 1 and a new iteration starts. In fact, once z∗(D) is calculated,

then the algorithm has identified the best logistic ratio for solutions delivering

a quantity lower than or equal to z∗(D). Thus, the search continues in the

next iterations on larger quantities. As quantities are integer, the minimum

quantity greater than z∗(D) is z∗(D) + 1.

Note that the value of z(R) increases at each iteration as the value of Dmin
n

increases. This implies that the value of LBn increases as well and thus the algorithm

converges to optimality in a finite number of steps.

A pseudo-code of the exact algorithm is outlined in Algorithm 1.

The distribution plan with the minimum routing cost delivering at least a quan-
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Algorithm 1 An exact algorithm for the IRP-LR

1: n := 0
2: rbest := +∞
3: Dmin

0 = 0
4: repeat
5: Solve the problem of minimizing z(R) subject to FRIRP and z(D) ≥ Dmin

n

6: if the problem is infeasible then
7: Stop and return rbest
8: end if
9: Let z∗(R) be the optimum

10: Solve the problem of maximizing z(D) subject to FRIRP and z(R) ≤ z∗(R)
11: Let z∗(D) be the optimum
12: if z∗(R)/z∗(D) < rbest then
13: rbest := z∗(R)/z∗(D)
14: end if
15: n := n + 1
16: Dmin

n = z∗(D) + 1
17: LBn := z∗(R)/Dmax

18: until rbest ≤ LBn

19: Return rbest

tity equal to Dmin
n is determined at line 5. Note that, at the first iteration (n = 0),

this corresponds to determining the solution in FRIRP with minimum routing cost.

If the problem is infeasible the algorithm stops (line 7) and rbest is the optimum. In

fact, rbest is the best logistic ratio for a delivered quantity lower than Dmin
n and no

solution exists for a delivered quantity larger than or equal to Dmin
n . Otherwise, at

line 10, the maximum quantity that can be delivered when the routing cost is lower

than or equal to z∗(R) is obtained and the value of rbest is updated (line 13). If

rbest ≤ LBn, the algorithm stops and rbest is the optimum as LBn is a lower bound

on the logistic ratio for solutions delivering a quantity which is at least equal to

Dmin
n .

3.1. Acceleration techniques

Two acceleration techniques to speed-up Algorithm 1 have been implemented.

The first is related to the introduction of a new condition on the minimum quantity
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that has to be delivered. The second technique concerns the introduction of a new

stopping condition. We now describe them in detail.

The first acceleration technique works as follows. Once the value of z∗(R) is

calculated at line 5, then it is possible to determine the minimum quantity that

needs to be delivered in order to improve the value of the logistic ratio rbest. This

quantity is:

D̄min
n = dz∗(R)/rbeste+ 1. (5)

Quantity D̄min
n is determined on the basis of the following observation. Given

the minimum routing cost z∗(R), in order to obtain a value of the logistic ratio

improving upon the best solution found so far, i.e., rbest, a quantity equal to at least

dz∗(R)/rbeste+ 1 must be delivered, otherwise no improvement is achieved.

Algorithm 1 is modified as follows. Once the value of z∗(R) is determined at line

5, the algorithm solves again the problem of minimizing z(R) subject to FRIRP and

z(D) ≥ D̄min
n . Then, three situations may occur:

1. The problem is infeasible. In this case, rbest is the optimum value of the logistic

ratio and the algorithm stops.

2. The routing cost has not increased. In this case, the algorithm goes to line 10

and determines the maximum quantity z∗(D) with a routing cost not greater

than z∗(R).

3. The routing cost has increased. In this case, the value of D̄min
n is updated and

the algorithm solves again the problem of minimizing z(R) with z(D) ≥ D̄min
n .

The second acceleration technique consists in introducing a new stopping cri-

terion which is based on determining an upper bound on the routing cost. The

stopping criterion is based on the observation that, as the routing cost is increasing

with n, as soon as z∗(R) ≥ rbestDmax, the algorithm can be interrupted as no logistic

ratio better than rbest exists.
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By incorporating these acceleration techniques in Algorithm 1, we obtain the

accelerated exact algorithm described in Algorithm 2.

4. Computational tests

Algorithm 2 has been tested on benchmark instances for the IRP. The branch-

and-cut algorithm presented in Coelho and Laporte [17] is used for solving the IRP at

lines 5, 14 and 24. Due to the exponential number of subtour elimination constraints

(1j), the algorithm relaxes these constraints and introduces them dynamically when

violated. Note that any solution algorithm for the IRP can be embedded in our

solution approach for the IRP-LR. As a consequence, computational results may

vary according to the IRP solution approach used, as commented in Section 4.1.

The instances were proposed in Archetti et al. [5] for the single-vehicle case and

were adapted to the multiple-vehicle case in Archetti et al. [6], Coelho and Laporte

[17] and Desaulniers et al. [24]. The instances have a value of H equal to 3 and

6 and the number of customers is |N ′| = 5` with ` = 1, ..., 10 when H = 3 and

` = 1, ..., 6 when H = 3. The number of vehicles |K| varies from 1 to 5. For

each instance characteristic (number of customers, number of vehicles), there exist

5 random instances with different locations of customers and supplier. Thus, we

have 250 instances with H = 3 and 150 instances with H = 6. Note that in Archetti

et al. [5], Archetti et al. [6], Coelho and Laporte [17] and Desaulniers et al. [24],

two classes of instances were generated, with high and low inventory cost. This

distinction is not considered in the present work as no inventory cost is accounted

for in the IRP-LR.

In Archetti et al. [8], among the benchmark, only the instances with H = 3 and

with a number of customers up to 15 were considered. In addition, new instances

with 5 and 10 customers were tested where all characteristics remained identical

with the exception of the value of the horizon which was set to H = 4 and H = 5.
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Algorithm 2 An accelerated exact algorithm for the IRP-LR

1: n := 0
2: rbest := +∞
3: Dmin

0 = 0
4: repeat
5: Solve the problem of minimizing z(R) subject to FRIRP and z(D) ≥ Dmin

n

6: if the problem is infeasible then
7: Stop and return rbest
8: end if
9: Let z∗(R) be the optimum

10: if z∗(R) ≥ rbestDmax then
11: Stop and return rbest
12: end if
13: D̄min

n = dz∗(R)/rbeste+ 1
14: Solve the problem of minimizing z(R) subject to FRIRP and z(D) ≥ D̄min

n .
15: if the problem is infeasible then
16: Stop and return rbest
17: end if
18: if the optimum of the problem is not greater than z∗(R) then
19: Go to line 24
20: else
21: Let z∗(R) be the optimum
22: Go to line 13
23: end if
24: Solve the problem of maximizing z(D) subject to FRIRP and z(R) ≤ z∗(R)
25: Let z∗(D) be the optimum
26: if z∗(R)/z∗(D) < rbest then
27: rbest := z∗(R)/z∗(D)
28: end if
29: n := n + 1
30: LBn := z∗(R)/Dmax

31: until rbest ≥ LBn

32: Return rbest.
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For these latter instances, no result is available for a number of customer greater

than 10. In addition, no instances are tested with an horizon larger than 5.

We have tested Algorithm 2 on all instances tested in Archetti et al. [8]. In

addition, we have tested instances with a larger number of customers (up to 25 cus-

tomers) and with a longer horizon (6 days). More exactly, we have tested instances

with up to 25 customers when H = 3 and 15 customers when H = 4, 5, 6.

4.1. Computational results

In the following we compare the results obtained by Algorithm 2, called ACS from

now on, and the algorithm presented in Archetti et al. [8], called ADS. Tests have been

run on machines equipped with Intel Xeon X5650 processors running at 2.67GHz

and up to 48GB of RAM. The algorithm was coded in C++ and used CPLEX 12.8

as mathematical programming solver. A time limit of 1 hour was imposed on each

run. Tests in ADS [8] were conducted on a Linux computer equipped with an Intel

Core i7-4770 processor clocked at 3.4 GHz (a single core was used). CPLEX 12.4.0.0

was used as MILP solver. In Archetti et al. [8] the maximum computing time was

set to three hours. All tested instances were solved to optimality except one instance

with 10 customers, 3 vehicles and 4 periods.

Results are presented in Tables 1–4 for the different values of H. The first two

columns report the values of |K| and |N ′|, respectively. The following columns

report average values over the five instances with the corresponding values of K

and N ′. In particular, for ACS we report: the average value of the logistic ratio,

the average CPU time (in seconds), the average number of iterations, the number of

instances for which a feasible solution has been found, the number of instances solved

to optimality and the average percentage optimality gap at termination. Defining

as UB and LB the values of the upper and lower bounds, respectively, found by ACS
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at termination, then the percentage optimality gap is calculated as:

100
UB − LB

LB
.

Then, apart for the case with H = 6 that was not tested in Archetti et al. [8], the

last two columns report the average CPU time (in seconds) and the average number

of iterations for ADS, respectively.

Focusing on the case with H = 3 (Table 1), we see that ACS is able to solve

all instances with up to 25 customers when |K| = 1. When increasing the number

of vehicles, the number of instances solved to optimality decreases. In particular,

all instances with up to 15 customers are solved to optimality when |K| = 2, 3,

when |K| = 4 the maximum size of instances solved to optimality decreases to

10 customers while when |K| = 5, 2 instances with 10 customers are not solved.

When comparing with the results obtained by ADS, we notice that ACS performs

better than ADS for small values of |K|, while the opposite is true when the value

of |K| increases. In our opinion, this is primarily due to the solution algorithm

used to solve each iteration in each algorithm: while ACS is a branch-and-cut, ADS

is a branch-and-price. We note that the benchmark IRP instances that we used in

this study are such that, the higher is the number of vehicles, the shorter are the

vehicle routes, in terms of number of customers visited, as the smaller is the vehicle

capacity with respect to customer demands. As shown in Desaulniers et al. [24]

where different exact solution approaches for the IRP are proposed, branch-and-

price performs better than branch-and-cut when routes are shorter.

Similar considerations can be applied to the case H = 4 (Table 2) where ACS

solves to optimality all instances with 15 customers and 3 vehicles (ADS has been

tested on instances with 10 customers at most), all instances with 10 customers

and 4 vehicles while 2 instances with 10 customers and 5 vehicles are not solved.

For the case H = 5, all instances with 15 customers and 3 vehicles are solved, 2
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Table 1: Results with H = 3

ACS ADS [8]

|K| |N ′| Log. ratio CPU time # iter. # feas. # opt. Opt. gap CPU time # iter.

1 5 2.54 0.39 4.20 5 5 0.00 93.80 3.20
10 1.42 5.68 7.20 5 5 0.00 93.80 3.20
15 1.15 27.24 14.80 5 5 0.00 8022.80 3.40
20 1.01 131.10 18.80 5 5 0.00
25 0.85 504.49 25.60 5 5 0.00

Average 1.39 133.78 14.12 25 25 0.00 2736.80 3.27
2 5 3.18 1.66 4.80 5 5 0.00 0.20 3.20

10 1.86 35.83 10.00 5 5 0.00 8.70 3.20
15 1.41 188.34 14.60 5 5 0.00 422.80 3.20
20 1.23 2535.02 17.60 5 2 11.43
25 1.06 2682.59 10.00 4 2 35.39

Average 1.78 1088.69 11.40 24 19 9.36 143.90 3.20
3 5 4.19 2.63 6.40 5 5 0.00 0.20 3.20

10 2.35 245.17 13.80 5 5 0.00 32.40 3.40
15 1.68 1740.52 19.20 5 5 0.00 1320.60 3.00
20 1.64 3600.00 7.40 4 0 47.24
25 1.36 3600.00 3.20 2 0 74.97

Average 2.40 1837.66 10.00 21 15 24.44 451.07 3.20
4 5 5.05 3.18 6.20 5 5 0.00 0.12 3.00

10 2.79 1322.34 14.20 5 5 0.00 10.80 3.60
15 2.12 3305.81 8.60 5 1 27.13 231.60 3.60
20 1.85 3600.00 1.40 2 0 79.52
25 1.36 3600.00 1.80 1 0 74.66

Average 3.05 2366.27 6.44 18 11 36.26 80.84 3.40
5 5 5.99 3.15 6.20 5 5 0.00 0.20 3.40

10 3.26 2168.22 14.40 5 3 8.23 8.32 3.20
15 2.74 3600.03 2.80 5 0 42.52 1564.00 3.80
20 2.04 3600.00 1.00 2 0 79.99
25 - 3600.00 1.20 0 0 87.98

Average 3.77 2594.28 5.12 17 8 43.74 524.17 3.47
Global Average 2.35 1604.14 9.42 105 78 22.76 787.36 3.31
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instances with 10 customers and 4 vehicles are not solved while only 1 instance with

10 customers and 5 vehicles is solved (Table 3). For the case with H = 6 (Table

4) there is no comparison with ADS. In this case, we see that the difficulty of the

problem increases further. Again, all instances with 15 customers and 2 vehicles are

solved, while already with 3 vehicles there are some instances with 10 customers

which are not solved to optimality.

Table 2: Results with H = 4

ACS ADS [8]

|K| |N ′| Log. ratio CPU time # iter. # feas. # opt. Opt. gap CPU time # iter.

1 5 2.66 1.20 7.40 5 5 0.00 0.40 3.00
10 1.43 12.81 9.80 5 5 0.00 2577.60 3.20
15 1.18 66.31 19.20 5 5 0.00

Average 1.76 26.77 12.13 15 15 0.00 1289.00 3.10
2 5 3.28 3.37 6.80 5 5 0.00 0.40 3.20

10 1.87 669.48 19.20 5 5 0.00 101.40 3.00
15 1.44 2297.09 24.00 5 4 3.41

Average 2.20 989.98 16.67 15 14 1.14 50.90 3.10
3 5 4.15 8.25 7.80 5 5 0.00 0.64 3.40

10 2.38 2078.91 13.60 5 4 4.88 76.75 3.25
15 1.86 3633.62 7.00 5 0 26.14

Average 2.80 1906.93 9.47 15 9 10.34 34.47 3.33
4 5 5.33 13.33 9.00 5 5 0.00 1.30 3.00

10 2.98 3210.41 7.00 5 1 22.23 1046.80 3.40
15 2.28 3600.20 1.40 4 0 45.80

Average 3.62 2274.65 5.80 14 6 22.68 524.05 3.20
5 5 6.35 11.97 6.80 5 5 0.00 1.96 3.00

10 3.37 3600.34 4.20 3 0 56.72 630.40 3.80
15 - 3600.26 1.00 0 0 100.00

Average 5.23 2404.19 4.00 8 5 52.24 316.18 3.40
Global Average 2.89 1520.50 9.61 67 49 17.28 451.26 3.22

Finally, in Table 5 we provide the number of feasible and optimal solutions found

by ACS and the number of optimal solutions found by ADS over all values of H. ADS

was tested on 200 instances and it solved all of them to optimality apart one instance

with 10 customers, 3 vehicles and H = 4. Results are grouped by value of H, value

of |K| and value of |N ′|. When focusing on the second block, the one where values

are averaged over |K|, we clearly see what was mentioned before, i.e., ACS performs

better than ADS for small values of |K|, while the opposite is true. However, we

have to notice that ACS was able to solve larger instances, in terms of number of
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Table 3: Results with H = 5

ACS ADS [8]

|K| |N ′| Log. ratio CPU time # iter. # feas. # opt. Opt. gap CPU time # iter.

1 5 2.63 1.72 5.60 5 5 0.00 0.68 3.00
10 1.42 16.65 8.20 5 5 0.00 240.00 3.00
15 1.16 146.95 20.80 5 5 0.00

Average 1.74 55.11 11.53 15 15 0.00 120.34 3.00
2 5 3.19 5.42 7.60 5 5 0.00 4.04 3.00

10 1.86 985.68 14.80 5 4 2.65 791.80 3.40
15 1.42 3367.27 15.80 5 1 9.73

Average 2.16 1452.79 12.73 15 10 4.12 397.92 3.20
3 5 4.21 14.36 8.00 5 5 0.00 2.48 3.60

10 2.37 3600.08 9.80 5 0 15.93 3644.20 3.20
15 1.83 3600.13 2.20 5 0 26.18

Average 2.80 2404.86 6.67 15 5 14.04 1823.34 3.40
4 5 5.30 38.01 9.00 5 5 0.00 7.46 3.00

10 2.78 3600.12 2.80 3 0 53.49 2114.80 3.20
15 2.12 3600.09 1.00 2 0 71.05

Average 3.91 2412.74 4.27 10 5 41.51 1061.13 3.10
5 5 6.46 25.46 6.60 5 5 0.00 2.33 3.25

10 3.84 3600.30 1.00 1 0 85.62 4485.60 3.40
15 - 3600.63 1.00 0 0 100.00

Average 6.02 2408.80 2.87 6 5 61.87 2493.03 3.33
Global Average 2.88 1746.86 7.61 61 40 24.31 1152.34 3.20

Table 4: Results with H = 6

ACS

|K| |N ′| Log. ratio CPU time # iter. # feas. # opt. Opt. gap

1 5 2.69 3.20 6.40 5 5 0.00
10 1.46 47.75 12.40 5 5 0.00
15 1.18 434.39 24.40 5 5 0.00

Average 1.78 161.78 14.40 15 15 0.00
2 5 3.36 18.91 10.00 5 5 0.00

10 1.89 2890.84 23.20 5 4 2.72
15 1.51 3600.19 4.80 5 0 19.15

Average 2.25 2169.98 12.67 15 9 7.29
3 5 4.29 82.46 8.40 5 5 0.00

10 2.30 3600.13 7.60 3 0 51.21
15 2.06 3600.19 1.20 3 0 56.07

Average 3.14 2427.59 5.73 11 5 35.76
4 5 5.39 387.29 9.20 5 5 0.00

10 2.79 3600.36 2.40 3 0 53.94
15 - 3600.55 1.00 0 0 100.00

Average 4.42 2529.40 4.20 8 5 51.31
5 5 6.15 155.68 8.75 4 4 0.00

10 3.84 3600.55 1.00 1 0 85.62
15 - 3601.18 1.00 0 0 100.00

Average 5.69 2616.53 3.21 5 4 66.29
Global Average 2.94 1972.47 8.11 54 38 31.67
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customers, and instances with a longer planning horizon with respect to ADS which

did not solve, in 3 hours of computing time, instances with more than 10 customers

when H = 4, 5 and instances with H larger than 5.

We highlight that these results were obtained on slower machines using only one

third of the maximum running time.

Table 5: Results summary

ACS ADS

# feas. # opt. # opt.

H 3 105 78 75
4 67 49 74
5 61 40 50
6 54 38

|K| 1 70 70 40
2 69 52 40
3 62 34 40
4 50 27 39
5 36 22 40

|N ′| 5 99 99 75
10 84 56 74
15 74 36 50
20 18 7
25 12 7

Total 287 205 199

For an easier comparison, in Figure 1 we report the number of optimal solutions

found by ACS and ADS classified by the value of H, |K| and |N ′|. The figure confirms

what underlined above: ADS works better when the number of vehicle increases, while

ACS is able to solve instances with larger values of both values of H and |N ′|.

4.2. Sensitivity analysis

In order to obtain detailed sensitivity analysis we have run all instances with

3 and 4 periods, 2 and 3 vehicles, and 10 and 15 customers. For each of these

instances, we made six tests: with half and double demand, half and double vehicle

capacity, and half and double distances. The corresponding results are detailed in

Table 6.

As can be seen from the table, doubling the demand makes all instances infeasible

as there is not enough vehicle capacity and initial inventory to satisfy all demands.
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a) Number of optimal solutions for different values of H b) Number of optimal solutions for different values of |K|

c) Number of optimal solutions for different values of |N’|

Figure 1: Comparison of optimal solutions found by ACS and ADS.
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Decreasing vehicle capacity (thus requiring more visits to customers) and doubling

distances significantly increase the logistic ratio value. On the other hand, decreasing

routing costs (distances) has the most positive impact on improving the logistic

ratio. From a computational aspect, doubling the vehicle capacity yields much

easier problems, as can be seen from the lowest average runtime, with only 770s on

average (compared to 3104s for the most difficult one – when vehicle capacities are

halved).

5. Conclusions

The IRP-LR has been recently introduced in the literature as a variant of the

classical IRP where the logistic ratio, i.e., the ratio between the routing cost and

the total quantity delivered, is minimized. It is motivated by the fact that this

objective function mitigates one of the main drawbacks of the classical IRP, the

so-called ‘end-of-the-horizon’ effect, which consists in obtaining low inventory levels

at the end of the planning horizon. The new objective function makes the problem

more difficult to solve to optimality than the classical IRP. In this paper, a new

exact algorithm for the IRP-LR is proposed and compared against the only known

exact approach. The results show that the new algorithm outperforms the previous

approach when the number of vehicles is small. Moreover, the new algorithm is able

to solve instances with a larger number of customers and a longer planning horizon.

Future research needs to be done on the IRP-LR. In particular, given the com-

plexity of the problem, a promising direction would be the design of heuristic al-

gorithms capable of solving instances of larger size with respect to the ones tested

in this paper. In addition, it would be interesting to include additional side con-

straints that often appear in real applications, like, for example, time windows at

the customers and/or minimum quantities to be delivered at each visit.
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