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Abstract 23 

The Representative Elementary Area (REA) of two shales (Callovo-Oxfordian claystone and 24 

Tournemire argillite) that are actively studied in the framework of the deep disposal of 25 

radioactive waste have been estimated from two mineral maps by classical methods (i.e., the 26 

box-counting and statistical approaches) and by different microstructural descriptors (i.e., the 27 

two-point probability function, lineal path function, percolation length, and variogram). The 28 

classical box-counting method provides estimates of the REA size of the clay fraction in the 29 

range from 129 µm to 441 µm, consistent with estimates obtained from the literature on other 30 

shales. However, these estimates show an extreme sensitivity to the chosen ε threshold or 31 

error and a wide scatter, thereby bringing the statistical homogeneity of both maps into 32 

question. Although the two-point probability function and lineal path function infer lower 33 

bounds of the REA size, these microstructural descriptors are relevant to demonstrate the 34 

microstructural anisotropy of both shales due to the alignment of nonclay grains parallel to 35 

bedding at the study scale. The results from the two-point probability function and variogram 36 

undoubtedly confirm that the Tournemire mineral map is not statistically homogeneous with 37 

regard to its mineral composition. This aspect it makes difficult to interpret the results and 38 

even questions the REA size determination of this particular map. Finally, our set of results 39 

allow us to recommend the use of the two-point probability function and variogram to 40 

preliminarily validate the statistical homogeneity of maps under study before calculating the 41 

REA size using conventional methods, e.g. the box-counting and statistical approaches.  42 

 43 

 44 
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1. Introduction 47 

Clay rocks, often called shales, are considered potential host rocks for high-level 48 

radioactive waste repositories in several industrialized countries (Callovo-Oxfordian (France), 49 

Opalinus Clay (Switzerland), Boom Clay (Belgium)). This interest is mainly explained by the 50 

following properties (e.g. Pusch, 2006): (1) because of their high-specific surface area, shales 51 

can absorb a significant amount of ions; (2) they have low-hydraulic conductivity values. 52 

These particular physicochemical properties are mainly controlled by the type and amount of 53 

clay minerals that are present in shale but also by its complex multiscale microstructure (Fig. 54 

1). A major part of the literature agrees that the following microstructural levels must be 55 

considered to describe the shale texture or microstructure (e.g. Bennett et al., 1991; Ulm et al., 56 

2005; Loucks et al., 2012; Chalmers et al., 2012; Curtis et al., 2012; Han et al., 2017; Ma et 57 

al., 2017) (Fig. 1):  58 

• Level 0 is the scale of elementary clay layers. 59 

• Level 1 is the scale for which the elementary clay layers are packed together to 60 

form clay particles. 61 

• Level 2 is the submicrometer scale, often called the “microscopic” scale of 62 

porous clay matrix based on an assemblage of clay particles or aggregates. For 63 

organic rich shales, small patches of solid organic matter are also closely 64 

associated to the clay particles.  65 

• Level 3, often called the “mesoscopic” scale in geosciences, is the scale where 66 

the characteristic size is in the submillimeter range. At this scale, the rock is 67 

considered to be a porous clay matrix mixed with a population of nonclayey 68 

grains (quartz, carbonates and pyrite). In organic rich shales, isolated and often 69 

porous organic patches are mixed with nonclayey grains. Both are distributed 70 
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in a clayey and organic matrix. This scale has been chosen to establish the 71 

mineral maps used in this paper. 72 

• Level 4 is a lamina type that is associated with an alternation of clay-rich 73 

layers and other layers that are richer in non–clayey materials (mainly quartz 74 

and carbonates). This scale usually corresponds to the bulk samples and cores 75 

used for laboratory experiments for measuring physical properties.  76 

In the following work, we will focus on the mesoscopic scale for which numerous 77 

petrographic studies using advanced imaging techniques allowed to obtain morphological, 78 

structural and topological information on shales (e.g., Robinet et al., 2012; Houben et al., 79 

2014; Klaver et al., 2015; Keller, 2015; Fauchille, 2015; Ma et al., 2016; Fauchille et al., 80 

2018). In order to capture all the microstructural features of interest, these imaging techniques 81 

produce high resolution images, usually obtained on limited volumes or areas. However, the 82 

small size of the field of view reached (typically in the range of a few dozen to a few 83 

hundreds of micrometers) may question the representativeness of the petrographic 84 

observations. In particular datasets obtained at this scale can be uncertain: are the structural 85 

characteristics and petrophysical/numerical properties determined on these small 3D volumes 86 

or 2D images representative of the characteristics and properties at the upper scale? In 87 

practice, the smallest representative volume or area is identified as the so-called 88 

Representative Elementary Volume (REV) (or Representative Elementary Area -REA in 2D), 89 

which is required to “separate” the two following space scales: firstly, the scale of 90 

heterogeneity, i.e., the distribution of nonclayey grains/clay matrix in our case, and secondly, 91 

the scale for which shale is viewed as an “equivalent” continuum medium, i.e., an effective 92 

medium. Thus, REV is usually considered a volume of the heterogeneous material that is 93 

sufficiently large to be statistically representative of the rock, i.e., to include a relevant 94 

sampling of all structural heterogeneities present in the rock at the scale of interest (here the 95 
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mesoscopic scale). Simultaneously, the REV has to be sufficiently small compared with the 96 

scale of the macroscopic geological system of interest, “so that it may be considered as 97 

infinitesimal in the mathematical treatment” (Biot, 1941). Another mathematical requirement 98 

for the definition of REV is the statistical homogeneity of the volume or the image under 99 

study: the REV must be independent of the point of calculation (localization of the volume in 100 

3D or 2D space) (e.g., Rozenbaum and Rolland, 2014).  101 

A number of approaches have been considered to estimate the size of REV and REA, 102 

hereafter named LREV and LREA, respectively. The “box-counting” method is likely the most 103 

popular and has recently been applied to 2D images or 3D volumes acquired in shales that 104 

have been actively studied in recent years as potential gas and reservoirs or for geological 105 

disposal (i.e., Pasidonia shale, Germany, Klaver et al., 2015; Callovo-Oxfordian argillites, 106 

France, Song et al., 2015; Opalinus clay, Switzerland, Keller et al., 2013; Houben et al. 2014; 107 

Bakken shale, United States of America, Liu and Ostadhassan, 2017; and Bowland shale, 108 

United Kingdom, Ma et al., 2016; Fauchille et al., 2018). Following this approach, REV is 109 

defined as the elementary volume below which the mean and/or standard deviation of a given 110 

property (e.g. porosity and volume fraction of a given mineralogical phase) vary significantly 111 

with scale.  112 

Other methods use more sophisticated statistical information: the covariance or the 113 

two-point probability function (Rolland et al., 2007), the lineal path function (Łydżba and 114 

Różański, 2014) and the percolation length based on a percolation analysis of 2D or 3D 115 

microstructures (Hilfer 1991, 1996; Boger et al., 1992; Keller et al., 2013; Cosenza et al., 116 

2015a,b). The variogram, a geostatistical function that was recently used to quantify the 117 

microscopic heterogeneity of shale (Gaboreau et al., 2016; Semmani and Borja, 2017), can 118 

also provide an interesting tool to infer LREV (LREA in 2D). Most of these statistical descriptors 119 

are used to obtain statistical representations or reconstructions of porous media (e.g. Torquato 120 
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and Stell, 1982; Singh et al., 2008) and are known to provide estimates of the REV minimum 121 

size of random media (Łydżba and Różański, 2014). However, they are scarcely used in 122 

practice to infer the LREV or LREA of shale, and one may wonder if all the aforementioned 123 

methods would provide similar LREV or LREA estimates in cases in which they would have been 124 

calculated for the same shale microstructure.  125 

The objective of this paper is thus threefold. We would like to provide 126 

• New LREA estimates obtained from two mineral maps (Jorand, 2006; Fauchille, 2015) 127 

acquired from two shales that are actively studied in the framework of the deep disposal 128 

of radioactive waste: the Callovo-Oxfordian (COx) claystone from the Meuse/Haute-129 

Marne underground research laboratory (Eastern France) and the Toarcian argillite from 130 

the experimental station of Tournemire (Southern France). These LREA estimates have 131 

been calculated not only using classical box-counting methods but also statistical and 132 

geostatistical descriptors that are usually used to quantitatively describe microstructures 133 

(two-point probability function, lineal path function, percolation length and variogram). 134 

• A review of the different values of LREA estimates provided by the literature and by our 135 

study, all acquired for shales that have been actively studied in the last decade. This 136 

review accounts for all types of shales, in terms of clay-rich rocks and whatever their 137 

organic matter content. Indeed, in a practical viewpoint, the methods used to estimate 138 

values of LREA at the mesoscopic scale (level 3) as a function of the spatial distribution of 139 

non-clay/organic matter grains or patches, are similar for organic-rich and organic-poor 140 

shales, whatever their organic matter content. This is mainly due to the methodologies 141 

used in these studies which focus on the sole clay phase; the others phases, mineral or 142 

organic, being considered as a whole (e.g., Ma et al., 2016) or embedded in the pore 143 

phase (e.g., Klaver et al., 2015; Fauchille et al., 2018).  144 
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• A discussion of our different LREA estimates and their associated methodologies, aiming 145 

to identify the most suitable method to infer in a practical viewpoint LREA of shale.  146 

 147 

2. Materials and Methods 148 

2.1 Geological setting and mineral maps 149 

The LREA estimates calculated in this study were obtained from two mineral maps that 150 

were acquired following the methodologies described below.  151 

The first mineral map, hereafter called the COx map, was developed from a sample 152 

obtained from Callovo-Oxfordian (COx) claystone, which is extensively studied in the 153 

Meuse/Haute-Marne Underground Research Laboratory (MHM-URL) (Eastern France). The 154 

thickness of this formation is 130 m, and its age is 150-160 My. The formation is located 420-155 

550 m below the surface, in the eastern part of the Paris Basin (Andra, 2005). The Callovo-156 

Oxfordian formation contains mainly 25 to 65 wt.% clay minerals, with 20-42 wt.% carbonate 157 

(calcite, dolomite, ankerite) and 15-31 wt.% tectosilicate (quartz and feldspars) (Andra, 158 

2005). This mineral map was prepared from a drill-core, denoted as EST05-709 (-492.2 m) 159 

and extracted from the Andra EST205 borehole (Jorand, 2006). It was obtained at micrometer 160 

spatial resolution from an advanced image processing of a chemical elements map that was 161 

acquired through the use of a Cameca SX100 electron probe microanalyzer (Prêt, 2003). This 162 

electron microanalyzer provides quantitative concentration maps of 14 chemical elements (Al, 163 

Na, K, Ca, Si, Mg, Ti, Fe, S, Ba, Zr, P, Zn, Sr) on a 3 x 0.5 mm2 area with a spatial resolution 164 

of 2 µm/pixel. The image processing of these maps is based on mineral identification methods 165 

that accommodate mixtures and solid solutions and that are implemented in the in-house 166 

µPhaseMap software (Prêt, 2003). For details, the reader is referred to Prêt (2003), Prêt et al. 167 

(2010a,b) and Gaboreau et al. (2017). In our case, this methodology allows the spatial 168 

localization of all 16 different rock forming minerals, including different clay minerals: illite-169 
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smectite mixed layers, kaolinite, mica (glauconie and muscovite) and chlorite (i.e., 170 

chamosite).  171 

The geometrical and mineralogical features of the COx map are presented in Table 1. 172 

The surface fractions of clay matrix, carbonates and tectosilicates are 50.4%, 30.7% and 173 

15.1%, respectively. Note that the greatest side (1563 pixels, 3072 µm) and smallest side (250 174 

pixels, 500 µm) are perpendicular and parallel to the bedding, respectively.  175 

The second mineral map, hereafter called the Toar map, has been extracted from a 176 

large mosaic of SEM images acquired from a nonimpregnated and dried Tournemire clay rock 177 

sample (Fauchille et al., 2014; Fauchille, 2015). The studied Tournemire clay rock sample has 178 

been sampled in the horizontal and cylindrical borehole FD90 in the 1996 East gallery of the 179 

Tournemire Underground Research Laboratory (URL) of the French Institute for 180 

Radioprotection and Nuclear Safety (IRSN). The sample was located at a depth between 4.20 181 

to 4.40 meters far from the gallery wall, outside the so-called Excavation Damaged Zone. The 182 

Tournemire URL is located in a Mesozoic basin on the southern border of the Massif Central 183 

(Aveyron, France), in the subhorizontal consolidated argillaceous Toarcian (Toar) formation 184 

(200 meters thick) and marly layers of the Domerian age (50 meters thick). The sample comes 185 

from the upper Toarcian formation, the mineralogical composition of which shows that clay 186 

minerals represent nearly 25-50 wt% of the rock with illite (10-40 wt%) and illite/smectite 187 

mixed-layer minerals (5-25 wt%), kaolinite (10-35 wt%) and chlorite (1-5 wt%). The 188 

Tournemire shale also contains 10-40 wt% of carbonates, 10-30 wt% of quartz, 2-7 wt% of 189 

sulfides and less than 2 wt% of feldspars (Cabrera et al., 2001).  190 

A mosaic (7.1 x 5.2 mm², 11302 x 8355 pixels) has been built from one hundred and 191 

fifty three back-scattered electron images (spatial resolution of 0.625 µm.pixel-1) acquired by 192 

scanning electron microscopy (SEM, JEOL JSM 56000LV with an acceleration voltage of 15 193 

KV, a probe current of 5 nA, a working distance of 16.3 mm, a magnification of x200, and a 194 
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dwell time of 128 µs per pixel). On the mosaic of images, clay-matrix, carbonates, 195 

tectosilicates, heavy minerals (e.g. pyrite) and macropores were discriminated by in house 196 

algorithms implemented in the µPhaseMap© software developed in the IC2MP laboratory in 197 

Poitiers, allowing a threshold for clay matrix and nonclay grains (Prêt et al., 2010a,b). The 198 

mineral map used in this study is an extraction (4000x4000 pixels) of the most homogeneous 199 

part of the mosaic to respect at best the statistical homogeneity assumed in all further LREA 200 

calculations and to exclude laminae that imply additional heterogeneities at the macroscopic 201 

scale (i.e., level 4 in Fig. 1). Statistical homogeneity means herein that the statistical 202 

properties of interest (e.g. surface fraction and corresponding variance of a given mineral and 203 

microstructural descriptors under consideration) do not depend on the absolute positions 204 

where they are calculated. The geometrical and mineralogical features of the Toar map are 205 

also presented in Table 1. 206 

An extraction of both maps is displayed in Figures 2 and 3. Note that both maps were 207 

prepared from a polished section in a plane perpendicular to the stratigraphic plane. The x- 208 

direction indicated in Figures 2 and 3 is parallel to the bedding planes, whereas the z-direction 209 

is perpendicular to the bedding. 210 

The results of these image analysis are given in numerical table files in which the 211 

location and mineral code of each pixel of the mineral maps are indicated. However, in the 212 

following, only two phases will be considered in these numerical files: the clay phase 213 

corresponding to all clay minerals, and the nonclay phase gathering all nonclay minerals. 214 

These two-phase numerical files constitute the input files for calculations of LREA estimates, 215 

which are presented in the next section.  216 

2.2 Calculations of LREA  217 

a Box-counting method 218 
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The box-counting method, which is likely the most popular to infer LREA, starts from a 219 

given domain or box in the digitalized image. Then, the mean of a surface property (surface 220 

mineral contents, surface porosity, physical property etc.) is calculated within increasing 221 

domains or boxes until reaching the actual image size (Houben et al., 2014; Klaver et al., 222 

2015; Wang et al., 2016). The characteristic size of the LREA is considered to be reached when 223 

the mean of the considered property does not evolve significantly with the increasing size of 224 

the boxes. This procedure can be repeated for several starting domains to ensure that the 225 

inferred LREA is statistically representative of the whole image. This first method will be 226 

named hereafter the classical box-counting (BC) method. 227 

Regarding the BC method, which uses square domains, the COx map and the Toar 228 

map have been divided into five and four nonoverlapping square areas, respectively, 229 

following the partitioning presented in Figure 4. These nonoverlapping areas, named Ai 230 

(i=1,..,6 for COx map; i=1,..,4 for Toar map), are associated with starting domains that are 231 

defined and discriminated by the coordinates of their center Ci (i=1,..,6 for COx map; i=1,..,4 232 

for Toar map) (Fig. 4). Note that the origin, i.e., x=0, z=0 of system of coordinates, is located 233 

in the top left corner of both maps (Fig. 2, 3 and 4).  234 

The particular partitioning displayed in Figure 4 is due to two reasons. First, the shape 235 

of the COx map is clearly elongated following the z-axis and the center of the initial box 236 

could not be located only at the center of this map to investigate the whole map. Second, it 237 

was of interest from a statistical viewpoint to compare LREA estimates calculated on different 238 

areas with a comparable surface and thus to check the statistical homogeneity of each map 239 

regardless of potential macroscopic heterogeneities (i.e., level 4 in Fig. 1).  240 

b Statistical method 241 

In this second method, the digitalized image is divided into nonoverlapping square 242 

domains of a given size L. For each domain of size L, the surface property of interest (surface 243 
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mineral contents, etc.) is calculated. The mean and the standard deviation of this set of surface 244 

property values is then inferred. The size LREA is considered to be reached when both the 245 

mean and the standard do not evolve significantly with the increasing size of the boxes L (e.g. 246 

VandenBygaart and Protz, R. 1999; Zhang et al. 2000; Song et al., 2015). This method 247 

assumes a priori that the statistical homogeneity of the considered property in the image is 248 

satisfied. This approach is often used to present a direct visualization of microstructural 249 

variability at the image scale. It will be referred to hereafter as the statistical (S) approach 250 

(Zhang et al. 2000). 251 

The S approach has been carried out on whole maps and not by using the partitioning 252 

indicated in Figure 4.  253 

c Percolation length and connectivity  254 

The method described below has been introduced to determine a characteristic length 255 

that defines the size of domain of a digitalized image in which effective medium approaches 256 

can be used to explicitly account for percolation (e.g. Hilfer, 1991; 1996). Indeed, a 257 

quantitative characterization of percolation and connectivity is crucial to model effective 258 

transport properties, e.g., hydraulic conductivity (e.g. Keller et al., 2013), diffusion coefficient 259 

or electrical conductivity (e.g. Cosenza et al., 2015a).  260 

This method looks like the previous statistical (S) approach. It is also based on spatial 261 

partitions of the mineral map: the digitalized image is divided into independent square 262 

domains (boxes) of a given size L on which the surface property of interest is calculated. 263 

However, this approach differs from the S approach in two aspects.  264 

First, the connectivity of the clay fraction is determined in each box. This property 265 

allows the calculation of the total fraction of percolating boxes of size L, named p(L), which 266 

characterizes the overall connectivity of the image at length scale L: 267 

���� = � ���, ��
��, �����

         (1) 268 



12 

 

where φ is the local clay fraction measured in each box of size L and ���, �� and 269 


��, �� are the local clay fraction distribution and the local percolation probability, 270 

respectively. In practice, the local clay fraction distribution ���, �� is the frequency 271 

histogram of boxes of size L, having a local clay fraction φ. The local percolation probability 272 


��, �� is the fraction of boxes with a local clay fraction φ and side length L that allow 273 

percolation in the x and z directions. A box percolates in the x- (y-, z-, resp.) direction if there 274 

exists a path inside the clay phase connecting two faces of the measurement cell that are 275 

perpendicular to the x- (y-, z-, resp.) axis. This box is called a percolating box in the x- (y-,z-, 276 

resp.) direction (see appendix, Hilfer, 1991, 1996, Keller et al., 2013, Cosenza et al., 2015a,b, 277 

for the details of the calculations).  278 

The second aspect of this approach deals with the explicit calculation of a 279 

characteristic length Lp, named the percolation length, which is assumed to be an estimation 280 

of the minimum value of LREA (Biswal et al., 1998; Widjajakusuma et al., 2003). It is obtained 281 

using the following criterion: 282 

����
����

����
= 0                                                                                                                          �2� 283 

In practice, in the following criterion (2), parameter Lp corresponds to the inflexion 284 

point of the p(L) curve. Following Widjajakusuma et al. (2003), the percolation length Lp is 285 

the length around which p(L), which is often sigmoidal in shape, rapidly changes from a low 286 

value at small L to its trivial value p(L→∞)= 1 (if clay space is connected at the scale of the 287 

entire image). In other words, Equation (2) defines the domain of the transition between local 288 

connectivity (at small L) and global connectivity (at large L). Widjajakusuma et al. (2003) 289 

demonstrated that a reasonable estimate of the effective permittivity and conductivity can be 290 

obtained at length Lp. This approach has been carried out on whole maps and not by using the 291 

partitioning indicated in Figure 4. 292 
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d Two-point probability function 293 

The two-point probability function, often named the covariance function, is usually is 294 

defined from the autocorrelation function of a phase i given by (e.g. Yeong and Torquato, 295 

1998):  296 

�����, ��� = 〈������, ������〉        (3) 297 

where r1 and r2 are two vectors associated with two arbitrary points in the system, 298 

angular brackets denote an ensemble average, and the characteristic function 1i(r) is defined 299 

as 300 

1���� =  1, !ℎ#$ � %& %$ �ℎ'&# % 0,                       ()ℎ#*!%&#      (4) 301 

The function �����, ��� is interpreted as the probability of finding two points at 302 

positions r1 and r2 both in phase i. When the microstructure is spatially stationary or 303 

statistically homogeneous, the two-point probability function depends only on the distance 304 

* = |�� − ��| between two points and, therefore, can be simply expressed as Si(r) of phase i. 305 

Si(r) can also reach its maximal value of �-� (volume fraction of phase i of the whole map) at 306 

r=0 and decays with r→ ∞ to the asymptotic value of ���: 307 

lim1→
 ���*� = �-�         (5) 308 

lim1→∞
���*� = �-��

        (6) 309 

If the latter limit in equation (6) is reached before r→∞, for instance, for a value r=R, 310 

the points of the phase i separated from a distance larger than R are not correlated (Kanit et 311 

al., 2003). This parameter R, often called the covariance range, defines a “correlation length” 312 

or a “characteristic size” of heterogeneity (e.g. Rolland et al., 2017). Following this definition, 313 

parameter R can be considered an estimate of the minimum LREA (Łydżba and Różański, 314 

2014; Fauchille et al., 2018). Note that phase i corresponds herein to the clay or the nonclay 315 

phase. 316 
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In the following, function Si(r) will be calculated following the simple and efficient 317 

procedure described by Yeong and Torquato (1998) and Łydżba and Różański (2014). 318 

Consider a random microstructure from which a binary image constituting two phases named 319 

i and j (here clay and nonclay phase) has been obtained. In this binary and digitalized image, 320 

each pixel is attributed to a value: 0 or 1 depending on whether the pixel is phase i or phase j. 321 

Consequently, this image can be represented by a square matrix, named [M], in which each 322 

element is associated with a pixel through indexes m and n, both defining the pixel location in 323 

the image. The element M[m,n] is equal to 1 or 0, for instance, if the corresponding pixel 324 

(m,n) is in phase i or in phase j, respectively. Therefore, following this procedure and 325 

equations (3) and (4), function Si(r) for phase i is simply calculated as follows:  326 

34��� = �
5657 8 8 9:;, <=9:;, < + �= + 9:;, <=9:; + �, <=

�
56

;��

57

<��
   �327 

= �, �, . .                 �@� 328 

where the product ABAC is the total number of pixels in the image, and r is expressed in the 329 

pixels. Here, three remarks have to be formulated. First, the dimensions of the matrix M are 330 

(Nx+r)(Ny+r). The elements of M[m,n] for m>Nx and n>Ny are taken equal to zero and do 331 

not contribute to the summations in equation (7). Second, it should be noted that function Si(r) 332 

can be calculated following a given direction if all r directions are parallel to this direction. 333 

Third, LREA estimates from the two-point probability function have been calculated on whole 334 

maps and not following the map partitioning defined in Figure 4. 335 

e Lineal path function 336 

As the two-point probability function, the lineal path function is also a microstructural 337 

descriptor that is used to estimate a minimum of LREA (e.g. Łydżba and Różański, 2014). In 338 

the case of statistically isotropic media, the lineal path function for phase I, named L(i)(r), is 339 
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defined as the probability that a line segment r lies wholly in phase i (here the clay or nonclay 340 

phase) when randomly “thrown” into the sample (Torquato, 2002). The lineal path function is 341 

a monotonically decreasing function of r and obeys the following conditions:  342 

�����0� = �-�          (8) 343 

lim1→∞
�����*� = 0         (9) 344 

Regarding the two-point probability function, phase i corresponds herein to the clay or 345 

the nonclay phase. Note that for statistically homogeneous but anisotropic media, function 346 

L(i)(r) will depend not only on the amplitude of r but also on the orientation of the 347 

corresponding vector r. The function L(i)(r) can be calculated by using the same procedure 348 

used to infer chord length distributions of a given phase (e.g. Cousin et al., 1996). 349 

By assuming a reasonable value of threshold t  (e.g. 1-10%), the parameter LREA is 350 

estimated at the lineal path t* such as (Łydżba and Różański, 2014): 351 

∀ * ∈ :)∗, +∞: ⇒  �����*�  ≤  )       (10) 352 

Equation (10) means that LREA (equal to r*) corresponds to the line segment r, which 353 

gives L(i) values lower (or equal) than the given threshold t. Note that LREA estimates from the 354 

lineal path function have been calculated on whole maps and not following the map 355 

partitioning defined in Figure 4. 356 

f Variogram range 357 

An additional microstructural descriptor can be obtained from the concept of the 358 

variogram that is widely used in geostatistics and recently in analyses of microtomographic 359 

images acquired for shale (Gaboreau et al., 2016; Semmani and Borja, 2017). This 360 

microstructural descriptor is the variogram range defined in this section.  361 



16 

 

The variogram, commonly called the semivariogram, is often defined as a measure of 362 

the spatial continuity of data acquired in heterogeneous media. Considering a property Ζ , the 363 

associated variogram is defined as follows: 364 

I�r� = �
� J:�Z�L� − Z�L + r���=       (11) 365 

where r is the lag distance between two measures of Ζ obtained at two locations, i.e., x 366 

and x+r (note that x and r are scalars in 1D or vectors in 2D and 3D). E[X] is the expected 367 

value of property X. In our case, property Z is a pixel value associated with two mineral 368 

phases, i.e., the clay phase and the nonclay phase. Property Z is equal to 1 or 0 if the pixel of 369 

interest is a clay phase or a nonclay phase.  370 

In the case of statistically isotropic media, the variogram increases with increasing lag 371 

distance until a certain distance is reached at which it becomes constant. The lag distance at 372 

which the variogram becomes constant defines a correlation length or a range of influence, 373 

and the value at of this point is called the range (e.g. Peters, 2012). This variogram range is 374 

considered hereafter as an estimate of LREA. It should be noted that if the medium is 375 

statistically homogeneous, then  376 

lim1→∞
I�r� = N'*�Z�        (12) 377 

where N'*�Z� corresponds to the variance of Ζ.  378 

At this stage, three remarks have to be formulated. First, this is the first time, to our 379 

knowledge, that the concept of variogram range is used to infer a correlation length of a shale 380 

at the mesoscopic scale.  381 

Second, note that if the images have N pixels, equation (11) introduces N(N-1)/2 pairs 382 

of pixel values associated with locations x and x+r. Thus, even an image of moderate size can 383 

generate a very large number of pairs inducing large numerical files and a large computation 384 

time; this is why the variogram calculations have been restricted for both maps to areas 385 

corresponding to the map partitioning defined in Figure 4.  386 
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Third, if the medium under study is statistically homogeneous, the variogram is linked 387 

to the two-point probability function as follows (e.g. Matheron, 1971):  388 

I�r� = ���0� − ���*�         (13) 389 

In equation (13), the variogram is calculated obviously for the phase i of interest. 390 

Despite the theoretical link between ���*� and I�r�, the latter is much easier to calculate in 391 

practice because there exist numerous commercial software packages in geostatistics. In other 392 

words, this additional microstructural descriptor was introduced, i.e., the variogarm range, 393 

because it is likely easier to determine it in practice than the two-point probability function. 394 

In our study, variograms have been calculated using commercial Surfer© software. To 395 

calculate a variogram, Surfer© introduces a variogram grid approach instead of the classical 396 

pair comparison files. The variogram grid is a polar grid in which Surfer© places and stores 397 

all the pairs introduced by the equation (11). In practice, the user defines (a) the angular 398 

divisions, i.e., the number of angular division in the polar grid, (b) the radial divisions, i.e., 399 

the number of concentric circles in the grid and (c) the largest separation distance contained in 400 

the variogram grid. In our calculations, the angular division and the radial division have been 401 

fixed for both maps at 180° and 100, respectively. The largest separation division of areas 402 

associated with the COx map and Toar map has been taken equal to 110 pixels (220 µm) and 403 

200 pixels (125 µm), respectively. These choices are justified a posteriori since these 404 

parameters allow us to obtain the variogram ranges, as shown below.  405 

3. Results and Discussion 406 

3.1 Comparison between COx and Toar maps 407 

a Box-counting method 408 

Figures 5 and 6 display the evolutions of the clay fraction calculated for increasing 409 

box sizes L considering the different starting domains of the COx map and Toar map, 410 

respectively. Both figures confirm that the calculated mean clay fraction converges to a value, 411 
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referred hereafter to as parameter �O, which is very close to the mean clay fraction obtained 412 

for the whole map. 413 

Considering the COx map (Fig. 5), the six curves associated with the six starting 414 

domains converge to �Ovalues in the range [48.6-52.4%], including the mean clay fraction, 415 

�PQB of 50.4% calculated for the whole map (Table 1). The difference between these 416 

asymptotic values, �O, for a L box of 500 µm and mean clay fraction �PQB is less than 4%. In 417 

the same way in Figure 6, the four curves associated with the Toar map converge to 418 

�O values in the range [68.5-71.4%], including also the mean clay fraction, �RST1 of 69.9% 419 

calculated for the whole map (Table 1). The difference between the �Ovalues for a L box of 420 

500 µm and �RST1 is less than 2.5%. 421 

Below 100 µm and 200 µm for the COx and Toar maps, respectively, the curves 422 

obtained for the different subdomains present non-correlated and high frequency evolutions. 423 

Such behavior is associated with the occurrence of a few grains with a large size (Robinet, 424 

2008; Fauchille, 2015), and a sufficiently large box size including several grains should be 425 

used to estimate a meaningful REA (Gaboreau et al 2016). For a box size larger than 100 µm 426 

and 200 µm for COx and Toar maps, respectively, the gap between curves decreases 427 

progressively with low frequency variations. A meaningful REA corresponding to the 428 

mesoscopic scale (level 3 in Fig. 1) can be estimated with improved accuracy when the box 429 

size increases. Careful observation of both maps reveals that the grain size is larger for Toar 430 

than for COx (compare the calcite grains in Fig. 2 and carbonates grains in Fig. 3), explaining 431 

why a larger box size is needed for the Toar map to reach REA, as illustrated below (Fig. 6).  432 

The REA size, i.e., LREA, of both maps has been estimated in two steps (Table 2). In a 433 

first step, REA sizes have been calculated for each nonoverlapping area of both maps (6 areas 434 

for the COx map and 4 areas for the Toar map) and for two errors or threshold values: ε= 0.1 435 

(10%) and ε= 0.05 (5%). For each area, the LREA parameter has been identified as the lowest 436 
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box size L for which the calculated mean clay fraction was significantly similar to that of the 437 

whole map (�PQB or �RST1� with a maximum error of ε. In a second step, the average over all 438 

LREA estimates of all nonoverlapping areas has been calculated for each map. The calculated 439 

mean LREA for a given map has been considered as the LREA of the latter.  440 

Our results presented in Table 2 indicate the LREA values are dispersed and decreasing 441 

functions of the chosen error or threshold values ε. Indeed, in the first case (ε=0.1), the mean 442 

value of the LREA estimates of the COx map and Toar map are 173 µm and 129 µm, 443 

respectively (Table 2), whereas in the second case (ε=0.05), the mean values of LREA 444 

estimates of the COx map and Toar map are much higher: 234 µm and 441 µm, respectively.  445 

The scatter of the mean values of LREA estimates and the associated standard deviation 446 

values (Table 2) question the statistical homogeneity of both maps and can be explained by a 447 

small but significant evolution of the microstructure in the x direction and/or in the z direction 448 

(i.e., with depth), as shown by (a) the �O estimates of the COx map, which globally increase 449 

with depth, and by (b) the �O estimates of the Toar map, which roughly decrease in the x 450 

direction (Table 2). This aspect will be discussed further with regard to the results obtained 451 

with the microstructural descriptors under consideration in this work. 452 

b Statistical method 453 

The results obtained by the S approach are displayed in Figures 7 and 8. The REA 454 

size, LREA following the S approach, has been estimated in Figure 8 from the slope of the 455 

standard deviation values displayed in Figure 7. In fact, LREA has been calculated as the 456 

intersection of a smooth curve fit (bold line) of the slope standard deviation curve and a 457 

horizontal line (dashed line) symbolizing a constant evolution with the box size (see white 458 

arrows in Fig. 8). Following Figure 8, the LREA estimates of the COx map and the Toar map 459 

are 100 ± 10 µm and 140 ± 10 µm, respectively. These LREA estimates are clearly less 460 
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dispersed than those provided by the BC method. In addition, and again in contrast to the 461 

results obtained using the BC method, the S approach clearly indicates that the LREA of the 462 

COx map is lower than that of the Toar map.  463 

Note that the maximum box sizes of the COx map and Toar map in Figure 7 have been 464 

restricted to values of 140 µm and 250 µm, respectively. This choice is justified a posteriori 465 

by Figure 8, which shows that the standard deviations do not evolve significantly after the 466 

LREA estimates indicated by white arrows.  467 

c Microstructural descriptors 468 

The results obtained using the following three microstructural descriptors, i.e., the 469 

two-point probability function, lineal path function and variogram range given in Figures 9, 470 

10, 11 and 12 (also see the recapitulation in Table 3) confirm two outcomes provided by the 471 

previous BC and S approaches.  472 

First, COx LREA is lower than Toar LREA. If the two-point probability function and the 473 

lineal path function are considered and irrespective of the mineral phase (clay or nonclay 474 

phase) under consideration, LREA estimates from the COx map are always significantly lower 475 

than those obtained from the Toar map (Table 3). A factor almost equal to 2 exists between 476 

both groups of LREA estimates.  477 

Second, the two-point probability function (Fig. 9 and 10) and variogram (Fig. 12a and 478 

12b) exhibit features that again question the statistical homogeneity of the maps, especially 479 

the Toar map. Indeed, regardless of the direction and mineral phase (clay or nonclay phase) 480 

under consideration, the two-point probability function Si(r) of both maps does not converge 481 

to the expected asymptotic values (i.e., the square of the phase fraction of the whole map, see 482 

equation (6)) (Fig. 9 and 10). This nonconvergence underlines the existence of a “long-range 483 

order”, i.e., the existence of a macrostructure with a characteristic size exceeding the size of 484 

the investigated subdomains (i.e., 100 µm). A gradient of the property under consideration at 485 
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the map scale is a typical expression of a “long-range order”. The existence of this “long-486 

range order” or macrostructure is confirmed at least on the Toar map by our geostatistical 487 

calculations. Four variograms calculated at different locations on the Toar map do not 488 

converge to the same plateau, i.e., to the same value of clay fraction variance (see equation 489 

(9)) (Fig. 12b). Indeed, if these four variograms taken independently suggest a statistical 490 

homogeneity at the area scale of interest, the four plateau values towards which they converge 491 

are clearly different. 492 

Moreover, these three microstructural descriptors exhibit two additional features that 493 

have not been evidenced using previous BC and S approaches. First, the microstructural LREA 494 

values are all much lower than those obtained using previous BC methods. The LREA estimates 495 

of the COx map and Toar map are in range [16-53 µm] and [27-103 µm] (Table 3), whereas 496 

the LREA estimates obtained from the classical BC are in range [86-438 µm] and [179-576 µm] 497 

(Table 2), respectively. This feature confirms the statements of Łydżba and Różański (2014) 498 

and Fauchille et al. (2018) that the two-point probability function and the lineal path function 499 

predict the lower bounds of LREA. These functions define a characteristic heterogeneity size in 500 

the image, here the clay matrix and grain domains, and not a size that would be sufficiently 501 

large to be statistically representative of all heterogeneities present in the same image. In 502 

practice, this characteristic size of heterogeneity can be linked to a surface weighted mean 503 

grain diameter <d> estimated from the frequency distribution of the grain area or grain size 504 

distribution (GSD) as follows:  505 

< � >= ∑ [�� \] ^]∑ \_ ^__̀ab
cd���         (14) 506 

where di is the equivalent spherical diameter of grains having area Si  (�� = ef
g ��), N 507 

is the total number of classes of GSD, and fi is the fraction in number of grains having area Si. 508 

By considering the GSD of both shales under study in Robinet (2008) and Fauchille (2011), 509 
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the calculated mean grain diameter of COx claystone and Tournemire argillite is 19 µm and 510 

28 µm, respectively. These values are close to the LREA estimates derived from microstructural 511 

descriptors (Table 3).  512 

Second, these microstructural descriptors evidence an intrinsic and well-known 513 

property of shale: its structural anisotropy. Shale structural anisotropy is reflected herein by 514 

the dependence on the two-point probability function Si(r) and the lineal path function 515 

�����*� with respect to the direction of calculation. As indicated in Figures 8 and 9, the 516 

horizontal Si(r) and �����*� of both shales are different from the vertical Si(r) and �����*�. In 517 

particular, �����*� in the x-direction is clearly larger than in the z-one. In our context and 518 

following the methods used in this work, this anisotropy is not due to the alignment of clay 519 

particles and aggregates but rather to the alignment of elongated and oriented nonclay grains 520 

parallel to the bedding planes. This result confirms previous petrographical and petrophysical 521 

studies (e.g. Robinet et al., 2007, 2012; David et al., 2007; Cosenza et al., 2015a). Moreover, 522 

it should be emphasized that such a structural anisotropy could not be evidenced using BC 523 

and S methods, which intrinsically do not depend on a given direction. 524 

d Effect of the connectivity of the clay phase 525 

The effect of the connectivity of the clay phase on the LREA estimate, which cannot be 526 

accounted for by previous approaches, may be discussed using the concept of the percolation 527 

length Lp. It can be recalled that parameter Lp is a correlation length that is calculated using (i) 528 

the function p(L) expressing the total fraction of percolating boxes of size L for a given map 529 

and (ii) the condition given by the equation (2). This method is conceptually close to the S 530 

approach, since both methods use a map partitioning by nonoverlapping boxes of size L over 531 

which statistical parameters are calculated.  532 

Figure 13 displays the p(L) curves of both maps. The COx p(L) curve indicates an Lp 533 

estimate in range [110-130] µm, which is significantly lower than the LREA estimates provided 534 
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by the classical BC method (Table 2). Thus, it may be tempting to conclude that consideration 535 

of the clay phase connectivity of the mineral map would lead to lower estimates of the LREA 536 

parameter. However, if this Lp value is now compared with LREA estimates given by the S 537 

approach (Fig. 7), it is difficult to reach a clear conclusion. Indeed, the COx LREA estimate 538 

obtained by the S approach is 100 µm, which is close to the Lp range indicated in Figure 13.  539 

Considering the Toar map, its p(L) curve does not exhibit a clear inflexion point, and 540 

thus, an Lp estimate cannot be unambiguously achieved. This difficulty can be linked to the 541 

other microstructural descriptors, which have shown that the Toar map is not homogeneous 542 

from a view statistical viewpoint.  543 

Consequently, we think that our results do not permit a clear conclusion regarding the 544 

impact of the clay phase connectivity on the REA size estimate. Thus, we recommend the 545 

calculation of Lp parameter for mineral maps of other shales to better assess the impact of the 546 

clay phase connectivity.  547 

3.2 Comparison with the literature – Towards a practical methodology 548 

Table 4 displays REA estimates obtained from different shales that have been 549 

extensively studied in the last decade. It illustrates the variety of investigation techniques and 550 

target phases used to infer LREA. Moreover, it shows the following main result: regardless of 551 

the shale under consideration and investigation techniques and corresponding resolution, LREA 552 

values are always on the order of a few hundred microns. If only shaley facies and clay phase 553 

targets are considered, LREA estimates are restricted in the range [50-200 µm]. Our COx and 554 

Toar estimates do not escape this range of values. Our estimates obtained with a BC method 555 

and with an error of 10% are close to those calculated from other shales and using other 556 

investigation techniques.  557 

In addition, Table 4 confirms that the classical BC method is largely used to calculate 558 

LREA from acquired images that are rarely larger than one millimeter. In our opinion, however, 559 
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this method conceals a few drawbacks and biases that may ultimately question the accuracy of 560 

LREA estimates shown in table 4. First, as mentioned previously, LREA estimates provided by 561 

the BC method are often very dispersed and thus suffer from high uncertainty (see the 562 

standard deviation values in Table 2), especially in comparison to the S method. Moreover, it 563 

should be recalled that the LREA values found using the BC method depend considerably on 564 

the threshold ε, which is not always indicated by the authors. In other words, some LREA 565 

estimates in Table 4 have been obtained with ε thresholds that likely differ from the classical 566 

10% value and thus should be cautiously compared with the other estimates. 567 

Third, the BC method assumes a statistical homogeneity at the image scale that may 568 

not be satisfied in all cases, as especially illustrated with the Toar map in this study. The 569 

failure of this assumption may again question the accuracy of LREA values provided by the 570 

literature. Moreover, all the shales under study in table 4 are, to a certain extent, anisotropic, 571 

and one may wonder if their structural anisotropy significantly influences LREA determination 572 

using the classical BC approach, which intrinsically does not account for this property.  573 

These drawbacks and biases finally pose a methodological challenge that can be 574 

summarized using the following questions: what is the most suitable and more practical 575 

methodology to determine LREA regarding shale properties? Is there a simple and robust 576 

methodology that would minimizes the biases associated with the classical BC method? To 577 

answer to these questions, the advantages and drawbacks of each method used in this work 578 

are listed in Table 5. 579 

Table 5 shows three main features. First, the S method easily provides LREA estimates 580 

that are close to those obtained from the BC method and much less dispersed (compare the 581 

results presented in Tables 2 and 3). Second, the two-point probability function is a simple 582 

approach that is easy to implement (see equation (7)) and that can clearly evidence the 583 

statistical heterogeneity and anisotropy of mineral maps under study (Fig. 10). Third, despite 584 
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their interest in characterizing the structural anisotropy and heterogeneity at the mesoscopic 585 

scale, the lineal path function and variogram range are more difficult to implement, and their 586 

estimates are clearly LREA lower bounds, which are rather far from the BC and S estimates.  587 

This set of features finally leads to the proposal of a two-step methodology to infer 588 

LREA. In a first step, the two-point probability function and variogram should be used to check 589 

the statistical homogeneity of the microstructure under study. The two-point probability 590 

function can be calculated following the simple algorithm described in this paper (e.g. 591 

equation (7)), and the variogram can be achieved using commercial software packages for 592 

geostatistical analysis. If statistical homogeneity is verified, in a second step, LREA can be thus 593 

estimated using the S method and eventually using the classical BC method for verification. 594 

This methodology offers three benefits: (i) a simplicity in the estimation of LREA, since simple 595 

and conventional algorithms and software are combined and used; (ii) a better estimation 596 

accuracy through the use of the S approach; and above all (iii) a validation of the statistical 597 

homogeneity of the studied maps and images, which is rarely ensured in practice. Regarding 598 

the last point, such a methodology is well in line with the occurrence of additional 599 

heterogeneities on a larger scale, i.e., the macroscopic scale of sedimentary laminae, which is 600 

also defined as level 4 in Figure 1. 601 

4. Conclusion 602 

The main objective of this work was to estimate REA sizes of two shales that are 603 

actively studied in the framework of the deep disposal of radioactive waste: Callovo-604 

Oxfordian (COx) claystone from the Meuse/Haute-Marne underground research laboratory 605 

(Eastern France) and Toarcian argillite from the experimental station of Tournemire 606 

(Southern France). The LREA estimates obtained from two mineral maps on a mesoscopic 607 

scale were calculated using classical methods (i.e., box-counting and statistical approaches) 608 

and different microstructural descriptors (i.e., two-point probability function, lineal path 609 
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function, percolation length based on a percolation analysis of 2D or 3D microstructures, 610 

variogram range). These calculations provided the following results:  611 

• The classical box-counting method provides LREA estimates ranging 129 µm up to 441 612 

µm. These estimates are consistent with those obtained from other shales in the literature 613 

but are very sensitive to the chosen ε threshold. Moreover, they show a wide scatter, 614 

which questions the statistical homogeneity of the mineral maps.  615 

• In comparison to the box-counting method, the statistical method provides LREA estimates 616 

on the same order of magnitude but with a much lower scatter (approximately 10% of the 617 

inferred value). The LREA estimates of the COx map and the Toar map are 100 ± 10 µm 618 

and 140 ± 10 µm, respectively. 619 

• Although the two-point probability function and lineal path function infer LREA lower 620 

bounds, they are able to evidence the microstructural anisotropy of both shales of interest 621 

and, by considering the former, to assess the statistical homogeneity of the maps.  622 

• In particular, the two-point probability function and variogram have both confirmed that 623 

the Tournemire mineral map is clearly not statistically homogeneous with regard to its 624 

mineral composition. This aspect makes it difficult and even questionable to determine 625 

the LREA of this particular map. 626 

• The calculations of percolation length Lp on both maps and their comparison with LREA 627 

estimates do not permit a clear conclusion regarding the impact of the clay phase 628 

connectivity on the REA size. Thus, we suggest the calculation of the Lp parameter for 629 

mineral maps and images of other shales to better assess the impact of the clay phase 630 

connectivity. 631 

This set of results ultimately leads to the recommendation of a two-step methodology 632 

to infer LREA from a practical viewpoint. In a first step, the two-point probability function and 633 
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variogram should be used to check the statistical homogeneity of the microstructure under 634 

study. The two-point probability function can be calculated following the simple algorithm 635 

described in this paper (e.g. equation (7)), and the variogram can be achieved simply using 636 

commercial software packages for geostatistical analysis. If the statistical homogeneity is 637 

satisfied, in a second step, LREA can be estimated by the statistical method and eventually by 638 

the classical box-counting method for verification. Moreover, it should be mentioned that this 639 

methodological recommendation is also valid for organic-rich shales since the methods used 640 

in this work, focus on the sole clay phase; the others phases, mineral or organic are 641 

considered as a whole set.  642 

One perspective of this work is to support our results and recommendations 643 

concerning the use of more sophisticated and stochastic methods to determine shale LREA. For 644 

instance, the approach proposed by Kanit et al. (2003) introduces the concept of the 645 

“statistical” REV or REA, which is related not only to the microstructure and properties of 646 

each component, but above all, to a given precision in the estimation of the effective property, 647 

depending on the number of realizations “that one is ready to generate” (Jeulin et al., 2004). 648 

The probabilistic concept of realization herein is any representation or observation of the 649 

microstructure considered with a given size and fraction of heterogeneities, i.e., in our case, a 650 

subdomain of a given size or a set of subdomains of a mineral map under study. 651 

Consequently, compared with our previous “deterministic” approaches, this “statistical” LREA 652 

depends explicitly on an additional parameter: the precision desired for the estimate of the 653 

effective property (for instance, the mean clay fraction in our case) and reached for a given 654 

number of realizations. As a consequence, the estimate of “statistical” LREA cannot be unique. 655 

This approach has been recently applied to Opalinus clay samples at Mont Terri rock 656 

laboratory in Switzerland (Houben et al., 2014; Keller, 2015) and could be applied fruitfully 657 

to our mineral maps.  658 
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Appendix. Mathematical definition of p(L) 666 

The total fraction of percolating boxes of size L, named p(L), which characterizes the overall 667 

connectivity of the image at length scale L, is defined as follows:  668 

���� = � ���, ��
��, �����

          (A1) 669 

where φ is the clay fraction measured in each box of size L, and ���, �� and 
��, �� are the 670 

local clay fraction distribution and the local percolation probability, respectively. These two 671 

functions, ���, �� and 
��, ��, are assumed to constitute an approximate but reasonable 672 

geometric characterization of the clay distribution in shales (i.e., the local simplicity 673 

assumption introduced by Hilfer 1991, 1996). By definition, these functions can be calculated 674 

from photographs or numerical images of 2D thin sections in a fairly straightforward manner 675 

as explained below. 676 

Let us consider a shale sample S (here a mineral map), constituting a clay space C and 677 

solid nonclay space NC (i.e., NCCS U= ). We choose a partitioning K={K1, .., Kj,.., KM} of 678 

the sample space S into M mutually disjoint subsets, called boxes. As a result, ⋃ ij = �kj��  679 

and i� ⋂ ij = ∅ if % ≠ o. Each box Kj constitutes itself in Mj elementary volume elements. An 680 

elementary volume element is the elementary voxel in a 3D sample or the elementary pixel in 681 

a 2D sample or map.  682 
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A particular and simple partitioning K is a cubic lattice for a 3D sample or a square 683 

lattice for a 2D sample. This choice conveniently features Kj cells that are translated copies of 684 

one another and the same set (they all have the same shape). The local clay fraction φ(Kj) 685 

inside a box Kj can be defined as 686 

�pijq = r�P∩t_�
r�t_� = �

k_ ∑ 1u�����]∈t_        (A2) 687 

where V(Kj) is the volume of a subset, Mj denotes the number of volume elements 688 

(voxels or pixels) in Kj and 1 is the characteristic function (indicator function) of the clay 689 

space C:  690 

1���� = v1       %w �� ∈ x0    ()ℎ#*!%&#        (A3) 691 

From this definition of the local clay fraction φ(Kj), the histogram called the local clay 692 

fraction distribution µ(φ,K) can be introduced as follows:  693 

���, y� = �
k z{ ∑ ∑ |1}]��� 1}]p��ij�q~����kj��       (A4) 694 

where k is the number of classes of the histogram, and I1,., Ii,., Ik are the classes of the 695 

histogram, ∆φ defines the interval width of each class (all classes have the same width), 1}] is 696 

the indicator function:  697 

1}]��� = v1        %w � ∈ ��0     ()ℎ#*!%&#        (A5) 698 

In the practical case of a cubical box Kj=K(rj, L) of side-length L centered at the lattice 699 

vector rj (i.e., typically a Bravais lattice), the local clay fraction distribution can be rewritten 700 

as follows:  701 

���, �� = �
k z{ ∑ ∑ |1}]��� 1}]p���j , ��q~����kj��       (A6) 702 

The local clay fraction distribution µ(φ,L) also has the following physical meaning: it 703 

measures the probability of finding the local clay fraction φ between φ and φ+dφ in a 704 

measurement cell of linear dimension L.  705 
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The second geometrical property to characterize the local geometry of shales is λ(φ,L), 706 

the fraction of percolating box of side-length L with local clay fraction φ. The local function 707 

λ(φ,L), also called the “local percolation probability”, is defined as follows: 708 


��, �� = ∑ ���_,�� ∑ [��]�{� ��]p{��_,��qc�]ab�_ab
∑ [��]�{� ��]p{��_,��qc�]ab

      (A7) 709 

where the indicator function Λ(rj,L) for the percolation of cell K(rj, L) is given by 710 

Λ����, �� =  v1     if box at �� percolates in x and z direction0                                                                 otherwise   (A8) 711 

A measurement cell K(rj, L) percolates in the x- (y-, z-, resp.) direction if a path inside 712 

the clay phase exists connecting two faces of the measurement cell that are perpendicular to 713 

the x- (y-, z-, resp.) axis. In practice, the function Λ(rj,L) can be calculated using the Hoshen-714 

Kopelman algorithm (Hoshen and Kopelman, 1976).  715 
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Table captions 891 

Table 1. Geometrical and mineralogical features of both mineral maps used in this work. Note 892 

that mineral contents are the surface content and not the gravimetric content.  893 

Table 2. REA estimates obtained using the classical box-counting (BC) method.  894 

Table 3. Ranges of REA estimates obtained using the statistical (S) approach and 895 

microstructural descriptors.  896 

Table 4. REA estimates from the literature.  897 

Table 5. Recapitulation and comparison between methods.  898 

 899 

Figure captions 900 

Figure 1. Microstructure of clay rocks at various scales (modified from Ulm et al. 2005). 901 

Figure 2. Extraction of the mineral COx map used in this work (modified from Jorand, 2006). 902 

Figure 3. Extraction of the mineral Toar map used in this work (modified from Fauchille, 903 

2015). 904 

Figure 4. A. Partitioning of the COx map used for the classical box-counting (BC) method. B. 905 

Partitioning of the Toar map used for the classical box-counting (BC) method. In both 906 

cases, the direction of bedding is indicated.  907 

Figure 5. Estimation of the Representative Elementary Area (REA) size of the COx mineral 908 

map using the classical box-counting (BC) method. Evolution of the clay fraction with 909 

increasing box size and for six different starting domains. The x-coordinates of the 910 

starting domains is 250 µm. The z-coordinates of the starting domains are given in the 911 

captions at the top right of figure (see the origin of the system of Cartesian coordinates 912 

in Figure 2). The horizontal dashed lines indicate the range [45.4-55.4%] 913 

corresponding to �1 ± ���PQB with �PQB=0.504 (50.4%) and ε=0.1(10%).  914 

Figure 6. Estimation and comparison of the Representative Elementary Area (REA) sizes of 915 

both mineral maps using the box-counting (BC) method. Evolution of the clay fraction 916 

with an increasing box size and for different starting domains. The coordinates of the 917 

starting domains are given in the caption box (see the origin of the system of Cartesian 918 

coordinates in Figure 3). The horizontal dashed lines indicate the range [62.9-76.9%] 919 

corresponding to �1 ± ���PQB or �1 ± ���RST1 with �PQB=0.504 (50.4%), 920 

�RST1=0.699 (69.9%) and ε=0.1(10%). 921 
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Figure 7. Statistical (S) approach: evolutions of the mean clay fraction and standard deviation 922 

with increasing box size for both maps.  923 

Figure 8. Estimation of the Representative Elementary Area (REA) size of both mineral maps 924 

by the S approach. Evolution of the standard deviation of the slope with increasing 925 

box size for both maps. The REA size is estimated as the intersection of a smooth 926 

curve fit (bold line) and a horizontal line (dashed line) symbolizing a constant 927 

evolution. The smooth curve fit corresponds to a Stineman function implemented in 928 

the Kaleidagraph software (Stineman, 1980). 929 

Figure 9. Two-point probability function of both mineral maps calculated along the z 930 

direction, x-direction and following both directions. The mineral phase considered is 931 

the clay fraction. The horizontal dashed lines correspond to the asymptotic values for 932 

both maps. The vertical arrows indicate the locations of the LREA estimate. 933 

Figure 10. Two-point probability function of both mineral maps calculated along the z 934 

direction, x-direction and following both directions. The mineral phase considered is 935 

the nonclay fraction (quartz, carbonates, etc.). The horizontal dashed lines correspond 936 

to the asymptotic values for both maps. The vertical arrows indicate the locations of 937 

the LREA estimate. 938 

Figure 11. Lineal path function of both mineral maps calculated along the z direction and x-939 

direction. Both mineral phases (clay and nonclay phase) are considered. The 940 

horizontal dashed lines correspond to the threshold values of 5% with respect to the 941 

total clay fraction. The vertical arrows indicate the locations of the range of LREA 942 

estimate with respect to clay. 943 

Figure 12 a. Variograms of six areas extracted from the COx map. b. Variograms of four 944 

areas extracted from the Toar map. In both figures, the horizontal dashed lines indicate 945 

the clay fraction variance of each extracted areas. 946 

Figure 13. The total fraction of percolating boxes of size L, p(L). For clarity, a polynomial fit 947 

is indicated. Considering the COx map, the tangent crossing the p(L) curve at the 948 

inflexion point is drawn to use the criterion (2).  949 

 950 

 951 

 952 



Table 1. Geometrical and mineralogical features of both mineral maps used in this work. Note that mineral contents are the surface content and 953 

not the gravimetric content. 954 

Map Resolution 

(µm) 

Total number 

of pixels 

Dimensions 

(pixels) 

Dimensions 

(µm) 

Clay minerals 

(%) 

Tectosilitates 

(%) 

Carbonates 

(%) 

COx 2 384 000 250 x 1536 500 x 3072 50.4 15.1 30.7 

Toar 0.625 16 106 4000 x 4000 2500 x 2500 69.9 13.2 14.1 

 955 

 956 

 957 



Table 2. REA estimates obtained using the classical box-counting (BC) method. 958 

 959 

Map Area 

(Ai) 

Center of area 

(Ci) 

Asymptotic 

value 

(�O� �%� 

REA estimate 

(LREA) (µm) 

ε=0.1 (10%) 

REA estimate 

(LREA) (µm) 

ε=0.05 (5%) 

 

 

COx 

A1 C1 (x=250µm, z=250µm) 49.0 262 314 

A2 C2 (x=250µm, z=750µm) 48.6 322 438 

A3 C3 (x=250µm, z=1250µm) 49.4 128 170 

A4 C4 (x=250µm, z=1750µm) 51.6 72 86 

A5 C5 (x=250µm, z=2250µm) 52.4 202 310 

A6 C6 (x=250µm, z=2500µm) 51.5 50 86 

  Mean: 51.5 Mean: 172.7 Mean: 234.0 

  St. Dev.: 1.6 St. Dev.: 108.0 St. Dev.: 142.6 

 

 

Toar 

A1 C1 (x=625µm, z=625µm) 71.4 163 179 

A2 C2 (x=1250µm, z=625µm) 68.5 71 749 

A3 C3 (x=625µm, z=1250µm) 70.2 214 260 

A4 C4 (x=1250µm, z=1250µm) 69.1 68 576 

  Mean: 69.8 Mean: 129.0 Mean: 441.0 

  St. Dev.: 1.3 St. Dev.: 71.8 St. Dev.: 267.4 

 960 

 961 

Table 3. Ranges of REA estimates obtained using the statistical (S) approach and 962 

microstructural descriptors.  963 

 
 

Map 

 

Statistical (S) 

approach 

Two-point probability 

function 
Lineal path function 

(ε=5%) 
Variogram 

range (clay 

phase) Clay phase Non-clay 

phase 

Clay phase Non-clay 

phase 

COx 90-110 µm 16-20 µm 16-19 µm 16-19 µm 16-20 µm 25-53 µm 

Toar 130-150 µm 35-43 µm 70-103 µm 31-38 µm 27-33 µm 28-50 µm 

 964 

  965 



Table 4. REA estimates from the literature. 966 
BIB= Broad ion beam; BC= Box-Counting method; EPMA=electron probe microanalyzer; FIB= Focused ion beam; SEM= Scanning electron microscopy; 967 
STEM: Scanning transmission electron microscopy XCT= X-ray computed tomography; XRD= X-ray diffraction; XRT= X-ray tomography; 3D-EM= three-968 
dimensional electron microscopy. 969 
 970 

Geological setting Investigation 

technique 

 

Resolution 
 

REA estimates 
REA/REV Methodology Reference 

Formation(s) Age 2D/

3D 
Method Phase(s) 

Target 

Error 

ε (%) 

Posidonia 

shale 
Toarcian 

formation 
Combination of 

BIB polishing 

and SEM 

10 nm > 140 µm 2D BC method 5 mineral phases: 

calcite, OM, clay 

matrix, pyrite and 

others 

N/A Klaver et al., 

(2012) 

Boom clay Oligocene 

formation 

Combination of 

BIB polishing, 

FIB, XCT and 

SEM 

∼10 nm Fine-grained facies:  

61-90 µm 

Coarse-grained 

facies:  

125-295 µm 
 

Fine-grained facies:  

64-94 µm 

Coarse-grained 

facies:  

287-453 µm 

2D BC method Porosity 

 

 

 

 

 

 

Non-clay phase 

N/A Hemes et al. 

(2013) 

Opalinus 

clay 

Mesozoic 

formation 
Combination of 

tomographic 

methods: FIB 

and STEM 

2-20 nm ∼100 µm 3D Stochastic approach 

(Kanit et al., 2003) 

Porosity 10 Keller et al., 

(2013) 

Opalinus 

clay 
Mesozoic 

formation 
Combination of 

BIB polishing 

and SEM 

< 5 nm Sandy facies: 

250 µm 

Shaly facies: 

180 µm 

2D BC method + 

Stochastic approach 

(Kanit et al., 2003) 

8 mineral phases: 

pyrite, mica, 

siderite, calcite, 

quartz, feldspar, 

fossil shell and 

clay matrix 

10 Houben et 

al., (2014) 

Opalinus clay Mesozoic 

formation 

Synchrotron XCT N/A > 200 µm 3D Stochastic approach 

(Kanit et al., 2003) 

Clay phase 10 Keller et al., 

(2015) 

Haynesville Jurassic Combination of < 5 nm > 200 µm 2D BC method 4 mineral phases: N/A Klaver et al., 
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shale / 

Bossier shale 

formation BIB polishing 

and SEM 
OM, clay matrix, 

carbonates, pyrite 
(2015) 

Bakken shale Mississippian/
Devonian 

formation 

Combination of 

FIB milling and 

SEM  

10-40 

nm 

“A few hundred 

µm” 

2D BC method Porosity N/A Saraji and 

Piri (2015) 

Posidonia 

shale 

Whitby 

mudstone 

Toarcian 

formation 

Combination of 

Ion Beam 

polishing, SEM 

and XRD 

300 nm ∼ 200 µm 2D BC method 

 

All mineral phases 2 Houben et al., 

(2016) 

 

Bowland shale 

 

Carboniferous, 

Namurian 

formation 

Combination 

XRT imaging 

techniques and 

3D-EM 

 

0,5 µm 

 

380 µm  

 

 

3D 

 

BC method 

 

 

Non-clay phase 

 

N/A 

 

Ma et 

al.,(2016) 

 

Bakken shale 

Mississippian/

Devonian 

formation 

 

SEM imaging 

 

N/A 

 

176 µm  

 

2D 

 

BC method 

 

Porosity 

 

N/A 

Liu and 

Ostadhassan 

(2017) 

 

 

 

 

Bowland shale 

 

 

 

 

Carboniferous, 

Namurian 

formation 

 

 

 

 

SEM imaging 

 

 

 

 

0,5 µm 

 

Organic-rich 

lamina:  

50 µm 

Gradual organic-

poor lamina:  

120 µm 

 

600 µm 

 

 

 

 

 

2D 

 

 

 

 

BC method 

 

 

 

 

Clay phase 

 

 

 

All mineral phases 

(except organics 

and fracture) 
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Fauchille et 

al. (2018) 
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Table 5. Recapitulation and comparison between methods.  972 

 973 

Methods LREA estimate Advantages Limitations 

 COx map Toar map 
 

Box-counting 

(CB) method 

 

173 µm 

(ε=10%) 

 

234 µm 

(ε=5%) 

 

129 µm 

(ε=10%) 

 

441 µm 

(ε=5%) 

- Easy to implement - LREA estimate 

sensitive to the 

chosen ε threshold 

- Statistical 

homogeneity and 

isotropy often 

assumed a priori 

Statistical (S) 

method 
90-110 µm 130-150 µm - Easy to implement 

- LREA estimate less 

scattered than that 

obtained by CB 

method 

- Statistical 

homogeneity and 

isotropy assumed a 

priori 

Two-point 

probability 

function 

16-20 µm 

(clay phase) 
35-43 µm 

(clay phase) 
- Easy to implement 

- Statistical 

heterogeneity and 

anisotropy easily 

evidenced 

- Lower bound of 

LREA 

Lineal path 

function 
16-19 µm 

(clay phase) 

(ε=5%) 

31-38 µm 

(clay phase) 

(ε=5%) 

- Anisotropy easily 

evidenced 

- Lower bound of 

LREA 

- LREA estimate 

sensitive to the 

chosen ε threshold 

Variogram 25-53 µm 

(clay phase) 

 

28-50 µm 

(clay phase) 

 

- Commercial 

software packages 

available 

- Difficult to 

implement 

- Large numerical 

files to process 

 974 

 975 

  976 



45 

 

Figure 1. Microstructure of shales at various scales (modified from Ulm et al. 2005). 977 

 978 

 979 

  980 
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 981 

Figure 2. Extraction of the mineral COx map used in this work (modified from Jorand, 2006). 982 

 983 

 984 

Figure 3. The mineral Toar map used in this work (modified from Fauchille, 2015). 985 

  986 
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 987 

 988 

Figure 4. A. Partitioning of the COx map used for box-counting (BC) method. B. Partitioning 989 

of the Toar map used for counting box (CB) method. In both cases, the direction of 990 

bedding is indicated.  991 

 992 

  993 
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 994 

 995 

Figure 5. Estimation of the Representative Elementary Area (REA) size of the COx mineral 996 

map using the classical box-counting (BC) method. Evolution of the clay fraction with 997 

increasing box size and for six different starting domains. The x-coordinates of the 998 

starting domains is 250 µm. The z-coordinates of the starting domains are given in the 999 

captions at the top right of figure (see the origin of the system of Cartesian coordinates 1000 

in Figure 2). The horizontal dashed lines indicate the range [45.4-55.4%] 1001 

corresponding to �1 ± ���PQB with �PQB=0.504 (50.4%) and ε=0.1(10%).  1002 
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 1005 

 1006 

Figure 6. Estimation and comparison of the Representative Elementary Area (REA) sizes of 1007 

both mineral maps using the box-counting (BC) method. Evolution of the clay fraction 1008 

with an increasing box size and for different starting domains. The coordinates of the 1009 

starting domains are given in the caption box (see the origin of the system of Cartesian 1010 

coordinates in Figure 3). The horizontal dashed lines indicate the range [62.9-76.9%] 1011 

corresponding to �1 ± ���PQB or �1 ± ���RST1 with �PQB=0.504 (50.4%), 1012 

�RST1=0.699 (69.9%) and ε=0.1(10%). 1013 
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 1015 

 1016 

Figure 7. Statistical (S) approach: evolutions of the mean clay fraction and standard deviation 1017 

with increasing box size for both maps.  1018 
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  1020 

Figure 8. Estimation of the Representative Elementary Area (REA) size of both mineral maps 1021 

by the S approach. Evolution of the standard deviation of the slope with increasing 1022 

box size for both maps. The REA size is estimated as the intersection of a smooth 1023 

curve fit (bold line) and a horizontal line (dashed line) symbolizing a constant 1024 

evolution. The smooth curve fit corresponds to a Stineman function implemented in 1025 

the Kaleidagraph software (Stineman, 1980). 1026 
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 1029 

Figure 9. Two-point probability function of both mineral maps calculated along the z 1030 

direction, x-direction and following both directions. The mineral phase considered is 1031 

the clay fraction. The horizontal dashed lines correspond to the asymptotic values for 1032 

both maps. The vertical arrows indicate the locations of the LREA estimate. 1033 
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 1036 

Figure 10. Two-point probability function of both mineral maps calculated along the z 1037 

direction, x-direction and following both directions. The mineral phase considered is 1038 

the nonclay fraction (quartz, carbonates, etc.). The horizontal dashed lines correspond 1039 

to the asymptotic values for both maps. The vertical arrows indicate the locations of 1040 

the LREA estimate. 1041 

 1042 

  1043 

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20 40 60 80 100

S_non clay z-direction
S_non clay x-direction
S_non clay both directions

S_non clay z-direction

S_non clay x-direction

S_non clay both directions

0 20 40 60 80 100

T
w

o
-p

o
in

t 
p

ro
b

a
b
ili

ty
 f
u
n

c
ti
o

n
T

w
o

-p
o
in

t p
ro

b
a
b

ility
 fu

n
c
tio

n

Distance r (µm)

COx map

Toar map



54 

 

 1044 

Figure 11. Lineal path function of both mineral maps calculated along the z direction and x-1045 

direction. Both mineral phases (clay and nonclay phase) are considered. The 1046 

horizontal dashed lines correspond to the threshold values of 5% with respect to the 1047 

total clay fraction. The vertical arrows indicate the locations of the range of LREA 1048 

estimate with respect to clay. 1049 
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   1051 
 1052 

 1053 
 1054 

Figure 12 a. Variograms of six areas extracted from the COx map. b. Variograms of four 1055 

areas extracted from the Toar map. In both figures, the horizontal dashed lines indicate 1056 

the clay fraction variance of each extracted areas. 1057 

   1058 

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0 20 40 60 80 100

a. COx map

V
a
ri
o
g
ra

m
 γ

(r
)

Lag distance r (microns)

A1

A2

A3

A4

A5

A6

0.22

0.225

0.23

0.235

0.24

0.245

0.25

0.255

0 20 40 60 80 100

A1
A2
A3
A4
A5
A6

V
a
ri

o
g
ra

m

Lag distance (microns)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 20 40 60 80 100

A1
A2
A3
A4

V
a
ri

o
g

ra
m

 γ
(r

)

Lag distance r (microns)

b. Toar map

A1 A2

A3 A4



56 

 

 1059 

 1060 

 1061 

Figure 13. The total fraction of percolating boxes of size L, p(L). For clarity, a polynomial fit 1062 

is indicated. Considering the COx map, the tangent crossing the p(L) curve at the 1063 

inflexion point is drawn to use the criterion (2).  1064 
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