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Abstract

In this paper we propose a dual ascent heuristic for solving the linear relaxation
of the generalized set partitioning problem with convexity constraints, which
often models the master problem of a column generation approach. The gen-
eralized set partitioning problem contains at the same time set covering, set
packing and set partitioning constraints. The proposed dual ascent heuristic
is based on a reformulation and it uses Lagrangian relaxation and subgradient
method. It is inspired by the dual ascent procedure already proposed in litera-
ture, but it is able to deal with right hand side greater than one, together with
under and over coverage. To prove its validity, it has been applied to the min-
imum sum coloring problem, the multi-activity tour scheduling problem, and
some newly generated instances. The reported computational results show the
effectiveness of the proposed method.

Keywords: dual ascent heuristic, Lagrangian relaxation, subgradient method,
generalized set partitioning
2010 MSC: 90-02, 90C10

1. Introduction

Set partitioning, set covering and set packing problems are fundamental
models in combinatorial optimization and they are concerned with finding an
optimal family of subsets of elements from a set. They are formally presented
as follows: suppose we are given a finite set M = {1, . . . ,m}, a finite set N =
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{1, . . . , n}, and a finite collection {Mj}j∈N of subset of M . Furthermore, let
A = (aij) be a 0–1 m×n matrix, where each column j ∈ N is the characteristic
vector of Mj , i.e., aij = 1 if i ∈Mj ; let c be an n–dimensional integer vector, e
the m-vector of all one, and x ∈ {0, 1}n the vector of decision variables, where,
for each j ∈ N , xj = 1 if the subset Mj is selected in the solution. The set
covering problem is to find a minimum cost cover of M , i.e., a subset F ⊆ N
such that

⋃
j∈F Mj = M , and it can be formulated with an integer program as

follows:

min c>x

s.t. Ax ≥ e
x ∈ {0, 1}n.

The set packing problem is to find a maximum cost packing of M , i.e., a subset
F ⊆ N such that Mj ∩Mk = ∅ for all j, k ∈ N , j 6= k, and it can be formulated
with an integer program as follows:

min c>x

s.t. Ax ≤ e
x ∈ {0, 1}n.

Finally, the set partitioning problem is to find a minimum cost partition of M ,
i.e., a subset F ⊆ N which is both a cover and packing, and it can be formulated
with an integer program as follows:

min c>x

s.t. Ax = e

x ∈ {0, 1}n.

A comprehensive survey on theory and applications of these three models is
presented for example in Balas & Padberg (1976) and Vemuganti (1998). The
set partitioning, covering and packing models are strictly related. Indeed, a
set partitioning problem can be restated as a set covering problem, and there
is equivalence between set partitioning and set packing problems (see Balas
& Padberg (1976)). The three problems can be combined into a unified set
partitioning problem, which allows under and over coverage, yielding set parti-
tioning and set covering constraints respectively. This model was first proposed
by Darby-Dowman & Mitra (1985) and more recently by Rasmussen & Larsen
(2011).

The problem addressed in this paper considers the generalized version of the
unified set partitioning constraints (i.e., constraints (2)), where the right hand
side is allowed to be a positive integer vector b ∈ Zm+ . In addition, it considers
convexity constraints (i.e., constraints (3)). The problem is stated as follows:
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min c>x+ c>z + c>t (1)

s.t. Ax+ z − t = b (2)

Ex = e (3)

z, t ≥ 0 (4)

x ∈ {0, 1}n (5)

where c and c are the m-vectors of under and over coverage costs, z and t are
the m-vectors of decision variables controlling whether or not constraints (2) are
under or over covered respectively, and E ∈ {0, 1}p×n is the coefficient matrix
of the convexity constraints. Matrix E has the peculiarity that each column
has only one entry equal to 1. Model (1)-(5) is easily transformed in the unified
set partitioning problem by removing constraints (3) and by setting vector b
equal to 1. In addition, it is not difficult to see that constraints (2) catches
set partitioning, covering and packing constraints. In order to obtain set parti-
tioning constraints, we only need to set all components of vectors c and c equal
to a sufficiently large positive number, thereby preventing both under and over
coverage. In this case, if a feasible solution exists for set partitioning, the uni-
fied model will have the same optimal solution. Similarly, in order to solve set
covering (resp. packing) constraints, we need to set all components of vector c
(resp. c) equal to a large positive number, and c (resp. c) equal to 0. When set
partitioning is used as model, an exact cover may not exist or a solution with
under and over coverage could be more interesting than a set partitioning so-
lution. For instance, in the multi-activity tour scheduling problem (cf. Section
6.2), satisfying constraints (2) without allowing under and over coverage may
result impossible due to the fluctuation of the demand. The proposed method
for solving the generalized set partitioning problem with convexity constraints
(i.e., model (1)-(5)), usually encountered in column generation algorithms, is a
generalization of the dual ascent procedure (DA). The DA is based on a para-
metric reformulation and it uses Lagrangian relaxation and subgradient method.
The novelty of the proposed method consists in managing the generalized set
partitioning constraints, where the right hand side can be different from the
unit vector, and under and over coverage are allowed.

Two different applications are used to prove the validity of the proposed
method. The first one is the minimum sum coloring problem, which is a variant
of the vertex coloring problem. A review of recent algorithms to solve the min-
imum sum coloring problem can be found in Jin et al. (2017). Recently, Furini
et al. (2018) have proposed a set covering based formulation for this problem.
The second application is the multi-activity tour scheduling problem, which is a
particular problem in personnel scheduling. We refer to Ernst et al. (2004) and
Alfares (2004) for comprehensive surveys. Gérard et al. (2016) propose a for-
mulation based on the generalized set partitioning in order to take into account
under and over coverage of the demand. Since none of these two applications
consider together constraints of set partitioning, covering, packing and general-
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ized set partitioning, the approach has been used also to solve newly generated
instances.

The paper is organised as follows: the next section contains a literature
review. Section 3 shows how the generalized set partitioning problem with
convexity constraints arises in Dantzig-Wolfe decomposition. The dual ascent
heuristic and the mathematical tools used are presented in Section 4. Section 5
briefly recalls how the problem can be solved by Lagrangian relaxation. Different
applications, together with some computational results are presented in Sections
6 and 7, while Section 8 presents the conclusions.

2. Literature review

Set partitioning (SPT), covering (SC) and packing (SP) problems have been
used to model a great variety of problems in the literature, such as crew schedul-
ing, cutting stock, facilities location, graphs coloring, personnel scheduling, ve-
hicle routing, timetabling and many others. Below we report on some examples
for each type of problem. The list is limited since it is out of the scope of this
paper being exhaustive about the applications.

Set covering. Problems where every customer is served by some location, vehicle
or person often requires the set covering structure. Balas & Carrera (1996)
formulate airline crew scheduling and bus driver scheduling using a SC model.
Ceria et al. (1998a) propose a large-scale SC model for railways crew scheduling.
Muter et al. (2010) make use of SC to model vehicle routing problem with time
windows, while Malaguti et al. (2011) address the vertex coloring problem.

Set partitioning. When every customer must be served exactly once, the prob-
lem takes the set partitioning structure. The vehicle routing problem and its
variants widely use formulations based on the SPT model, originally proposed
by Balinski & Quandt (1964). Among many different papers, we cite Baldacci
et al. (2008), which address the capacitated vehicle routing problem. Desaulniers
et al. (1997) use a SPT model to solve a crew scheduling problem for Air France.
In Rezanova & Ryan (2010), a recovery problem for train driver duties is mod-
elled as SPT. Brønmo et al. (2010) use SPT for a ship scheduling problem.

Set packing. The goal of satisfying as much demand as possible, without cre-
ating conflicts, generally requires the set packing format. Rönnqvist (1995)
propose a SP model for a cutting stock problem. Mingozzi et al. (1998) used a
SP formulation for a resource constrained project scheduling problem. Rossi &
Smriglio (2001) considered a SP formulation for a ground holding problem. In
Lusby et al. (2011) is given a survey of models and methods for railway track
allocation, including formulations that rely on the SP model.

In the literature there are also papers addressing problems whose formula-
tion combines partitioning, covering and packing constraints. Below we report a
short and non-exhaustive list of examples. Boschetti & Maniezzo (2015) use an
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extended covering formulation to model a city logistics problem, where covering
constraints impose all clients to be served at least once, while set packing-like
constraints, where the right hand side can be different from one, limit the num-
ber of vehicles available in each work shift. Baldacci et al. (2016) use a set
partitioning based model for the vehicle routing problem with transhipment fa-
cilities, where clients have to be served exactly once, while facilities may be used
or not. A very similar model combining partitioning and packing constraints is
used by Baldacci et al. (2017) for the capacitated ring-star problem. Cacchiani
et al. (2014) present a set covering based formulation for the periodic vehicle
routing, where packing constraints limit the daily fleet size, while covering con-
straints define the relation between combinations and routes and ensure that
at least one combination is selected for each client. All the examples reported
above deal with routing problems, while, as far as we know, the generalized set
partitioning problem has been addressed only in personnel scheduling problem
(see Gérard et al. (2016)).

Most of the models cited above have an exponential number of variables,
since based on a Dantzig-Wolfe decomposition approach. Typically, only a small
fraction of them is needed to prove optimality and this aspect makes column
generation an interesting technique. Column generation is an iterative process
that solves a restricted master problem and one or several subproblems (see
Desrosiers & Lübbecke (2005)).

Primal or dual simplex methods are commonly used to solve the reduced
master problem. Despite all the progress in linear programming, solving these
linear programs can be a challenge. Various heuristics to obtain optimal and
near-optimal dual solutions have been proposed. Fisher & Kedia (1990) solve a
mixed set covering-partitioning model using dual heuristics that include greedy
and 3-opt heuristics and, in some cases, the subgradient method. It is applied to
the dual of the linear relaxation to provide lower bounds for a branch-and-bound
algorithm. Ceria et al. (1998b) propose a primal-dual Lagrangian heuristic for
the set covering problem. The proposed method solves simultaneously the La-
grangian relaxation of the primal and the dual problems. Then, primal and dual
multipliers are used for fixing variables and reducing the problem. An exten-
sion of the subgradient method, called volume algorithm, has been proposed by
Barahona & Anbil (2002) to produce a valid lower bound as well as an approx-
imation of the primal solution. More recently, Boschetti et al. (2008) presented
both a dual ascent procedure and an exact method for the set partitioning
problem. The dual ascent procedure makes use of parametric and Lagrangian
relaxations to produce feasible dual solutions of the linear relaxation of the set
partitioning problem. The exact method described uses the dual solution found
by the heuristic to define a reduced problem with a limited subset of variables
that is solved by an integer programming solver. The reduced problem is aug-
mented until optimality can be proven. A similar heuristic approach has been
later proposed by Boschetti & Maniezzo (2015) to solve a real-world city lo-
gistic problem, for which the reduced master problem consists of an extended
set covering problem. An exact solution framework that employs dual ascent
procedures was proposed by Baldacci et al. (2008). The method is used for
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the capacitated vehicle routing problem, but it can be tailored to solve sev-
eral variants of the vehicle routing problem, as shown in Baldacci et al. (2010).
Indeed, Baldacci et al. (2011a) address the pickup and delivery problem with
time windows, Baldacci et al. (2011b) consider the periodic routing problem,
while Baldacci et al. (2016) recently solve the vehicle routing problem with tran-
shipment facilities. In the following we explain how the dual ascent heuristic
is the extension of the dual ascent procedure, and how it is used for solving
the linear relaxation of the generalized set partitioning problem with convexity
constraints. The proposed method adopts reformulation, Lagrangian relaxation
and subgradient method used in the procedure proposed by Boschetti et al.
(2008) for the set partitioning problem. The goal is to deal with generalized set
partitioning constraints, where both under and over coverage are allowed, and
the right hand side can be different from one.

3. Problem description

Let us consider the following compact mixed-integer linear program formu-
lation representing the problem at hand that we want to solve:

(P ) min c>x̃+ c>z + c>t (6)

s.t. Ãx̃+ z − t = b (7)

Dx̃ = d (8)

x̃ ∈ {0, 1}ñ (9)

z, t ≥ 0 (10)

where c ∈ Rñ, c ∈ Rm and c ∈ Rm are the vectors of costs, Ã ∈ {0, 1}m×ñ and
D ∈ Rl×ñ are the matrices of coefficients. Ã describes the linking constraints
while D may have a block diagonal structure. Furthermore, b ∈ Zm+ and d ∈ Rl
are the right hand side vectors, x̃ ∈ {0, 1}ñ, z ∈ Rm+ and t ∈ Rm+ are the decision
variables. Costs c and c are assumed to satisfy −c ≤ c. Let X = {x̃ ∈ {0, 1}ñ :
Dx̃ = d} be the finite set defined by constraints (8) and (9). Model (6)-(10)
can be reformulated by applying the Dantzig-Wolfe (DW) decomposition for
mixed-integer programs, and the following extensive formulation is obtained:

(EP ) min
∑
j∈N

cjxj + c>z + c>t (11)

s.t.
∑
j∈N

ajxj + z − t = b (12)

∑
j∈N

xj = 1 (13)

x ∈ {0, 1}n (14)

z, t ≥ 0 (15)
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where cj = c>x̃j , aj = Ãx̃j and x̃j are the extreme points of conv(X). More-
over, if constraints (8) have a block diagonal structure, X can be decomposed.
Suppose Dk ∈ Rg×h is the k-th block of D, for k = 1, . . . , p, and dk ∈ Rg is
the corresponding block in d. We assume for simplicity that each block has
the same dimensions, hence l = pg and ñ = ph. X decomposes in p finite sets
X1, . . . , Xp, i.e., X = X1 × · · · × Xp, where × denotes the Cartesian product
and Xk = {x̃k ∈ {0, 1}h : Dkx̃k = dk}. We denote by K = {1, . . . , p} the set of
indices in the partition, Ñk = {1, . . . , ñk} the set of indices j of extreme points
x̃kj of conv(Xk), and M = {1, . . . ,m} the set of indices of constraints (7). The
DW reformulation of problem (P) takes the following form:

(EP ) min
∑
k∈K

∑
j∈Ñk

ckjx
k
j +

∑
i∈M

cizi +
∑
i∈M

citi (16)

s.t.
∑
k∈K

∑
j∈Ñk

akjx
k
j + z − t = b (17)

∑
j∈Ñk

xkj = 1 ∀k ∈ K (18)

xkj ∈ {0, 1} ∀k ∈ K, j ∈ Ñk (19)

zi, ti ≥ 0 ∀i ∈M. (20)

We assume that the decomposition results in 0–1 coefficient matrix, i.e., akj ∈
{0, 1}m. The DW decomposition results in an extended formulation with an ex-
ponential number of variables. The linear relaxation of problem (EP ), obtained
relaxing the integrality constraints on binary variables xkj , provides a lower of
the problem. Typically, only a small fraction of the variables is needed to prove
optimality of the linear relaxation, and this aspect makes column generation an
interesting technique. Column generation is a mathematical programming tech-
nique that enables to solve a wide class of large linear problems by iteratively
adding the variables of the model. It replaces the linear relaxation of (EP ) by a
restricted version, where only a subset of variables is considered. The resulting
problem is called restricted master problem (RMP), which is iteratively solved
for obtaining each time dual variables. These latter are passed to the subprob-
lems, which are solved looking for new variables with negative reduced cost to
be added to the RMP. Optimality of the linear relaxation of (EP ) is achieved as
soon as no negative reduced cost variable is found. A deeper description of the
column generation mechanism is out of the scope of this paper, but we address
the interested reader to Desrosiers & Lübbecke (2005) to have an exhaustive
insight to the subject. As a consequence, the RMP must be solved several times
quickly in order to update the dual variable passed to the subproblems. Let
us consider the linear relaxation of the RMP, made up of subsets of columns
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Nk ⊆ Ñk for all k. The restricted master problem (RMP ) appears as follows:

(RMP ) min
∑
k∈K

∑
j∈Nk

ckjx
k
j +

∑
i∈M

cizi +
∑
i∈M

citi (21)

s.t.
∑
k∈K

∑
j∈Ni

k

xkj + zi − ti = bi ∀i ∈M (22)

∑
j∈Nk

xkj = 1 ∀k ∈ K (23)

xkj ≥ 0 ∀k ∈ K, j ∈ Nk (24)

zi, ti ≥ 0 ∀i ∈M (25)

where N i
k = {j ∈ Nk : (akj )i = 1} denotes the set of columns j ∈ Nk that

cover row i ∈M . Problem (RMP ) is the linear relaxation of the generalized set
partitioning problem with convexity constraints. It consists in selecting columns
that satisfy coverage (cf. constraints (22)), minimizing the total cost given by
the columns and the under and over coverage (cf. objective function (21)).
Constraints (23) state that each row k ∈ K is covered by a convex combination
of extreme points of conv(Xk). Finally, constraints (24) and (25) define the
domain of the variables. Let us denote u = (u1, . . . , um) and v = (v1, . . . , vp)
the vectors of the dual variables associated respectively with constraints (22) and
(23). The p subproblems, solved to generate new variables, have the following
formulation: for k ∈ K

(SPk) c∗k = min c>x̃k − u>Ãx̃k − vk
s.t. x̃k ∈ Xk. (26)

The objective function evaluates the so called reduced costs. The role of the
subproblems is to provide columns that price out profitably, i.e., that have
negative reduced costs, or to prove that none of them exists and, therefore,
optimality of the linear relaxation of (EP ) is achieved.

4. A dual ascent procedure

In this section we describe a dual ascent heuristic to efficiently compute dual
solutions of problem (RMP ). The dual problem of (RMP ) has the following
formulation:

(D) max zD =
∑
i∈M

biui +
∑
k∈K

vk (27)

s.t.
∑
i∈Rk

j

ui + vk ≤ ckj ∀k ∈ K, j ∈ Nk (28)

− ci ≤ ui ≤ ci ∀i ∈M (29)
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where Rkj = {i ∈ M : (akj )i = 1} is the set of rows i covered by column
j ∈ Nk. We remark that due to the assumption that −c ≤ c, constraints (29)
do not lead to an empty solution space. The dual ascent heuristic is based on a
reformulation of (RMP ). Then, coverage and convexity constraints are relaxed
by means of penalty vectors, to derive the Lagrangian relaxation. We explain
in details these techniques in the next sections.

4.1. Reformulation

The first element of the dual ascent heuristic consists of a reformulation of
problem (RMP ). The main idea is to associate to each binary variable xkj , a
binary variable for each row i ∈M covered by the associated column. Therefore,
each variable xkj is associated with a set of |Rkj |+ 1 binary variables ŷkj , yhj for

all h ∈ Rkj , according the following expression:

xkj =
1

|Rkj |+ 1

(∑
h∈Rk

j

yhj + ŷkj

)
∀k ∈ K, j ∈ Nk. (30)

By replacing variables xkj in (RMP ) according the expression (30) , we ob-
tain the reformulation of the reduced master problem (RMP ), which is called
(RRMP ) and appears as follows:

(RRMP ) min
∑
k∈K

∑
j∈Nk

ckj
|Rkj |+ 1

(∑
h∈Rk

j

yhj + ŷkj

)
+
∑
i∈M

cizi +
∑
i∈M

citi (31)

s.t.
∑
k∈K

∑
j∈Ni

k

1

|Rkj |+ 1

(∑
h∈Rk

j

yhj + ŷkj

)
+ zi − ti = bi ∀i ∈M (32)

∑
j∈Nk

1

|Rkj |+ 1

(∑
h∈Rk

j

yhj + ŷkj

)
= 1 ∀k ∈ K (33)

zi, ti ≥ 0 ∀i ∈M (34)

yhj , ŷ
k
j ∈ {0, 1} ∀k ∈ K, j ∈ Nk, h ∈ Rkj . (35)

We will see in the next section that the use of this reformulation allows the
addition of new constraints to the Lagrangian relaxation, leading to Lagrangian
subproblems with possibly higher objective function values (cf. Corollary 1).

4.2. Lagrangian relaxation

Problem (RRMP ) is relaxed dualizing constraints (32) and (33) by means
of penalty vectors λ ∈ Rm and µ ∈ Rp respectively. However, the relaxation
considered by the dual ascent heuristic is not exactly the Lagrangian one in the
classical sense. This is due to the fact that further constraints are added. These
constraints, i.e., (37) and (38), are similar to the relaxed ones, but they state that
the coverage of each row is satisfied independently from all the other rows. Note
that constraints (37) and (38) are redundant if added to problem (RRMP ) , but
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they strength the Lagrangian subproblem (cf. Corollary 1, inequality (58)). Let
us define the Lagrangian costs ci(λ) := ci−λi and ci(λ) := ci+λi. Furthermore,
let us define the Lagrangian costs ckj (λ, µ) according the following:

ckj (λ, µ) :=
ckj −

∑
i∈Rk

j
λi − µk

|Rj |+ 1
.

The Lagrangian subproblem (LRP (λ, µ)) has the following formulation:

zLRP (λ, µ) = min
∑
i∈M

(∑
k∈K

∑
j∈Ni

k

ckj (λ, µ)yij+ci(λ)zi + ci(λ)ti + biλi

)
+

+
∑
k∈K

(∑
j∈Nk

ckj (λ, µ)ŷkj + µk

)
(36)

s.t.
∑
k∈K

∑
j∈Ni

k

yij + zi − ti = bi ∀i ∈M (37)

∑
j∈Nk

ŷkj = 1 ∀k ∈ K (38)

zi, ti ≥ 0 ∀i ∈M, (39)

yij , ŷ
k
j ∈ {0, 1} ∀k ∈ K, j ∈ Nk, i ∈ Rkj . (40)

Note that the sum
∑
i∈M

∑
k∈K

∑
j∈Ni

k
yij is obtained by rearranging the indices

of
∑
k∈K

∑
j∈Nk

∑
h∈Rk

j
yhj . The addition of constraints (37) and (38) does not

prevent problem (LRP (λ, µ)) from being decomposable into m+p subproblems,
one for each row i ∈M , and one for each row k ∈ K. In the following, we show
how an optimal solution of each subproblem i and k can be defined. These
solutions are then used to determine an optimal solution of (LRP (λ, µ)). We
first consider an index k ∈ K and the corresponding subproblem (LRP k(λ, µ)):

zkLRP (λ, µ) = min
∑
j∈Nk

ckj (λ, µ)ŷkj + µk (41)

s.t.
∑
j∈Nk

ŷkj = 1 (42)

ŷkj ∈ {0, 1} ∀j ∈ Nk. (43)

Let jk ∈ N be the column covering row k such that jk = arg minj∈Nk
ckj (λ, µ).

An optimal solution of problem (LRP k(λ, µ)) can be easily obtained setting
ŷkjk = 1 and ŷkj = 0 for all j ∈ Nk \ {jk}. The optimal objective function value
results

zkLRP (λ, µ) = ckjk(λ, µ) + µk. (44)

We now consider the subproblems (LRP i(λ, µ)) concerning index i ∈M , which
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has the following formulation:

ziLRP (λ, µ) = min
∑
k∈K

∑
j∈Ni

k

ckj (λ, µ)yij + ci(λ)zi + ci(λ)ti + biλi (45)

s.t.
∑
k∈K

∑
j∈Ni

k

yij + zi − ti = bi (46)

zi, ti ≥ 0 (47)

yij ∈ {0, 1} ∀k ∈ K, j ∈ N i
k. (48)

In order to find an optimal solution of problem (LRP i(λ, µ)), we consider the
Lagrangian costs ckj (λ, µ) in ascending order (ck1j1 (λ, µ) ≤ ck2j2 (λ, µ) ≤ . . . ) and
we compare them with ci(λ) and −ci(λ). The following three different cases can
be identified:

C1 : −ci(λ) ≤ c
kbi
jbi

(λ, µ) ≤ ci(λ), an optimal solution is given by setting

yij = 1 for all indices j = j1, . . . , jbi , while all under and over coverage
variables are set to 0:

zi = 0, ti = 0, yij =

{
1, j = j1, . . . , jbi ,

0, otherwise.

The optimal objective function value results

ziLRP (λ, µ) =

bi∑
n=1

cknjn (λ, µ) + biλi. (49)

C2 : ck`j` (λ, µ) ≤ ci(λ) < c
kbi
jbi

(λ, µ), where ` is the maximal index satisfying

the inequality, an optimal solution is given by setting yij = 1 for all indices
j = j1, . . . , j`. Furthermore we set under coverage variable zi = bi − `,
while over coverage variable is set to 0:

zi = bi − `, ti = 0, yij =

{
1, j = j1, . . . , j`,

0, otherwise.

The optimal objective function value results

ziLRP (λ, µ) =
∑̀
n=1

cknjn (λ, µ) + ci(λ)(bi − `) + biλi. (50)

C3 : c
kbi
jbi

(λ, µ) < ck`j` (λ, µ) ≤ −ci(λ), where ` is the maximal index satisfying

the inequality, an optimal solution is given by setting yij = 1 for all indices
j = j1, . . . , j`. Furthermore we set over coverage variable ti = `− bi, while
under coverage variable is set to 0:
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zi = 0, ti = `− bi, yij =

{
1, j = j1, . . . , j`,

0, otherwise.

The optimal objective function value results

ziLRP (λ, µ) =
∑̀
n=1

cknjn (λ, µ) + ci(λ)(`− bi) + biλi. (51)

We remark that we do not need to assume that each row i ∈M contains at least
bi elements equal to 1, i.e., bi ≤

∑
k∈K |N i

k|. Indeed, if this inequality does not

hold for a row ĩ, the solution of the corresponding subproblem (LRP ĩ(λ, µ)) falls
in C2. Optimal solutions of subproblems (LRP i(λ, µ)) and (LRP k(λ, µ)), for
i ∈M and k ∈ K, allow us to define an optimal solution of problem (LRP (λ, µ)),
with value

zLRP (λ, µ) =
∑
i∈M

ziLRP (λ, µ) +
∑
k∈K

zkLRP (λ, µ). (52)

This solution will be used to solve the Lagrangian dual problem with the subgra-
dient method. The following theorem shows how a dual feasible solution (u, v)
of cost zD ≥ zLRP (λ, µ) can be obtained from the Lagrangian costs of problem
(LRP (λ, µ)). This theorem and the following corollary (cf. Corollary 1) is the
extension of similar statements from Baldacci et al. (2008) and Boschetti et al.
(2008).

Theorem 1. Let us consider two vectors λ ∈ Rm and µ ∈ Rp. A feasible dual
solution (u, v) of the dual problem (D) is given by the following expression:

ui = ũi + λi, ∀i ∈M,

vk = ṽk + µk, ∀k ∈ K.
(53)

where
ũi = max

{
−ci(λ),min{ckbijbi

(λ, µ), ci(λ)}
}
,

and
ṽk = ckjk(λ, µ)− max

j∈Nk

{∑
i∈Rk

j

(ũi − ckj (λ, µ))+
}
.

Furthermore, the cost zD of this dual solution is greater than or equal to zLRP (λ, µ).

Proof. We need to prove that (u, v), defined as in (53), is a feasible solution
of problem (D). We can easily see that u satisfies the bound constraints (29).
Indeed,

−ci = −ci(λ) + λi ≤ ũi + λi = ui

and
ui = ũi + λi ≤ ci(λ) + λi ≤ ci.
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We now consider constraints (28): for each k ∈ K and j ∈ Nk,∑
i∈Rk

j

ui + vk =
∑
i∈Rk

j

(ũi + λi) + ṽk + µk

=
∑
i∈Rk

j

ũi + ckjk(λ, µ)− max
j′∈Nk

{∑
i∈Rk

j′

(ũi − ckj′(λ, µ))+
}

+
∑
i∈Rk

j

λi + µk

≤
∑
i∈Rk

j

ũi + ckjk(λ, µ)−
∑
i∈Rk

j

(ũi − ckj (λ, µ))+ +
∑
i∈Rk

j

λi + µk

≤
∑
i∈Rk

j

ũi + ckjk(λ, µ)−
∑
i∈Rk

j

(ũi − ckj (λ, µ)) +
∑
i∈Rk

j

λi + µk

=
∑
i∈Rk

j

ũi + ckjk(λ, µ)−
∑
i∈Rk

j

ũi +
∑
i∈Rk

j

ckj (λ, µ) +
∑
i∈Rk

j

λi + µk

≤ ckj (λ, µ) + |Rkj |ckj (λ, µ) +
∑
i∈Rk

j

λi + µk

= (|Rkj |+ 1)ckj (λ, µ) +
∑
i∈Rk

j

λi + µk = ckj (λ, µ)

where the last inequality holds due to the fact that jk = arg minj∈Nk
ckj (λ, µ),

hence ckjk(λ, µ) ≤ ckj (λ, µ). We now show that the cost zD of the dual solution
defined with vectors λ and µ is greater than or equal to the Lagrangian cost
zLRP (λ, µ):

zD =
∑
i∈M

biui +
∑
k∈K

vk

=
∑
i∈M

bi(ũi + λi) +
∑
k∈K

(
ckjk(λ, µ)− max

j∈Nk

{∑
i∈Rk

j

(ũi − ckj (λ, µ))+
}

+ µk

)
≥
∑
i∈M

bi(ũi + λi) +
∑
k∈K

(ckjk(λ, µ) + µk)−
∑
k∈K

∑
j∈Nk

∑
i∈Rk

j

(ũi − ckj (λ, µ))+

=
∑
i∈M

(
biũi −

∑
k∈K

∑
j∈Ni

k

(ũi − ckj (λ, µ))+ + biλi

)
+
∑
k∈K

(ckjk(λ, µ) + µk).

Let us first introduce ziD and zkD defined as ziD := (biũi −
∑
k∈K

∑
j∈Ni

k
(ũi −

ckj (λ, µ))+ + biλi) and zkD := (ckjk(λ, µ) + µk). We show that ziD = ziLRP (λ, µ)

and zkD = zkLRP (λ, µ), for all indices i ∈M and k ∈ K.
It is easy to see from (44) that zkD = zkLRP (λ, µ) for all k ∈ K. We now show
that ziD = ziLRP (λ, µ) for all i ∈M . We have three different cases, one for each
solution defined in C1, C2 or C3.

If the solution is the one defined in case C1, we have that ũi = c
kbi
jbi

(λ, µ), and
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the following equalities hold:

ziD = bic
kbi
jbi

(λ, µ)−
∑
k∈K

∑
j∈Ni

k

(c
kbi
jbi

(λ, µ)− ckj (λ, µ))+ + biλi

= bic
kbi
jbi

(λ, µ)−
bi∑
n=1

(c
kbi
jbi

(λ, µ)− cknjn (λ, µ)) + biλi

=

bi∑
n=1

cknjn (λ, µ) + biλi = ziLRP (λ, µ)

where the second equality comes from the fact that c
kbi
jbi

(λ, µ) − cknjn (λ, µ) ≥ 0

only for n = 1, . . . , bi, while the last equality comes from (49). If the solution is
the one defined in case C2, we have that ũi = ci(λ), and the following equalities
hold:

ziD = bici(λ)−
∑
k∈K

∑
j∈Ni

k

(ci(λ)− ckj (λ, µ))+ + biλi

= bici(λ)−
∑̀
n=1

(ci(λ)− cknjn (λ, µ)) + biλi

=
∑̀
n=1

cknjn (λ, µ) + ci(λ)(bi − `) + biλi = ziLRP (λ, µ)

where the second equality comes from the fact that c
kbi
jbi

(λ, µ) − cknjn (λ, µ) ≥ 0

only for n = 1, . . . , `, while the last equality comes from (50). If the solution is
the one defined in C3, we have that ũi = −ci(λ), and the following equalities
hold:

ziD = bici(λ)−
∑
k∈K

∑
j∈Ni

k

(ci(λ)− ckj (λ, µ))+ + biλi

= −bici(λ)−
∑̀
n=1

(−ci(λ)− cknjn (λ, µ)) + biλi

=
∑̀
n=1

cknjn (λ, µ) + ci(λ)(`− bi) + biλi = ziLRP (λ, µ)

where the second equality comes from the fact that c
kbi
jbi

(λ, µ) − cknjn (λ, µ) ≥ 0

only for n = 1, . . . , `, while the last equality comes from (51). We have shown
that ziD = ziLRP (λ, µ) and zkD = zkLRP (λ, µ), for all indices i ∈ M and k ∈ K.
From equation (52) we can conclude that zD ≥ zLRP (λ, µ).

The following Corollary states that maximizing the function zLRP (λ, µ) with
respect to λ and µ, we achieve the optimal dual value z∗D.
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Corollary 1. The following equality holds:

max
λ,µ

zLRP (λ, µ) = z∗D. (54)

Proof. Let us consider the Lagrangian relaxation of problem (RMP ), dualizing
constraints (22) and (23) by means of penalty vectors λ ∈ Rm and µ ∈ Rp
respectively. The resulting Lagrangian subproblem is denoted with (LR(λ, µ)):

zLR(λ, µ) = min
∑
k∈K

∑
j∈Nk

ĉkj (λ, µ)xkj +
∑
i∈M

(
ci(λ)zi + ci(λ)ti+biλi

)
+
∑
k∈K

µk

(55)

s.t. zi, ti ≥ 0 ∀i ∈M (56)

0 ≤ xj ≤ 1 ∀j ∈ N (57)

where ĉkj (λ, µ) := ckj −
∑
i∈Rk

j
λi − µk, ci(λ) := ci − λi and ci(λ) := ci + λi are

the Lagrangian costs. The goal is to show that the following inequality

zLR(λ, µ) ≤ zLRP (λ, µ) (58)

holds for each vectors λ and µ. It is easy to see that zLR(λ, µ) = −∞ if ci(λ) or
ci(λ) is negative for some index i. Since zLRP (λ, µ) is always finite, inequality
(58) holds. If both ci(λ) and ci(λ) are non-negative, let us define the index set
N ′k = {j ∈ Nk : ĉkj (λ, µ) < 0} for each k ∈ K, then we have

zLR(λ, µ) =
∑
j∈N ′

k

ĉkj (λ, µ) +
∑
i∈M

biλi +
∑
k∈K

µk.

Using the solution y of the problem (LRP (λ, µ)), we define the variable xkj
according to expression (30). Finally, let us define Jk = {j ∈ Nk : xkj > 0} and

Ñk = {j ∈ Jk : ĉkj (λ, µ) < 0}. Then we have:

zLRP (λ, µ) =
∑
k∈K

∑
j∈Jk

ĉkj (λ, µ)xkj +
∑
i∈M

(
ci(λ)zi + ci(λ)ti + biλi

)
+
∑
k∈K

µk

≥
∑
k∈K

∑
j∈Ñk

ĉkj (λ, µ)xkj +
∑
i∈M

biλi +
∑
k∈K

µk

≥
∑
k∈K

∑
j∈N ′

k

ĉkj (λ, µ) +
∑
i∈M

biλi +
∑
k∈K

µk = zLR(λ, µ).

The first inequality comes from the fact that ĉkj (λ, µ)xkj ≥ 0 for each j ∈ Jk \Ñk,

ci(λ) ≥ 0, and ci(λ) ≥ 0. The second inequality comes from the fact that xkj ≤ 1

and Ñk ⊆ N ′k. Since the Lagrangian relaxation LR(λ, µ) has the integrality
property, we have that the Lagrangian dual is equal to zP . Therefore
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max
λ,µ

zLR(λ, µ) = max
λ,µ

zLRP (λ, µ) = z∗D.

From Corollary 1 it follows that we need to solve the Lagrangian dual problem
maxλ,µ zLRP (λ, µ) in order to find an optimal dual solution.

4.3. A column generation method based on dual ascent

In this section we describe a column generation method to solve the linear
relaxation of problem (EP ). This method differs from classical column gener-
ation since it solves the reduced master problem (RMP ) by means of a dual
ascent heuristic, instead of using the simplex algorithm (similar to Baldacci et al.
(2016) and Baldacci et al. (2017)). It can be eventually combined with simplex
LP solver to find the optimal dual variables of problem (RMP ) and continue
with the classical column generation. The proposed method is described as
follows. The parameters have been set after preliminary tests.

Step 1. Initialization. Initialize the reduced master problem (RMP ) with a set
of columns N containing a feasible solution. Furthermore, initialize the
penalty vectors (λ, µ) := (0, 0), the iteration counter i := 1, imax := 10000,
imaxDA := 10, β := 2, and βmin := 0.0001.

Step 2. Dual ascent heuristic to find a dual feasible solution (u, v) of (RMP ). Set
z̄LRP (λ, µ) := −∞, iDA := 1. Perform the following steps:

Step 2a. Solve (LRP (λ, µ)). Using the current multipliers λ and µ, solve all
subproblems (41)-(43) and (45)-(48) and get an optimal solution of
(LRP (λ, µ)). If zLRP (λ, µ) > z̄LRP (λ, µ), then update z̄LRP (λ, µ) :=
zLRP (λ, µ), update the dual solution (u, v) using expression (53), and
set β := min{2, 1.2 · β}.

Step 2b. Update the multipliers (λ, µ) using the subgradients vectors (gi)i∈M
and (gk)k∈K defined as gi = bi −

∑
k∈K

∑
j∈Ni

k
xkj − zi + ti and

gk = 1−
∑
j∈Nk

xkj , where xkj is defined using expression (30) and the
solution y of (LRP (λ, µ)). Modify the multipliers λi := λi +αgi and
µk := µk+αgk, where α := β(0.1·zLRP (λ, µ))/(

∑
i∈M g2i +

∑
k∈K g

2
k).

Step 2c. Set iDA := iDA + 1. If after 2 consecutive iterations, z̄LRP (λ, µ) has
not improved, halve β (i.e., β = 0.5 · β). If iDA = imaxDA or β < βmin,
stop. Otherwise, return to Step 2a.

Step 3. Generate new columns. Generate, for each subproblem (26) with k ∈ K,
a column with minimum reduced cost c∗k. Define as N∗ the set of columns
from all subproblems such that the minimum reduced costs c∗k < −0.1.

Step 4. Stopping criteria. If N∗ = ∅ or i = imax, stop. Otherwise, update the set
of columns N = N ∪N∗, set i := i+ 1 and return to Step 2.
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We remark that z̄LRP (λ, µ) is a lower bound valid for problem (RMP ), but it
is not a valid for the complete master problem. A valid lower bound is given by
the Lagrangian dual bound (see Desrosiers & Lübbecke (2005)):∑

i∈M
biui +

∑
k∈K

(c∗k + vk) ≤ z∗ (59)

where we recall that c∗k is the minimum reduced costs obtained by solving the
subproblem (SPk) during one iteration of column generation, and z∗ is the
optimal objective function value of the master problem.

5. Classical Lagrangian relaxation

The problem (P) can be also solved by applying the Lagrangian relaxation
to the compact formulation, by dualizing exactly the coverage constraints (7),
which are the linking constraints in the Dantzig-Wolfe decomposition. The re-
sulting subproblems are identical, and the columns generated by the Lagrangian
subproblems can be added to the reduced master problem (Huisman et al.
(2005)). The Lagrangian relaxation has the following formulation:

(CLR(λ)) zCLR(λ) = min c>x̃+ c>z + c>t+ λ>(b− Ãx̃− z + t)

s.t. x̃ ∈ X
z, t ≥ 0

where X = {x̃ ∈ {0, 1}ñ : Dx̃ = d} is the finite set defined by constraints (8)
and (9) of problem (P). We remark that problem (CLR(λ)) is unbounded if
the Lagrangian cost vector c− λ or c+ λ has at least one negative component.
Therefore, we assume that both vectors are non-negative. As consequence, in
the optimal solution, vectors z and t are equal to 0. The resulting Lagrangian
problem decomposes into p subproblems, one for each k ∈ K, due to the as-
sumption that X is decomposable:

(CLRk(λ)) zkCLR(λ) = min c>x̃k − λ>Ãx̃k (60)

s.t. x̃k ∈ Xk.

We can see that the subproblem (26) of the Dantzig-Wolfe decomposition and
the subproblem (60) of the Lagrangian relaxation are identical, except for the
constant term vk in the objective function. An optimal solution of the La-
grangian dual problem z̄CLR = maxλ zCLR(λ) gives the maximum lower bound.

6. Applications

In this paragraph we show two problems whose Dantzig-Wolfe decompo-
sition leads to a particular case of (RMP ). The first is the minimum sum
coloring problem that consists in minimizing the sum of the cardinality of sub-
sets of vertices receiving the same color, weighted with the index of the color,
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while ensuring that adjacent vertices receive different colors. The second is the
multi-activity tour scheduling problem, which consists in constructing feasible
planning to be assigned to company’s employees. The goal is to satisfy workload
requirements and minimize under and over coverage. These two applications do
not incorporate a combination of set partitioning, set covering, set packing and
generalized set partitioning constraints. For this reason, we generated further
instances involving all four types of constraints. We will refer to these instances
as the generated instances and they will be presented in Section 7.1.

6.1. Minimum sum coloring

In the minimum sum coloring problem, we are given an undirected graph
G = (M,E) with |M | = m vertices and |E| edges. A coloring C of G is a
partition of M into p stable sets C = {M1, . . . ,Mp}, where all the vertices
in Mk are colored with the same color k. The sum coloring of C is given
by the sum

∑
k=1,...,p(k · |Mk|). The minimum sum coloring problem consists

of finding a coloring C that minimizes its sum coloring. Furini et al. (2018)
introduce directly an extended formulation for this problem, without using DW
decomposition. The model uses binary variables xkj associated with each stable

set j ∈ Nk and each color k ∈ K. When variable xkj takes value 1, it means that
all vertices in the stable set j are colored with color k. The problem appears as
follows:

min
∑
k∈K

∑
j∈Nk

ckjx
k
j (61)

s.t.
∑
k∈K

∑
j∈Ni

k

xkj ≥ 1 ∀i ∈M (62)

∑
j∈Nk

xkj ≤ 1 ∀k ∈ K (63)

xkj ∈ {0, 1} ∀k ∈ K, j ∈ Nk (64)

where Nk contains the stable sets colored with color k, N i
k ⊆ Nk contains the

stable sets covering vertex i ∈ M , and ckj = k · |Mk
j | is the cost of stable set j

colored with color k. Constraints (62) impose each vertex i to be contained in
at least one stable set, while constraints (63) impose each color k to be assigned
to at most one stable set. The objective function (61) aims at finding a solution
with the lowest sum coloring. We remark that constraints (63) can be rewritten
using equalities, if we consider the empty stable set for each color k. The
linear relaxation of problem (61)-(64) is obtained by replacing the integrality
constraints (64) with the following relaxed constraints:

xkj ≥ 0 ∀k ∈ K, j ∈ Nk. (65)

The resulting problem is a particular case of (RMP ). Indeed, it is sufficient to
set all components of c equal to zero, and all components of c equal to a sufficient
large positive number. The reduced master problem (61)-(65) combines stable
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sets in order to cover all vertices, while the subproblems defined as follows, one
for each color k ∈ K, generate new stable sets:

min
∑
i∈M

k x̃ki −
∑
i∈M

ui x̃
k
i − vk (66)

s.t. x̃ki + x̃ki′ ≤ 1 ∀(i, i′) ∈ E (67)

x̃ki ∈ {0, 1} ∀i ∈M (68)

where u ∈ Rm denotes the dual variables associated with coverage constraints
(62), while v ∈ Rp denotes the dual variables associated with constraints (63).
By changing the sign of all coefficients and the sense of the objective function,
each subproblem becomes a maximum weight stable set problem on graph G,
where the weight of each vertex i ∈M is defined as ui − k.

6.2. Multi-activity tour scheduling

Personnel scheduling problems consist of assigning employees to activities
over a given time horizon, taking into account organizational, legal and so-
cial constraints. One of the first classification methods for personnel scheduling
problems was proposed by Baker (1976). According to Baker, three main groups
can be distinguished: shift scheduling, days-off scheduling and tour scheduling.
In shift scheduling one has to schedule the employees’ working periods dur-
ing their working days. Days-off scheduling concerns the determination of rest
days. The third case is a combination of the shift scheduling and the days-off
scheduling problem. When more than one work activity has to be scheduled,
the problem becomes a multi-activity tour scheduling. In this problem, we need
not only to define the working days and the working periods, but also to specify
the allocation of work activities. The extended formulation appears as follows:

min
∑
i∈M

cizi +
∑
i∈M

citi (69)

s.t.
∑
k∈K

∑
j∈Ni

k

xkj + zi − ti = bi ∀i ∈M (70)

∑
j∈Nk

xkj = 1 ∀k ∈ K (71)

xkj ∈ {0, 1} ∀k ∈ K, j ∈ Nk (72)

zi, ti ≥ 0 ∀i ∈M (73)

where Nk contains feasible schedules of employee k ∈ K and N i
k ⊆ Nk is the set

of schedules in which employee k works during period i ∈M . Problem (69)-(73)
assigns a feasible schedule to each employee (cf. constraints (71)), in order to
cover the demand (cf. constraints (70)) while minimizing the total costs given
by under and over coverage (cf. objective function (69)). The linear relaxation
of problem (69)-(73) is obtained by replacing the integrality constraints (72)
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with the following relaxed constraints:

xkj ≥ 0 ∀k ∈ K, j ∈ Nk (74)

The resulting problem is a particular case of (RMP ), where the cost vector c
has all components equal to 0. The subproblems, one for each employee k ∈ K,
generate new schedules:

min −
∑
i∈M

ui x̃
k
i − vk (75)

s.t. x̃k ∈ Xk (76)

where Xk is the set of feasible schedules for employee k ∈ K, and variables
u ∈ Rm and v ∈ Rp denote the dual variables associated with constraints
(70) and (71), respectively. The subproblems take into account skills and legal
constraints defined by contract’s regulations, such as consecutive working hours,
breaks, daily working hours and amplitude of the working day.

7. Computational results

We present some computational results to show the performance of the dual
ascent heuristic, by solving the linear relaxations of the problems presented
above using column generation. The LP solver used for the reduced master
problem is CPLEX 12.7. Then we combine it with the dual ascent heuristic
previously presented, which is used during the first iterations of column genera-
tion. To be more precise, the dual ascent is used first and it stops as soon as the
minimum reduced cost of all subproblems is greater than or equal to −0.1. The
goal is to exploit the rapid decrease of the lower bound gap of the dual ascent,
in order to speed up the convergence of the column generation. Finally, anal-
ogously to the dual ascent, we combine CPLEX with the classical Lagrangian
relaxation. Experiments on applications 6.1 and 6.2 have been computed on a
Intel Xeon E5-2650 v3 (2,3GHz), 64 GB of RAM (only one core is used), while
an Intel Core i7-3770 CPU at 3,40GHz has been used for the experiments on
the generated instances presented above.

7.1. Instances

The instances that has been used for testing the proposed approach are
presented in the following paragraph. In particular, for the two applications, it
was easy and possible to identify them. Moreover, we describe and report the
algorithm used to generate the new complete instances.

Minimum sum coloring instances. We perform computational experiments on
43 benchmark instances, which are frequently used to evaluate the performance
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of minimum sum coloring algorithms (Jin et al. (2017)). These instances come
from the COLOR 2002-2004 competitions1.

Multi-activity tour scheduling instances. The multi-activity tour scheduling in-
stances have been generated from real ones, given by the company Horizontal
Software. The time horizon is fixed to one day and slots have time units of 1
hour or 30 minutes, resulting in instances with 24 and 48 slots. The instances
consider 7 different activities, and 33 or 66 employees. They differ also in work-
load requirements, which are inspired by realistic demand coming from quick
service restaurants. We consider 6 workload types named in alphabetic order,
from A to F, with increasing demand. Instances are labeled with the format
S E W, where S, E and W represent the number of slots, the number of employees
and the workload type respectively.

Generated instances. We aim to further prove the validity of our approach by
doing supplementary tests on more complete and diverse instances, involving
set partitioning, covering, packing and generalized set partitioning constraints.
They have been generated combining one instance from the covering data set
({rail507, rail516, rail582}), with one instance from the partitioning data set
({sppaa01, sppaa02, sppaa03, sppaa05, sppaa06, sppus03, sppus04}). These data
sets are available at the Beasley’s OR-Library2. More in details, we proceeded
as follows:

• we consider one instance I1 (m1 × n1) from the set covering data set and
one I2 (m2 × n2) from the set partitioning data set;

• for each instance I1 and I2, we add a number of convexity constraints
corresponding to 22% of the total number of rows. Therefore k1 = 0.22 ·
m1, k2 = 0.22·m2 and the total number of convexity rows is |K| = k1+k2;

• for each instance I1 and I2, each column has been duplicated respectively
k1 and k2 times, and assigned to the different convexity rows;

• half randomly chosen rowsM1
1 from the set covering instance I1 are defined

as generalized set partitioning constraints, while the other half M2
1 is kept

as covering constraints. Analogously, half randomly chosen rows M1
2 from

the set partitioning instance I2 are defined as packing constraints while
the other half M2

2 is kept as partitioning constraints;

• all columns’ costs cj are equal either to 1 or to 2. The under and over
assignment costs for the generalized set partitioning constraints are equal
to 10. This means that ci = ci = 10 for all i ∈ M1

1 . All other under
and over assignment costs are defined equal to 0 or to a large positive
number M (given by the sum of all columns’ costs) depending whether
they correspond to a partitioning, covering or packing constraints.

1http://mat.gsia.cmu.edu/COLOR02/
2http://people.brunel.ac.uk/~mastjjb/jeb/info.html

21



7.2. Algorithmic details

We provide here some details on the methods used to solve the subprob-
lems, together with the techniques employed to speed up the convergence of the
column generation.

Minimum sum coloring problem. Subproblems (66)-(68) are modeled as max-
imum weight stable set problems and are solved using the open-source imple-
mentation3 of the branch-and-bound algorithm described in Held et al. (2012).

At each iteration of column generation, each subproblem is solved and one
column, for each of them, with minimum reduced cost is added to the reduced
master problem. In order to speed up the convergence of the column generation
and to avoid solving subproblems that cannot generate negative reduced cost
columns, we apply a technique proposed by Furini et al. (2018). As soon as no
negative reduced cost stable set is found for a color k such that the correspond-
ing constraint is not active (< 1), then no subproblem h > k is solved, due
to the fact that no color h > k can generate stable sets with negative reduced
costs. This implies that an optimal primal solution of problem (RMP ) needs
to be available. Therefore, this technique cannot be applied when the reduced
master problem is solved with the dual ascent, since no optimal primal solution
is produced. We apply a different procedure: as soon as no negative reduced
cost stable set is found for color k with corresponding dual variable satisfying
vk = 0, we do not solve any subproblem for color h > k with vh = 0.

Multi-activity tour scheduling problem. Subproblems (75)-(76) are modeled as
a resource-constrained shortest path problems in a directed acyclic graphs. For
each slot, break and activities nodes are considered. The subproblems are solved
using a labeling algorithm which starts with the trivial path containing only the
source node, and extends paths one-by-one into all feasible directions. Intensifi-
cation and diversification techniques have been used to speed up the convergence
of the column generation. The first adds several negative reduced cost columns
instead of adding only the one with the best reduced cost, while the second adds
diverse and complementary columns at each iteration. These techniques are ap-
plied whenever the subproblems are solved, independently from which method
is used to solve the reduced master problem.

Generated instances. Concerning the generated instances, we initialize the re-
duced master problem selecting only a subset of the whole set of columns. In
order to assure that a feasible initial solutions exists, artificial columns with
high costs have been added. The subproblems consists simply in pricing out
the remaining columns and evaluate their reduced cost. At each iteration of
column generation, one column with minimum reduced cost is selected for each
subproblem. Then, the columns with negative reduced cost are added to the
reduced master problem.

3https://github.com/heldstephan/exactcolors
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7.3. Discussion of the results
In the following section we show the computational results performed on

the different instances of generalized set partitioning problem with convexity
constraint presented in Section 7.1. A lower bound is obtained by using the
classical Lagrangian relaxation, marked with CLR and presented in Section
5. The same bound is evaluated by solving with column generation the linear
relaxation of the extended formulation (EP), marked with SMOOTH and DA. In
particular, with SMOOTH we mean that the optimal dual variables of (RMP )
are obtained with the LP solver CPLEX, and new columns are generated using
smoothed dual variables. Indeed, it is well known that the use of simplex method
in column generation causes several drawbacks, such as the dual oscillations
and the tailing-off effect (Vanderbeck (2005)). Several stabilization techniques
have been proposed to deal with these difficulties. Among them, we can find
smoothing techniques, in which dual solutions used for pricing are corrected
and combined with previous duals. Every time the reduced master problem is
solved using CPLEX, we apply the smoothing technique with a self adjusting
parameter, presented in the recent work of Pessoa et al. (2017). With DA we
mean that the dual variables of (RMP ), used to generate new columns, are
obtained with the dual ascent heuristic proposed. In order to prove optimality,
as soon as the dual ascent heuristic does not find columns with reduced costs
lower than −0.1, the optimal dual variables are evaluated with CPLEX, and the
smoothing technique previously mentioned is applied.

Tables 1, 3 and 4 compare the three methods DA, SMOOTH and CLR on
the minimum sum coloring, the multi-activity tour scheduling and the generated
instances respectively. Concerning the results on the minimum sum coloring in
Table 1, we report the name of the instance (name), the number of vertices
(n) the number of edges (m), the graph density (d = 2m/n(n − 1)), and the
lower bound (LB) found by all the three methods. In addition, we report the
number of iterations (iter) of column generation, the number of final columns in
the reduced master problem (cols) and the total computational time (time) in
seconds, for DA, SMOOTH and CLR. Instances unsolved within one hour time
limit are marked with “tl” and “-”. For each instance, bold values indicate the
fastest method. In addition, the last two rows of the table shows the average
values and the shifted geometric mean (SGM ), which has the advantage to
neither be compromised by very large nor by very small outliers. We recall that
the shifted geometric mean of t1, . . . , tn is defined by (

∏n
i=1(ti + s))1/n − s. We

use a shift factors of s = 10 for the iterations and the time, and s = 100 for
the number of columns. The results on the minimum sum coloring reported
in Table 1, show that CLR fails in solving 15 instances, while SMOOTH fails
in two of them. Furthermore, bold time values indicate that 30 instances are
solved using DA in lower computational time compared to SMOOTH and CLR.
Finally, the average and shifted geometric mean values on the last two rows,
underline that DA needs fewer iterations and computational time to converge.
It also generates almost one third of the columns generated by SMOOTH.

Table 2 reports the instances of sum coloring for which we compute a lower
bound that improves the best lower bound known in the literature. The table
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Instances DA SMOOTH CLR

name n m d LB iter cols time(s) iter cols time(s) iter cols time(s)

2-Insertions 3 37 72 0.11 62 87 273 0.1 102 828 0.2 308 936 0.3
3-Insertions 3 56 110 0.07 92 151 487 0.8 205 2022 1.1 323 996 1.3
anna 138 493 0.05 276 929 3953 70.7 989 10584 103.4 623 5040 35.5
david 87 406 0.11 237 169 1200 2.9 194 2844 3.6 407 3655 7.3
DSJC125.1 125 736 0.09 314 201 1100 3211.6 320 5601 3390.7 346 1773 2976.4
DSJC125.5 125 3891 0.50 978 140 2391 55.0 166 7143 42.6 471 7258 151.7
DSJC125.9 125 6961 0.90 2500 143 5627 8.5 136 9242 9.0 631 22260 35.6
DSJC250.5 250 15668 0.50 3105 225 6690 2827.9 362 29301 2974.0 - - tl
DSJC250.9 250 27897 0.90 8235 301 18114 217.5 304 38305 265.2 - - tl
DSJR500.1c 500 121275 0.97 16234 273 31349 466.5 399 82380 877.7 - - tl
games120 120 638 0.09 443 104 1087 1434.7 142 4529 972.3 - - tl
huck 74 301 0.11 243 78 663 0.7 111 1836 0.9 504 4281 3.8
jean 80 254 0.08 217 120 868 0.9 192 2158 2.0 428 3411 4.1
miles1000 128 3216 0.40 1666 81 2808 7.8 103 5574 10.0 562 18002 81.0
miles1500 128 5198 0.64 3354 88 4764 4.8 60 5916 5.9 797 38954 63.9
miles250 128 387 0.05 325 258 1950 352.4 336 5700 242.3 353 2566 554.7
miles500 128 1170 0.14 705 103 1745 41.3 143 4635 34.9 455 7590 213.4
miles750 128 2113 0.26 1173 82 2381 6.9 107 4922 9.1 502 12165 73.8
mug100 1 100 166 0.03 202 167 859 1735.4 244 4036 2353.2 - - tl
mug100 25 100 166 0.03 202 163 761 2971.9 254 4015 1716.5 - - tl
mug88 1 88 146 0.04 178 130 628 308.9 206 3179 389.6 335 1055 1494.2
mug88 25 88 146 0.04 178 156 964 151.1 197 3257 199.7 324 1055 632.1
mulsol.i.1 197 3925 0.20 1957 281 7433 46.9 2140 23950 669.9 - - tl
mulsol.i.2 188 3885 0.22 1191 2708 9417 910.0 1832 24879 908.1 - - tl
mulsol.i.3 184 3916 0.23 1187 946 5806 185.4 1667 23425 725.5 - - tl
mulsol.i.4 185 3946 0.23 1189 342 4436 45.3 1505 23186 625.1 - - tl
mulsol.i.5 186 3973 0.23 1160 1839 9367 514.1 1622 23460 709.6 - - tl
myciel3 11 20 0.36 21 23 61 0.0 19 74 0.0 257 774 0.0
myciel4 23 71 0.28 44 36 127 0.0 38 278 0.0 308 1131 0.1
myciel5 47 236 0.22 88 88 382 0.2 99 1197 0.4 280 1103 0.6
myciel6 95 755 0.17 176 173 901 1.7 265 3932 3.8 345 1442 2.7
myciel7 191 2360 0.13 349 580 3332 47.2 858 13482 115.9 422 2139 23.2
queen10 10 100 1470 0.30 550 146 1807 130.2 178 5175 105.5 540 5284 515.5
queen11 11 121 1980 0.27 726 157 2155 721.1 199 7366 641.3 566 5877 3213.4
queen5 5 25 160 0.53 75 50 283 0.1 41 364 0.1 297 1594 0.1
queen6 6 36 290 0.46 138 47 376 0.1 46 643 0.2 321 2347 0.6
queen7 7 49 476 0.40 196 62 564 0.5 84 1430 0.8 464 3132 2.5
queen8 12 96 1368 0.30 624 90 1333 52.2 107 4140 45.3 421 4406 427.4
queen8 8 64 728 0.36 291 75 797 2.2 84 2090 1.7 388 3321 12.7
queen9 9 81 1056 0.33 405 115 1271 13.5 146 3443 15.7 - - tl
zeroin.i.1 211 4100 0.19 1822 272 11617 47.2 3535 30763 2091.3 - - tl
zeroin.i.2 211 3541 0.16 1004 387 7295 46.7 - - tl - - tl
zeroin.i.3 206 3540 0.17 998 267 6590 36.4 - - tl - - tl

Average 298 3861 388 481 10519 639 428 5841 1501

SGM 170 1856 61 230 4851 103 412 3295 249

Table 1: Results for minimum sum coloring problem with time limit 3600 seconds.

Instances LB` UB` LBcg gap` (%) gapcg(%)

DSJC125.1 247 326 314 31.98 3.82
DSJC125.5 549 1012 978 84.34 3.48
DSJC250.5 1287 3210 3105 149.42 3.38
DSJR500.1c 15398 16286 16234 5.77 0.32
myciel7 286 381 349 33.22 9.17

Table 2: Lower bounds improved compared to the best bounds known in the literature.
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Instances DA SMOOTH CLR

iter cols time(s) iter cols time(s) iter cols time(s)

24 33 A 33 1084 2.9 40 1678 3.3 198 6826 14.2
24 33 B 36 980 3.2 37 1607 3.2 156 5039 11.9
24 33 C 35 1016 3.2 39 1709 3.3 167 5636 12.4
24 66 A 29 1772 2.8 43 3554 3.9 208 14312 15.0
24 66 B 43 1036 4.3 51 4138 4.8 193 13444 13.8
24 66 C 48 1174 4.9 41 3550 4.1 202 14044 14.9
24 66 D 25 2174 2.5 46 3824 4.3 238 16364 18.9
24 66 E 41 2032 4.1 41 3550 4.0 170 11272 14.0
24 66 F 31 2098 3.2 31 2890 3.0 80 4672 7.2
48 33 A 56 1557 19.6 86 3306 31.2 232 8124 75.8
48 33 B 71 1615 25.3 76 3034 27.4 230 5971 80.5
48 33 C 58 1628 22.0 78 3080 30.0 183 5753 61.9
48 66 A 48 3378 19.0 86 6612 32.1 198 14004 64.1
48 66 B 49 2900 19.2 83 6530 32.2 212 14120 70.2
48 66 C 53 3256 20.7 81 6358 30.9 232 16324 74.6
48 66 D 51 3460 20.3 89 6826 34.5 233 15868 76.6
48 66 E 75 3312 33.1 85 6678 35.0 208 12222 76.1
48 66 F 55 3256 22.2 71 5698 27.3 198 12100 70.9

Average 46 2096 13 61 4145 18 196 10894 43

SGM 45 1911 11 58 3755 14 192 9985 34

Table 3: Results for multi-activity tour scheduling problem.

shows the name of the instance (Instance), the best lower (LB`) and upper
(UB`) bounds known in the literature, and the lower bound found solving the
linear relaxation of problem (61)-(64). The last two columns show the gap (gap`
(%)) between LB` and UB`, and the gap (gapcg (%)) between LBcg and UB`.
To the best of our knowledge, the best lower and upper bounds for the minimum
sum coloring instances are reported in Jin et al. (2017). Recently, Furini et al.
(2018) were able to solve to optimality many of these instances.

The results on the multi-activity tour scheduling problem and on the gen-
erated instance in Table 3 and 4, confirm that DA improves the computational
time, since for most of the instances the solving time is lower compared to
SMOOTH and CLR. Figure 1 presents the performance profiles introduced by
Dolan & Moré (2002). In particular, the performance profiles of the minimum
sum coloring, the multi-activity tour scheduling and the generated instances
are shown respectively in Figures 1a, 1b and 1c. As we can see, DA results the
method with the best performance in all the applications.

These experiments show us that the dual ascent heuristic presented in Sec-
tion 4, embedded in a column generation framework improves the computational
time in many cases. This is supported by the fact lower and upper bound gaps
decrease faster when the dual ascent heuristic is employed in the first iterations,
as it can be seen in Figures 2, 3 and 4. Figure 2 presents three graphics on the
minimum sum coloring problem. In particular, Figure 2a shows the behavior
of the average gap between the lower bound (59) and the optimal value z∗ of
the master problem in the bigger graphic, while the behavoir of one instance
(queen10 10 ) is reported in the smaller graphic. Figure 2b shows the behavior
of the gap between the upper bound, given by the optimal value of the reduced
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Instances DA SMOOTH CLR

iter cols time(s) iter cols time(s) iter cols time(s)

rail507 sppaa01 1099 268506 1190.1 1276 295902 1652.5 1126 296636 1177.8
rail507 sppaa02 780 144495 650.4 733 149499 683.4 654 145064 522.6
rail507 sppaa03 962 246043 959.5 1321 307713 1528.2 1110 313128 1072.5
rail507 sppaa05 1060 254513 1022.2 1192 275412 1507.4 1152 277445 1080.0
rail507 sppaa06 934 195915 756.3 1017 210849 1171.9 995 227171 850.4
rail507 sppus03 609 67991 431.3 565 63886 541.4 589 66385 400.1
rail507 sppus04 649 75780 529.5 598 74178 510.9 653 79657 524.9
rail516 sppaa01 1037 249011 855.2 1357 311959 1241.8 1294 307295 1112.9
rail516 sppaa02 512 105526 332.3 647 140314 460.8 856 156552 493.1
rail516 sppaa03 966 236608 770.7 1306 298856 1392.5 1252 295032 954.8
rail516 sppaa05 966 231800 766.2 1283 300056 1294.2 1176 283701 913.3
rail516 sppaa06 786 173239 547.1 1033 218254 896.5 973 233490 711.4
rail516 sppus03 536 60639 365.0 565 65108 399.5 581 66523 391.4
rail516 sppus04 515 61854 324.5 509 66783 340.6 597 74838 357.4
rail582 sppaa01 854 245416 958.0 1103 306578 1436.3 1347 323769 1372.6
rail582 sppaa02 681 154775 618.5 828 199207 734.6 910 203656 822.8
rail582 sppaa03 949 253826 1004.0 1299 341777 1616.7 1286 351219 1368.5
rail582 sppaa05 879 238048 921.9 1143 295174 1358.1 1222 323971 1266.4
rail582 sppaa06 779 192349 760.4 1018 253960 1055.4 1313 273858 1197.3
rail582 sppus03 574 73645 532.2 675 87840 685.2 701 90531 642.9
rail582 sppus04 642 85719 591.8 761 107934 706.9 764 107239 691.9

Average 798 172176 709 963 208154 1010 978 214150 854

SGM 776 151808 665 916 179140 907 940 185262 787

Table 4: Results for the generated instances.

master problem, and the optimal value z∗. Finally, Figure 2c shows the distance
between the dual variables at an intermediate iteration t, (ut, vt), and the final
dual solution (u∗, v∗). Analogously, Figures 3 and 4 presents the three graph-
ics for the multi-activity tour scheduling problem and the generated instances
respectively. We can see that the dual ascent heuristic allows to decrease signif-
icantly the lower and upper bounds gaps during the first iterations of column
generation, yielding to a faster convergence compare with CLR and SMOOTH.
Algorithm CLR is competitive with DA in decreasing the lower bound gap,
while the upper bound gap improves slowly. This behavior can be explained by
the quality of the generated columns. Indeed, the dual variables estimated by
DA allow the generation of good quality columns and a faster decrease of the
upper bound gap. Furthermore, the dual variables generated are more stable
compared to SMOOTH.
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Figure 1: Performance profiles.
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Figure 2: Graphics for the minimum sum coloring problem.

8. Conclusions

This paper describes a dual ascent heuristic, based on a reformulation and
Lagrangian relaxation, to obtain efficient dual feasible solutions of the linear re-
laxation of the generalized set partitioning problem with convexity constraints.
The proposed method is able to deal with set partitioning, covering, packing
constraints and more general versions with right hand side different from one, to-
gether with under and over coverage variables. The computational experiments
have been carried out on three different problem sets. The results indicate that
the dual ascent is efficient and it can be integrated with methods based on
simplex LP solver to speed up the convergence.

Future works will investigate the further extension of the dual ascent to the
more general case, where the coverage constraints’ matrix in (2) is assumed to
have integer coefficients, and it is not limited the be binary. This would allow to
implement a branch-and-cut-and-price framework to obtain an optimal integer
solution of the generalized set partitioning problem with convexity constraints.
The presented dual ascent heuristic could be employed at each node of the
search tree to speed up the convergence of the column generation. However,
only experiments can certify its effectiveness in that context. Indeed, non-root
nodes already have a good hot start, given by the parent dual solution.

Acknowledgement

The authors would like to thank the anonymous reviewers and associate
editor for their helpful suggestions. This study was funded by BPIfrance in the
frame of the French cooperative project ADAMme, Projet Investissement Avenir
(FSN: AAP CISN2). The authors also thank Fabio Furini, Enrico Malaguti,

27



0 30 60 90 120 150
0

50

100

150

200

250

300

350

400

450

500

550

600

650

Iterations

G
a
p
L
B
(%

)

0 50 100 150
0

100

200

300

400

500

600

700

800

900

1000
48 33 C

(a) Lower bound gap

0 30 60 90 120 150
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

Iterations

G
a
p
U
B
(%

)

0 50 100 150
0

10

20

30

40

50

60

70
48 33 C

(b) Upper bound gap

0 30 60 90 120 150
0

0.25

0.5

0.75

1

1.25

1.5

Iterations

D
is
ta
n
ce

to
o
p
ti
m
a
l
d
u
a
ls

SMOOTH
CLR
DA

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6
48 33 C

(c) Distance to optimal duals
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0 500 1000 1500 2000 2500
-4

-3

-2

-1

0

1

2

3

4

5

6

7

Iterations

lo
g 1

0
(G

a
p
L
B
(%

))

0 500 1000 1500
-4

-3

-2

-1

0

1

2

3

4

5

6

7

rail582 spaa06

(a) Lower bound gap

0 300 600 900 1200 1500
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

Iterations

G
a
p
U
B
(%

)

0 500 1000 1500
0

20

40

60

80

100

120

140

160

rail582 spaa06

(b) Upper bound gap

0 100 200 300 400 500 600 700
0

1

2

3

4

5

6

Iterations

D
is
ta
n
ce

to
o
p
ti
m
a
l
d
u
a
ls

SMOOTH
CLR
DA

0 250 500 750
0

1

2

3

rail582 spaa06

(c) Distance to optimal duals

Figure 4: Graphics for the generated instances.

28
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Dolan, E. D., & Moré, J. J. (2002). Benchmarking optimization software with
performance profiles. Mathematical programming , 91 , 201–213.

Ernst, A. T., Jiang, H., Krishnamoorthy, M., & Sier, D. (2004). Staff scheduling
and rostering: A review of applications, methods and models. European
Journal of Operational Research, 153 , 3–27.

Fisher, M. L., & Kedia, P. (1990). Optimal Solution of Set Cover-
ing/Partitioning Problems Using Dual Heuristics. Management Science, 36 ,
674–688.

Furini, F., Malaguti, E., Martin, S., & Ternier, I.-C. (2018). ILP Models and
Column Generation for the Minimum Sum Coloring Problem. Electronic
Notes in Discrete Mathematics, 64 , 215–224.

Gérard, M., Clautiaux, F., & Sadykov, R. (2016). Column generation based
approaches for a tour scheduling problem with a multi-skill heterogeneous
workforce. European Journal of Operational Research, 252 , 1019–1030.

Held, S., Cook, W., & Sewell, E. C. (2012). Maximum-weight stable sets and safe
lower bounds for graph coloring. Mathematical Programming Computation,
4 , 363–381.

30



Huisman, D., Jans, R., Peeters, M., & Wagelmans, A. P. M. (2005). Com-
bining Column Generation and Lagrangian Relaxation. In G. Desaulniers,
J. Desrosiers, & M. M. Solomon (Eds.), Column Generation (pp. 247–270).
Springer US.

Jin, Y., Hamiez, J.-P., & Hao, J.-K. (2017). Algorithms for the minimum sum
coloring problem: a review. Artificial Intelligence Review , 47 , 367–394.

Lusby, R. M., Larsen, J., Ehrgott, M., & Ryan, D. (2011). Railway track
allocation: models and methods. OR Spectrum, 33 , 843–883.

Malaguti, E., Monaci, M., & Toth, P. (2011). An exact approach for the Vertex
Coloring Problem. Discrete Optimization, 8 , 174–190.

Mingozzi, A., Maniezzo, V., Ricciardelli, S., & Bianco, L. (1998). An Exact
Algorithm for the Resource-Constrained Project Scheduling Problem Based
on a New Mathematical Formulation. Management Science, 44 , 714–729.
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