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Abstract 

Background: Endovascular embolization is a minimally invasive interventional method for the treatment 

of neurovascular pathologies such as aneurysms, arterial stenosis or arteriovenous malformations 

(AVMs). In this context, neuroradiologists need efficient tools for interventional planning and 

microcatheter embolization procedures optimization. Thus, the development of helpful methods is 

necessary to solve this challenging issue. 

Methods: A complete pipeline aiming to assist neuroradiologists in the visualization, interpretation and 

exploitation of three-dimensional rotational angiographic (3DRA) images for interventions planning in 

case of AVM is proposed. The developed method consists of two steps. First, an automated 3D region-

based segmentation of the cerebral vessels which feed and drain the AVM is performed. From this, a 

graph-like tree representation of these connected vessels is then built. This symbolic representation 

provides a vascular network modelization with hierarchical and geometrical features that helps in the 

understanding of the complex architecture of the AVM. 

Results: The developed workflow achieves the segmentation of the vessels and of the malformation. It 

improves the 3D visualization of this complex network and highlights its three main components that are 

the arteries, the veins and the nidus. The symbolic representation then brings a better comprehension of 

the vessels angioarchitecture. It provides decomposition into topologically related vessels, offering the 

possibility to reduce the complexity due to the malformed vessels and also determine the optimal paths 

for AVM embolization during interventions planning. 

Conclusions: A relevant vascular network modelization has been developed that constitutes a 

breakthrough in the assistance of neuroradiologists for AVM endovascular embolization planning.  
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1. INTRODUCTION 

1.1 Background and purpose 

The segmentation of vascular structures is essential in diagnosis and clinical analysis of cerebral 

vascular pathologies. This segmentation is a necessary preliminary step in the three-dimensional (3D) 

structural and functional modelling of vessels, which is of significant interest for the preoperative 

planning of endovascular treatment. A 3D representation of the cerebral vascular network may also help 

decision-making during microcatheter embolization procedures because it improves the visualization of 

the vessels which have various shapes and sizes. The presence of pathology such as arteriovenous 

malformation (AVM) introduces an additional difficulty, due to the tangle of the malformed vessels. 

Dedicated tools are so needed to facilitate analysing and interpreting these complex vascular networks. 

1.2 Cerebral AVM diagnosis and treatment 

Cerebral AVM results from abnormal connections between arteries and veins through a direct shunt 

localized into a so called “nidus” structure which replaces the capillary network. This direct connection 

increases the blood pressure in the brain and the risk of breakage and haemorrhage [1]. These congenital 

lesions are often incidentally detected by computed tomography angiography (CTA) or magnetic 

resonance angiography (MRA) dictated for headaches or seizures. Imaging is therefore of great 

importance for the diagnosis and the characterization of the angioarchitecture and the treatment of these 

malformations [2] which present multiple feeding arteries, enlarged draining veins and an important 

tangle of vessels forming the nidus. The recommended treatment option for these malformations can be 

microsurgical resection, stereotactic radiotherapy or endovascular embolization. Each of these options has 

its own advantages and limitations and combined approaches are often used in practice. Endovascular 

approach is considered a mini-invasive technique as it does not require opening of the skull base as 

conventional neurosurgery. It allows control deposition of embolic agent but requires X-Rays exposure. 

Radiosurgery, does not require skull opening but is limited to small or mid-size AVM and the delay to 

induce cure of the lesion by vascular sclerosis is about 2 to 3 years, a period of time during which an 

haemorrhage can occur. Surgery is considered the standard of cure as it allows for definitive resection of 

the malformation but requires a craniotomy and cannot reach lesions located deeply in the brain. All those 

reasons make the combination of the techniques (multimodal approach) a preferred choice nowadays [3]. 
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1.3 Endovascular embolization planning 

Among the previously cited therapeutic options, endovascular embolization is an efficient treatment 

therapy and a good alternative to open surgery. It consists of navigating with microcatheters from the 

groin throughout the intracranial vasculature and injecting a glue-like material to obstruct the blood 

supplies to the malformation. As for diagnosis, imaging plays a major role in the pre- and perioperative 

phases of the endovascular treatment. Conventional 2D digital subtraction angiography (DSA) has long 

been considered as the gold standard for the detection of aneurysms and AVMs [4]. However, this 

imaging technique presents some limitations such as repeated injections of contrast agent and high 

radiation dose. In the last few years, 3D rotational angiography (3DRA) imaging became a standard in 

endovascular therapy interventions. Currently, this imaging technique provides 3D high-resolution 

images of the vessels, allowing an accurate analysis of the arterial supply of AVMs. Nevertheless, in 

practice, these two imaging modalities remain insufficient for the visual tracking and manipulation of 

vessels paths. 3DRA being currently the most accurate imaging device for AVMs, we aimed to perform 

the 3D modelization of the vessels on these images. 

1.4 Vascular structures segmentation 

As previously mentioned, the 3D representation of the cerebral vascular structures requires their prior 

segmentation. Numerous difficulties must be taken into account such as the variability of vessels size and 

shape, the multiple branches and crossings of the network, as well as noise and pixels intensity 

heterogeneity on the images. This is a widely addressed issue and different approaches were used 

depending on imaging modality, considering anatomical structure or application fields. Several works in 

the literature were dedicated to vessels extraction methods. Kirbas and Quek [5] proposed to classify 

them into six categories: pattern recognition techniques, model-based approaches, tracking-based 

approaches, artificial intelligence, neural networks and tube-like objects determination. Lesage et al. [6] 

discussed the segmentation of angiographic images from three aspects: the vessel models, the vessel-

specific features and the extraction schemes. Both reviews focused on the segmentation methods 

regardless of applications (cerebral, retinal, cardiac, pulmonary, etc.) or modalities (DSA, MRA, CTA, 

2D, 3D etc.). 

In this paper, we focus on the segmentation of cerebral vascular network. Among the different 

proposed approaches, multiscale model-based techniques using tubular or cylindrical models were 
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applied to X-ray and MRA images [7] and to MRI and MRA images [8]. Statistical mixture models 

relying on the analysis of pixels intensity distribution have been also widely used. Some authors proposed 

to apply these models on 3DRA images based on maximum intensity projection (MIP) [9], on Phase 

Contrast-MRA [10] and TOF-MRA images [11]. Other works focused on pixel-based thresholding 

procedures where a local optimal threshold is calculated for segmenting and reconstructing cerebral 

vessels from MRA [12]. In more recent works, a thresholding segmentation algorithm was applied on 

MRA [13] and a fully-automatic adaptive thresholding method successfully segmented 3D-DSA images 

[14]. To complete the grey level intensity information of the angiographic images, MIP images were also 

exploited to calculate the degree of membership of a voxel to extract the vasculature from MRA images 

[15]. 

In case of AVM, the challenge is to provide an accurate 3D visualization to distinguish the nidus from 

the feeding arteries and the draining veins. Another goal is to facilitate the interventions planning by the 

definition of the embolization paths. Some authors focused on the segmentation of nidus and connected 

vessels to the malformation. Bullit et al.  [16] conducted very interesting works by exploiting the parent-

child relationships of the vascular tree to semi-automatically extract the nidus from 3D-DSA and MRA 

images using a skeletonization algorithm. Babin et al. [17] used generalized morphological profiles [18] 

carried out by varying differential structuring elements (SE). These SE are especially adapted for different 

vessels contrast and sizes for AVM segmentation on 3D-CTA images. The arteries and veins were 

identified by their radius and separated from the nidus. More recently, they proposed a graph-based 

method for the draining veins extraction on 3DRA images [19]. Hsu et al. presented a fully automated 

vessel enhancement pipeline for multiple modalities such as 3DRA, MRA or CTA for generating 

anatomical network representations of the cerebral angioarchitecture [20].  

 

1.5 Vascular network symbolic representation 

Based on the segmentation step, a symbolic representation of the vascular network has to be 

performed to modelize its complex structure. Some works addressed the problem of generating such 

models on the basis of medical imaging datasets [21]. The model must bring global information on the 

network: mainly its topology but also mechanical properties as for instance flow or pressure 

measurements. Local features such as diameter, length or tortuosity of vessels can also enrich this model. 
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The symbolic representation gives clinicians a deep and accurate understanding of complex 

angioarchitectures [22]. 

Bullitt et al. [16] first introduced the notion of symbolic representation for the 3D analysis of the 

intracerebral vascular network. They described the minimum spanning tree algorithm to produce directed 

graphs of the intracerebral vasculature from segmented MRA data. From selected seed points, the tree 

structure was created by progressively linking segmentation points that satisfy both distance and intensity 

conditions. Later, Bullitt et al. [23] applied this algorithm on MRA images to segment the MAV. The 

nidus was interactively or automatically extracted. The results provided new visualizations and 

highlighted the relationships between the nidus and the feeding and draining vessels in the 3D space. One 

of the limitations of this methodology was that a processing time of 1-2 hours was required. 

Graß et al. proposed [24] to build a symbolic representation of vessel trees from 3DRA images. They 

assumed that the tree components can be separated into three hierarchical levels: generations, clusters, 

and voxels. This model was applied to determine contrast agent propagation and to calculate bolus arrival 

time (BAT) for AVM or aneurysm. More recently, other works have extended the symbolic 

representation approach to the study of graph and quantitative description. Sankowski et al. [25] focused 

on the estimations of vascular parameters: diameter, local direction, location of terminal points and 

bifurcation points. Some authors have studied the radius associated with each centre point [26], as well as 

the length of vessels [15]. Orlowski et al. [27] proposed a schematic representation of the AVM network 

where nidus, draining and supplying vessels are annotated with abbreviated symbols. However, the 

proposed diagram symbols and annotations do not express either the anatomical location of the AVM or 

the identities of the vessels to which it connects. 

 

1.6 Clinical needs and objectives 

In clinical routine and for embolization interventions planning, neuroradiologists determine the 

principal feeding arteries and draining veins of the AVM from 3DRA images. The optimal navigation 

paths of microcatheters are manually spotted on DSA images [2]. To deeply track the vessels and define 

embolization paths, clinicians need a new 3D representation allowing interactive model exploration. 

Clinical experiments require the possibility of 3D manipulation of the vascular network for the purpose of 
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tracking or isolating a specific vessel to study its trajectory, termination and connections with the other 

vessels. 

In this paper, a complete processing pipeline for 3DRA images analysis is developed, aiming to 1) 

provide a relevant three-dimensional visualization of the vascular network, 2) elaborate an anatomical 

model of the cerebral vascular network and 3) define the embolization paths from the vascular network. 

The proposed 3D segmentation and symbolic representation methods are described in Section 2. The 

obtained results are then presented and discussed in section 3. Conclusions and perspectives are finally 

given in section 4. 

2. MATERIAL AND METHODS 

In this section, we present the 3DRA data acquisition protocol and the main steps of the proposed 

method to process these data: 1) pre-processing to automatically initiate the segmentation procedure, 2) 

3D vascular structures segmentation and visualisation, 3) identification of arteries, veins and nidus and 

finally 4) symbolic representation of the vascular network and embolization paths extraction. The whole 

process is illustrated by a graphical algorithm on Figure 1. 

2.1 Patients and 3DRA acquisitions 

Ten patients (aged from 23 to 59 years, 7 men) underwent 3DRA exams. The acquisitions were 

performed with a Philips Allura angiographic unit (Philips Healthcare, the Netherlands) after 28 mL 

contrast agent injection to enhance the vessels, at 4 mL/second with a rotation of 210° and a delay of 

3 seconds between injection and acquisition. Each obtained dataset was a 256x256x256 cubic matrix with 

a voxel size varying from 0.29 mm3 to 0.49 mm3. The 3D image was centred on the region of interest 

containing the AVM, the veins and the arteries connected to the nidus. The Xtravision (Philips 

Healthcare) angiographic unit delivers initial reconstructions of the vessels, used for the qualitative 

validation of our results. Besides, several cerebral angiogram acquisitions were performed by a biplane 

angiographic system (FD20/10, Philips Healthcare). 

2.2 3D Region-growing-based vessels segmentation 

The vascular network surrounding the AVM was segmented using a 3D region-growing-based 

algorithm. The basic approach is to start from selected seeds belonging to the structures to extract and to 
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grow by incrementally including neighbouring voxels according to pre-defined criteria. Thus the 

segmentation depends on two elements: the seeds initialization and the inclusion criteria. 

 

2.2.1 Automatic seeds location 

To initiate the region growing process, seeds points are automatically localized on the first slice of the 

3DRA volume. The pixel intensity distribution of these images can be divided into two classes: vessels 

and background [9]. In order to obtain markers of the vessels, a thresholding using morphological 

geodesic reconstruction [28] is applied. Let I be a grayscale image and �ℎ������  and �ℎ���
��
 two 

threshold values (�ℎ������ < �ℎ���
��
). The binary images resulting from the application of simple 

thresholdings using �ℎ������  and �ℎ���
��
  values are, respectively named � and �.  

Let ��, ��, … �� be the n connected components of � and ��, ��, … �� be the m connected components 

of K. Since it is easily proved that � ⊆ �, � is called marker and � is called mask. The reconstruction ��(�) 

of the mask � from a marker � is obtained by the union of the connected components of  � which contains 

at least one common pixel with �: 

   R�(�) = ⋃ J"#∩�%&∅          (1) 

Thus, the lower threshold �ℎ������  allows separating the different regions while the upper threshold 

�ℎ���
��
  is used to mark the potential vessels. The centres of mass of the extracted regions are usually 

considered as the seed [29]. Nevertheless, when the borders of vessels are not convex, the centre of mass 

may be located outside the region [30]. To avoid this, we defined seed points called pcentre as follows: 

p)*�+,* ∈ Argmin
"4�,…5

D(7%)       (2) 

 with D(pi), a distance defined as the sum of the distances between the point pi and all the other points 

pj of a region of N pixels. This distance is expressed according to the respective 

coordinates (8� , 9�) and (8: , 9:) of ;�  and ;:   as follows: 

D(7%) = < =>x" − xA> + >y" − yA>D
5

A4�
        (3) 

Argmin represents the set of solutions of our minimization problem. Since we consider a finite set of 

elements, the minimization problem therefore admits at least one solution in this set. Since the solution 

exists, we are thus certain that the centre of mass of the vessel will be within the region 
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2.2.2 3D growing 

Usually, for cerebral arterial network segmentation, the seed point is defined at the root of the 

vasculature tree where the Internal Carotid Artery (ICA) is the only visible vessel (see Fig 2.(a)). Thus, 

the segmentation automatically starts from this unique point on the first image of the 3DRA volume and 

grows until extracting the entire vessel with its branches. As mentioned in section 2.1, each 3DRA dataset 

was a cubic matrix with isotropic voxels. So, the evolution of the region growing algorithm is possible 

from one voxel to all its neighbours, in the three directions. The bifurcations are automatically detected as 

the region formed by the iterative inclusion of the voxels evolves in the three spatial directions. 

 

2.2.3 Membership and stopping criterion 

The membership criterion that controls the algorithm evolution is based on spatial proximity and 

homogeneity properties of adjacent pixels /voxels [31]. As 3DRA images present a good and uniform 

contrast between vascular structures and background, due to the injected contrast agent [32], the voxels 

intensity can be defined as a robust inclusion criterion. 

Let E�FG and E���  respectively denote the highest and the lowest intensity values in the whole 

volume. Let the voxel  ;�(8� , 9� , H�) be the initial seed point and E(;�) the intensity value of ;� . Each 6-

connected neighbour ;: of ;�  is labelled as the vessel including ;�  if the following condition is satisfied: 

>E(;�) − E=;:D> < � ∗ |E�FG − E���|     (4) 

with E=;:D the intensity of ;: and T a weighting parameter. If the condition (4) is verified for a neighbour 

voxel ;: of ;� , the voxel ;: is included in the segmented region and the process is iterated for its six 

neighbours. This process ends when no changes occur after two successive iterations. 

 

2.3 Nidus, arteries and veins separation 

One of the most challenging and complex tasks encountered by neuroradiologists is distinguishing the 

three main components that are feeding arteries, draining veins and nidus. Such visualization can help 

clinicians in understanding the angioarchitecture of AVMs. Few authors have addressed this issue. 

Forkert et al. [33], [34] proposed a fuzzy-based classification algorithm to perform vessel enhancement, 

automatic segmentation and structure separation from time-of-flight (TOF) MRA. Identification of 
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arteries and veins was performed by combining 4D information. Clarençon et al. [35] distinguished the 

three structures by manually tagging different vessels on 3DRA images and then propagated the labelled 

voxel with a region-growing-based algorithm. However, this algorithm is very time-consuming as it 

requires the tagging of 10 to 50 arteries or veins and a high calculation time.  

In this work, we propose a morphological method to semi-automatically isolate the nidus from the 

connected arterial and venous vessels. Several assumptions are necessary to allow differentiating the 

nidus from the arteries and veins. First, we can consider that the nidus global form, in most cases is 

similar to a sphere. Secondly, due to the malformed vessels, it is the largest ball-like component obtained 

after the vascular network segmentation. So, a big spherical SE is first used to consecutively apply 

closing and opening operations on the segmented tree including the nidus. Multiple tests are required to 

define the appropriate sphere radius. This step allows approximately detecting the nidus. When removing 

the obtained “approximated nidus” from the initial segmented object, the vascular network is "broken" 

into two or more parts. To identify the arterial network from the venous one, a last admitted hypothesis is 

that among the obtained structures, the arterial network is the structure presenting the largest volume. 

Furthermore, as the region growing algorithm ensures the spatial continuity when evolving from the ICA, 

the arterial part of the network constitutes one single block. 

 

 

2.4 Vessels symbolic representation 

The segmentation of the 3DRA dataset leads to significant enhancement of the 2D or 3D local and 

global visualization, but it is also of great interest to derive a symbolic representation from the segmented 

vascular network to provide a better understanding of its complex angioarchitecture. In this work, the 

proposed symbolic representation model consists of a transformation from the segmented vascular 

network into a graph representing it with different topological and geometrical descriptors. To obtain this 

symbolic graph, our algorithm operates in three main steps: 1) skeletonization of the segmented vessels 

using an efficient parallel thinning algorithm; 2) identification of junction points (vertices) and vessel 

segments (edges) and 3) vascular network analysis via hierarchy schemes.  

In the first step, a skeleton of the whole cerebral vasculature is constructed from the segmented object 

using the isthmus-based parallel and asymmetric 3D thinning algorithm [36]. A minimal representation of 
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the object with its topology preservation as well as its geometrical features is so obtained. This algorithm 

produces an asymmetric skeleton that is one pixel wide at all points except junctions. Moreover, this 

method aims to preserve the curves or more precisely, voxels that belong to 1D isthmuses, producing a 

curvilinear skeleton. To avoid topological holes, which create cycles in the skeleton, and prior to 

skeletonization, the segmented image is hole-closed using the algorithm described in [37]. This algorithm 

is based on some properties of the topological numbers and on the principle of the topological hull. One 

of its qualities is that it allows closing small 3D-holes, corresponding to noise while preserving relevant 

holes.  

In the second step, the skeleton is separated into vessel segments defined as parts of the vascular tree 

delimited by two adjacent junction points [38]. Thus this representation is suitable for topological and 

quantitative analysis. This mapping of segments and junctions can be represented as a mathematical graph 

by associating each junction with a vertex and each segment with an edge in the graph. This process gives 

a correspondence between the graph segments and vessel skeleton branches and between skeleton 

branches and segmented vasculature. With the obtained skeleton and its graph, a hierarchy of vascular 

network is created using the Strahler Ordering method [39]. 
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Fig 1. The graphical algorithm illustrating the whole process, including the 3D region-growing segmentation and the symbolic 

representation of the vessels 

 

  

3DRA dataset with 

AVM 

Selection of a slice 

with visible ICA 

Geodesic 

reconstruction 

Morphological 

operators 

Automatic seed 

selection 

2D graph 

representation 

Point’s 

classification 

Skeleton by 

thinning algorithm  

3D region growing 

segmentation and 

visualization 

Geometrical and 

hierarchical 

representation 

P
re

p
ro

ce
ss

in
g

 a
n

d
 3

D
 r

e
g

io
n

-g
ro

w
in

g
 b

a
se

d
 s

e
g

m
e

n
ta

ti
o

n
 

Im
a

g
e

s 
 d

a
ta

se
t 

G
ra

p
h

-l
ik

e
 t

re
e

 s
y

m
b

o
li

c 
re

p
re

se
n

ta
ti

o
n

 o
f 

th
e

 v
e

ss
e

ls
 

Embolization paths 

extraction 



14 

 

3. RESULTS AND DISCUSSION  

3.1 3D region growing segmentation 

The 3D vascular tree segmentation was achieved using a 3D region growing algorithm that evolves 

from the first slice of the 3D volume (Fig 2.(b)). The lower threshold �ℎ������  and the upper threshold 

�ℎ���
��
 were respectively set to the normalized values 0.28 and 0.43. These values that allow defining 

the interval corresponding to the vascular structures were deduced from the logarithmic histogram of the 

3DRA images [40]. The T weighting parameter (Equation 4) that achieves steady segmentations was 

experimentally set to 30±5% of segmented voxels on the whole volume. We observed that choosing the 

two thresholds and the weighting parameter values outside the defined intervals will result in an under- or 

an over-segmentation. 

A unique seed point was automatically localized inside of the ICA which is the origin of the 

vasculature tree (Fig 2.(c)) whose diameter approximately varies between 3.5 and 4.5 mm in the skull. To 

only preserve the ICA, the remaining small structures were suppressed without difficulty using a 

morphological operator. Starting from this initial seed point, the 3D growing process is performed 

throughout the 3D volume to extract the entire vascular tree. In all cases and without any user interaction, 

the segmentation process achieves to detect the vascular network for different sizes and vessel shapes. 

Furthermore, the segmentation stage provides an automatic detection of the bifurcations points and 

extracts the small terminal branches even very fine ones (0.7 mm diameter).  

   

(a)    (b)    (c) 

Fig 2. a) Region of interest on a 3DRA volume including the ICA, b) the first image of the corresponding stack of 

slices and c) initial binary shape used for positioning the seed point for region growing propagation. 

 

The proposed segmentation algorithm presents the advantage of being automatically initialized. It’s 

able to automatically segment a given vascular tree with its branches and detect the bifurcations as we can 
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see it on Figure 3. So, specific forms like malformed vessels and junctions are automatically managed. 

Moreover, the process depends on few parameters whose values adapt according to the image properties 

even for the detection of complex vascular structures. 

 

Fig 3. Illustration of region growing algorithm evolution with the automatic bifurcation points management. 

 

3.2 Qualitative validation 

The 3D vascular tree segmentation was performed on ten 3DRA datasets with AVMs. As previously 

mentioned in section 2.1, the 3D reconstructions delivered by the Xtravision Unit were considered as the 

reference for the qualitative validation of our results. This validation was independently performed by two 

neuroradiologists (RB and HR) and consisted of a visual comparison with volume rendering and 3D MIP 

rendering obtained with the imaging station.  

The AMIRA 3D software (Thermo Fisher Scientific, Waltham, Massachusetts) was used to visualize 

our segmentation results. This tool allows showing different viewing angles for a greater visualization of 
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the vessels bifurcations. Figure 4 shows five examples with different AVMs of vascular networks 

segmentation, obtained from the 3DRA data. Fig 4.(a) shows an angle of visualization with the AMIRA 

3D software of the results obtained by our method. Figs 4.(b) and 4.(c) represent the visualization using 

the Osirix open-source software (Pixmeo SARL, Geneva, Switzerland) respectively of the corresponding 

volume and 3D MIP rendering proposed by the Xtravision Unit. 

Therefore the experts visually analysed our results and highlighted their accuracy and similarity with 

the reconstructions provided by the imaging station considered as reference. They pointed out the 

continuity of the vessels, the absence of holes, the smooth surfaces and the presence of all the structures 

with their bifurcations. The dimensions of the vessels showed a quite good correspondence and no over-

segmentation was observed. The experts also noticed that some small vessels which are not visible on the 

Xtravision reconstructions were well reconstructed by our method. 

 

3.3 Quantitative validation 

The quantitative validation of the segmentation results was difficult to address due to a lack of ground 

truth. This is because the manual delineation of the multiple vessels frontiers of the vascular network is 

tedious and time-consuming. Although the visual analysis of the segmentation quality was sufficient in 

the case of our application to reach the goal of extracting the navigation paths, a partial quantitative 

validation was performed on a vessel section to complete the evaluation. A vessel segment was manually 

segmented on a set of 50 slices by a neuroradiologist using the application Image Segmenter of Matlab 

and also using the automatic region-growing method. The degree of agreement between the two obtained 

results was evaluated using the Dice Coefficient. The calculated Dice Coefficient value for this vessel 

segment was of 0.96 and therefore shows a good agreement between the manual and the automatic 

segmentations. 

 

3.4 Main structures separation 

In this section, we present a preliminary result of vascular structures separation, applied on one 

dataset. It leads to a new 3D visualization where arteries, veins and nidus are displayed with three 

different colours as shown on Fig 5.(d). This is of great interest to help neuroradiologists to improve their 

understanding of the complex angioarchitecture of AVMs. To achieve this labelling, the nidus is removed 
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from the segmented image by applying a closing-opening morphological operation based on a spherical 

SE whose size must be adjusted by the user according to the size of the nidus. Fig 5.(a) shows the result 

of this approximate nidus detection on a 3DRA. Fig 5.(b) shows the whole network obtained after 

removing the previously detected nidus. One can see that the network is “broken" into two or more parts. 

The identification of the artery network and the veins is then performed by the analysis of the sizes of the 

connected components. The arterial network which is the bigger structure connected to the ICA appears 

in red and the draining vein appears in blue on Fig 5.(c). Finally, the nidus is accurately recovered by 

subtracting the arterial and venous networks from the initial segmented object (Fig 5.(d)).  
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(a)    (b)    (c) 

Fig 4. Comparison of the segmentation results obtained on clinical data, each row corresponding to a different patient.                     

a) Visualization with the AMIRA 3D software of the segmentation results obtained by our method, b) volume rendering 

and c) 3D MIP rendering of the original 3DRA images visualized using the Osirix open-source software. 
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(a)      (b) 

   

(c)      (d) 

Fig 5. Separation of the three vascular components: arterial tree, veins and nidus; a) detection of the approximate shape of 

nidus, b) vascular network after removing the nidus, c) identification of the artery network and the veins and d) accurate 

extraction of the nidus and display of the three structures with different colours (arteries in red, veins in blue and nidus in 

green). 

 

3.5 Symbolic representation and embolization paths determination  

The symbolic representation of the vascular tree results from three successive steps that are displayed 

on Figure 6. The skeleton (Fig 6.(b)) is derived from the segmented vessels (Fig 6.(a)), using a thinning 

algorithm. Then, the skeleton points are classified in order to identify junctions and vessel segments 

(Fig 6.(c)). Fig 6.(d) illustrates the mathematical 2D graph that represents the hierarchical structure of the 

vascular network. 

This representation gives the user the opportunity to select vascular sub-trees by determining a starting 

and an ending point. The corresponding path is then extracted and its features can be displayed. It is also 

possible to select a starting point and to specify a depth value that corresponds to Strahler number 

assigned to each branch. 
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(a)            (b)          (c)                                              (d) 

Fig 6. A two-way graph-based vascular network representation: a) segmented vessels, b) their skeleton, c) skeleton point’s 

classification, and d) 2D graph representation. 

 

Thanks to this hierarchical model, we provide on the one hand selective visualizations of vascular sub-

trees and on the other hand, a simple and objective access to the topology of the vascular network. Both 

are a valuable tool for surgical planning and catheterization procedures. 

 

Results on synthetic images 

The symbolic representation was first validated on a synthetic vascular network, generated by the 

VascuSynth open-source software [41], [42]. An illustration of the obtained results is given by Figure 7. 

The extracted centerlines of the synthetic vessels (Fig 7.(a)) present a rather curvilinear and smooth 

overall appearance (Fig 7.(b)). Different skeleton parts, such as end points, junctions and segments, were 

extracted. This gives an overview of the connectivity of the distribution of the vessels and the hierarchy 

of the vascular network. The associated graphs were then constructed in 3D on Fig 7.(c) and 2D on 

Fig.7.(d). In the 3D graph, the position of junction points and the length of vessels are kept in order to get 

a representation of the network closed to the real one whereas the 2D graph is a more conceptual classical 

binary tree structure with nodes corresponding to junction points and vessels to branches. We have also 

applied the Strahler model on the 2D graph, which permits a more clear demonstration of the parent-

children relations. 

By seeking for the graph-related edge of each segmented voxel, we decompose the vascular network 

into branches. Therefore each branch is extracted and separated from the vascular tree. The branch 

decomposition is shown on Figs 7.(e) and 7.(f). Each vessel branch is displayed by a user-defined colour. 

Visually, the mapping reveals a good agreement with the ground truth. In Fig 7.(g), all the terminal 
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branches (level 1) are displayed with blue, while the main branches were shown in green (level 2) and red 

(level 3). Figs 7.(h) and 7.(i) show the obtained navigation paths from the root (junction 6) to two 

different terminal points (respectively junctions 8 and 10). For a directed graph, the path from one depart 

point to an arrival point is unique. 

   

(a)    (b)    (c) 

   

(d)    (e)    (f) 

   

(g)    (h)    (i) 

Fig 7. The symbolic representation results obtained on a synthetic vascular tree: a) synthetic vascular tree, b) curvilinear 

skeleton with Isthmus-based thinning, c) 3D graph representation of the vascular tree, d) 2D graph representation with 

Strahler level, e) branches decomposition, f) decomposition in bifurcations position, g) vascular tree colour representation 

of the Strahler orders, h) navigation path from junction 6 to 8 and i) navigation path from junction 6 to 10. 
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Results on clinical data 

The symbolic representation procedure was carried out on a 3DRA dataset. The Figure 8 illustrates the 

complete process to get a selective visualization of vascular sub-trees. The Fig 8.(a) shows the initial MIP 

display provided by the 3DRA imaging device. The obtained result after our 3D vascular network 

segmentation is shown on Fig 8.(b) with a superimposed rectangle that defines a sub-tree to modelize 

(Fig 8.(c)). The following figures (Fig 8 .(d, e and f)) respectively correspond to the three steps described 

above for the synthetic images: skeletonization, 3D graphic representation and labelling of the segmented 

vascular tree. Finally, Figures 8 .(g, h and i) shows three different navigation paths providing by our 

model. As we can see, our model is really relevant and its ability to define paths in complex vascular 

networks is a breakthrough to assist neuroradiologists for endovascular navigation.  

   

(a)    (b)    (c) 

   
(d)    (e)    (f) 

   

(g)    (h)    (i) 

Fig 8. Selective visualization of vascular tree: a) a MIP image of the vascular network, b) the resulted 3D segmentation 

using the region-growing-based method, c) a sub-tree connected to the nidus, d) skeleton of the sub-tree, e) 3D graph of the 

sub-tree, f) decomposition into vessel branches and g), h), and i) three paths of the nidus supplying arteries. 
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To estimate the good agreement of our 3D visualization with the original MIP image, Figure 9 shows 

the image obtained by superimposing the extracted vessels on the 3D MIP image. We can see on Fig 9.(a) 

the vessel tree decomposition with the graph-based approach. Fig 9.(b) gives the same view with 

transparency. Finally, on Fig 9.(c), we can see in yellow the trajectory or the principle feeding artery of 

the nidus. It highlights a very good matching.  

        

(a)               (b)            (c) 

Fig 9. a) Overlay of MIP original image with the labelled vascular sub-tree, b) same result with transparency and c) the 

path of the principle feeding artery toward the nidus (in yellow). 

 

The proposed segmentation algorithm was implemented using Matlab on the desktop computer 

with 2.4 GHz Intel Core 2 Duo processor with 8 GB of internal memory. The 3D segmentation step 

for one patient takes around 1 minute. For the structures separation, the operation on itself is instant; 

however it requires few tests to choose the suitable size of the structuring element (about 3 or four 

minutes). The proposed symbolic representation method was implemented with Python. The 

processing time of the whole procedure depends on the image size, resolution and number of branches 

of the vascular network. As an example, on the desktop computer with two cores 2.4 GHz processors, 

8 GB internal memory, for one clinical image it takes around 1 hour. For a synthetic image, it takes 

approximately 15 minutes. 
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4. DISCUSSION 

Few works have been devoted to cerebral vascular structures segmentation on 3DRA images and even 

less to the cerebral AVM network modelization [9], [15], [43]–[45]. Until now, there is no standard 

method for this kind of application and most proposed methods require user interaction [43]–[45]. 

Furthermore, pattern recognition, model-based or tube-like methods fail to segment the nidus and the 

malformed vessels whose complex shapes cannot be considered as cylinders. As 3DRA images present a 

good and uniform contrast between vascular structures and background, thanks to their high contrast 

resolution [32], the region-growing-based segmentation algorithm with an intensity-based evolution 

criterion represents an appropriate approach for this modality. This algorithm is simple to implement in a 

3D manner and does not necessitate shape prior knowledge. In addition, 3DRA images avoid some 

problems such as lack of signal inside the vessels in MRI, which causes disconnections in the vascular 

structures or partial volume effects with X-ray tomography resulting in artefactual connections with the 

anatomical structures surrounding the vessels. Furthermore, separating the nidus from the arteries and 

veins represents a significant achievement since it brings a better visualization and comprehension of the 

complex architecture of the vessels. However, it needs some user interaction as multiple tests are required 

to find the appropriate size of the spherical SE used in the processing. A visual analysis of the obtained 

result for different SE sizes is essential to finally choose the most appropriate value. The symbolic 

representation of the vessels completes the process and provides the possibility to define the arterial 

supplies of the nidus by automatically extraction the paths and this is an important breakthrough in the 

assistance of neuroradiologists for interventional planning. However, this step must be improved to 

reduce the execution time. To conclude, if we compare our work to the existing techniques of 3D vascular 

segmentation or/and modelization, our developed pipeline has the advantage of being more complete by 

offering in addition solutions which could help in determining optimal paths for AVM embolization and 

also visually separating the different structures. In this context and to our knowledge, this work fulfils a 

real need and makes a significant contribution to the field. 
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5. CONCLUSION 

This work aims to bring assistance to neuroradiologists in the perception, the interpretation and the 

exploitation of the 3DRA images for the planning of cerebral AVMs embolization interventions. Our 

contribution consists in the development of an innovative image processing pipeline, constituted by a 

dedicated 3D region-growing-based segmentation algorithm, and by a symbolic representation of the 

extracted vessels. Until now, few works carried out works to segment and modelize the complex AVMs 

vascular network from 3DRA imaging. 

The segmentation process is automatically initialized and results in the extraction of the whole 

vascular network from the 3DRA images. This is a significant contribution that allows a better three-

dimensional visualization of complex cerebral networks with AVM. The symbolic representation of the 

vessels establishes a link between the segmented image, the skeleton and the 3D graph, improving the 

understanding of the vascular network organization. The whole vascular tree is decomposed into single 

vessel branches. The topological relations provided by the 3D graph representation offer the possibility to 

isolate a part of the vascular network or to interactively select a single vessel. Thanks to this symbolic 

representation, a tangled network can be interpreted through a hierarchical model that reveals its 

topological structure. This is a precious tool to understand the complex angioarchitecture of the AVM 

vascularization and consequently to assist neuroradiologists in preoperative planning. Above all it allows 

easily determining embolization paths by selecting one or two points of the network. 

Another significant contribution of this work is the ability to visualize separately the three principal 

structures which are the feeding arteries, the draining veins and the nidus. A visualization labelled with 

different colours even more improves the understanding of angioarchitecture. The developed algorithms 

have to be integrated into a user-friendly graphical interface, functional in clinical routine to assist the 

preoperative interventions planning and possibly the perioperative navigation. The malformations being 

very complex and different from a patient to another, this work could be applied on an enlarged database 

to confirm its efficiency and to assess its relevance in a clinical context. In future works, we aim to add to 

our model biomechanical measurements such as intravascular blood pressure and blood flow velocities. 
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Summary 

Endovascular embolization is a minimally invasive interventional method for the treatment of 

neurovascular pathologies such as aneurysms, arterial stenosis or arteriovenous malformations (AVMs). 

In this context, neuroradiologists need efficient tools for interventional planning and microcatheter 

embolization procedures optimization. Thus, the development of helpful methods is necessary to solve 

this challenging issue. This work aims to bring assistance to neuroradiologists in the perception, the 

interpretation and the exploitation of 3D rotational angiography (3DRA) images for the planning of 

cerebral AVMs embolization interventions. Our contribution consists in the development of an innovative 

image processing pipeline, constituted by a dedicated 3D region-growing-based segmentation algorithm, 

and by a symbolic representation of the extracted vessels. Until now, few authors carried out works to 

segment and modelize the complex AVMs vascular network from 3DRA imaging. 

The segmentation step is automated and allows the extraction of the nidus and its feeding arteries and 

draining veins. The proposed algorithm presents the advantage of being automatically initialized. It’s able 

to automatically segment a given vascular tree with all its branches. Specific forms like malformed 

vessels and junctions are automatically managed. Moreover, the process depends on few parameters 

whose values adapt according to the image properties even for the detection of complex vascular 

structures. A symbolic representation of the topologically related vessels is then built from the 

segmentation result. It’s carried out in three steps: skeletonization, 2D and 3D graph-like representation 

and labelling of the vessels. This representation provides a vascular network modelization with 

hierarchical and geometrical features that brings a better comprehension of the complex vessels 

angioarchitecture. It also permits the determination, in the course of interventions planning, of the optimal 

paths for AVM embolization. 

The 3D vascular tree segmentation was performed on ten 3DRA datasets with AVMs. A qualitative 

validation of the segmentation results was independently performed by two neuroradiologists and 

consisted of a visual comparison with volume rendering and 3D MIP rendering obtained with the 

Xtravision Unit imaging station. A preliminary result for the vascular structures separation is given for a 

3DRA dataset and the symbolic representation result is validated on a synthetic vascular network.  

In conclusion a relevant vascular network modelization has been developed that constitutes a 

breakthrough in the assistance of neuroradiologists for AVM endovascular embolization planning.  
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