
HAL Id: hal-03487607
https://hal.archives-ouvertes.fr/hal-03487607

Submitted on 17 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Standard-compliant parallel SystemC simulation of
loosely-timed transaction level models: From baremetal

to Linux-based applications support
Gabriel Busnot, Tanguy Sassolas, Nicolas Ventroux, Matthieu Moy

To cite this version:
Gabriel Busnot, Tanguy Sassolas, Nicolas Ventroux, Matthieu Moy. Standard-compliant parallel Sys-
temC simulation of loosely-timed transaction level models: From baremetal to Linux-based applica-
tions support. Integration, the VLSI Journal, Elsevier, 2021, 79, pp.23-40. �10.1016/j.vlsi.2020.12.006�.
�hal-03487607�

https://hal.archives-ouvertes.fr/hal-03487607
https://hal.archives-ouvertes.fr


Standard-compliant Parallel SystemC simulation of Loosely-Timed Transaction
Level Models: From Baremetal to Linux-Based Applications Support

Gabriel Busnota, Tanguy Sassolasa, Nicolas Ventrouxa, Matthieu Moyb

aCEA, LIST, 91191 Gif-sur-Yvette CEDEX, France
bUniv Lyon, EnsL, UCBL, CNRS, Inria, F-69342, LYON Cedex 07, France

Abstract

To face the growing complexity of System-on-Chips (SoCs) and their tight time-to-market constraints, Virtual Prototyping
(VP) tools based on SystemC/TLM2.0 must get faster while maintaining accuracy. However, the ASI SystemC reference
implementation remains sequential and cannot leverage the multiple cores of modern workstations. In this paper, we
present SCale 2.0, a new implementation of a parallel and standard-compliant SystemC kernel, reaching unprecedented
simulation speeds. By coupling a parallel SystemC kernel with shared resources access monitoring and process-level
rollback, we can preserve SystemC atomic thread evaluation while leveraging the available host cores. We also generate
process interaction traces that can be used to replay any simulation deterministically for debug purpose. Evaluation on
baremetal applications shows ×15 speedup compared to the ASI SystemC kernel using 33 host cores reaching speeds
above 2300 Million simulated Instructions Per Second (MIPS). Challenges related to parallel simulation of full software
stack with modern operating systems are also addressed with speedup reaching ×13 during recording run and ×24 during
the replay run.

Keywords: SystemC, TLM 2.0, parallel simulation, rollback

1. Introduction

Electronic System Level (ESL) design and verification
is increasingly challenging due to the soaring complexity
of SoCs and time to market constraints. Systems like
manycore or complex Intellectual Properties (IPs) requir-
ing sophisticated drivers increases the development time
of software to the point where it has now become pre-
dominant. Just as programming or hardware description
languages have evolved to help the user design more com-
plex products, hardware (HW)/software (SW) integration
tools involved in the SoC design process must support this
trend. Among these tools, modelling and simulation envi-
ronments are intensively used in early development stages
to elaborate Virtual Prototypes (VPs). Virtual prototyping
is a cost-effective technique which consists in the realiza-
tion of a software model of the actual chip under design.
VP then allow for early software development, HW/SW
co-design, system-level modelling at various levels of granu-
larity, verification, performance evaluation or Design Space
Exploration (DSE).

SystemC [1] is broadly used for VPs design in both in-
dustrial and academic communities. It is a C++ based HW
description language supported by the Accellera Systems
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Initiative. We are specifically interested in the Transaction-
Level modelling (TLM) version 2.0 [2] for SystemC which
enables higher level of abstractions for faster simulation,
increased interoperability and model reuse. However, as
specified in the IEEE SystemC standard, concurrency is
emulated using the co-routine semantics, implemented by
the reference Accellera kernel with cooperative sequential
processes evaluation. It guarantees deterministic execu-
tion and protects against race conditions but also enforces
single-threaded evaluation. As multicore SoCs are getting
ubiquitous, the simulation speed decreases in inverse pro-
portion to the number of processing units in the model.
To tackle this issue, it is necessary to take advantage of
multicore host platforms, but a parallel implementation of
SystemC is needed.

We propose SCale 2.0, a standard-compliant parallel
SystemC kernel which guarantees process evaluation atom-
icity and simulation reproducibility. We support any TLM
model including loosely-timed coding style with the use of
the Direct Memory Interface (DMI) protocol. Our tech-
nique based on lightweight process access monitoring has a
limited overhead even when used with the fastest Instruc-
tion Set Simulators (ISS’s) available. The contributions of
this work are:

• A Finite State Machine (FSM)-based shared-resource
access granting policy that prevents most atomicity
violations;

• A fast process atomicity violation detection procedure
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coupled with a roll-back error recovery mechanism;

• A highly scalable data-structure for FSM storage;

• A variable accuracy system coupled with adaptive
parallel/sequential evaluation for simulation fast for-
warding;

• CPU mode based unscheduling for extra conflict
avoidance.

The rest of the paper is organized as follows. Section 2
explains the challenges exposed by SystemC paralleliza-
tion. Section 3 presents the related work. Section 4 details
the fundamentals of the contributions of this paper. Sec-
tion 5 describes the experimental setup and analyzes our
experimentation results on baremetal and Linux-based ap-
plications. Section 6 further analysis challenges brought
by the simulation of complex guest OS and introduces
some solutions. Finally, section 7 concludes the papers and
exposes our perspectives.

2. Challenges of Parallel SystemC/TLM

2.1. General Introduction to SystemC
SystemC is a Hardware Description Language (HDL)

originally designed as an alternative to VHDL or Verilog
for instance. It is designed as a C++ library providing
constructs to model components, signals, clocks, events or
processes, just as most HDL. A SystemC model can then
be simulated using Discrete Event Simulation (DES). In a
broad outline, a DES relies on the alternation of two main
simulation phases:

1. The evaluation phase where the new state of the
model is computed as a function of the current state
by the various processes evaluated sequentially;

2. The update and notification phase — denoted as ker-
nel phase in this work — where the kernel propagates
the results of the previous evaluation phase in the
model and determines the events to be triggered next
in order to start a new evaluation phase.

The SystemC standard [1] states that processes must
be evaluated with respect to the co-routine semantics. This
is a strong incitation toward sequential evaluation using
cooperative multithreading. This approach de facto limits
to the use of a single Operating System (OS) thread and
thus a single host core. As most Discrete Event Simulator
(DES), the reference implementation of the SystemC simu-
lation kernel (also referred to as the ASI kernel [3]), has
chosen this approach, making it unable to take advantage
of the numerous cores available on modern platforms.

The TLM2.0 library for SystemC has been incorporated
to the standard to portable module interfaces at higher
abstraction level. TLM was broadly adopted during the last
decade. TLM designs differ from Register Transfer Level
(RTL) designs in that data transfers modelling is done
with Interface Method Calls (IMCs) instead of sc_signals,

sc_channels and the event machinery. An IMC only incurs
the same time penalty as a virtual function call. As a
result, much faster simulation can be achieved by reducing
the number of kernel phases and thus of context switches.
TLM 2.0 enables two coding styles: TLM-AT and TLM-LT.
The former allows to split transactions into several steps
to achieve timing accuracy close to RTL models. However,
the later, TLM-LT, is most commonly used by software
developpers for its much higher speed. Indeed, TLM-LT
enables DMI and allows to reduce the number of process
synchronization to the bare minimum thanks to blocking
transactions together with temporal decoupling.

Indeed, DMI grants an initiator the ability to replace an
IMC by a direct access to the underlying memory buffer of
a simulated memory component using a raw C++ pointer
provided by the component itself through the DMI inter-
face.

Temporal decoupling is a standard speed optimization
which comes at the cost of less accurate timing. It allows
a process to run ahead of time, that is to accumulate
in a local counter the elapsed simulation time until it
reaches a predefined limit called the quantum, at which
point it must synchronize with the other processes. Time
decoupling typically cuts the number of SystemC process
context switches hundreds of times.

All these modelling techniques, while providing signifi-
cant speedups in sequential simulation make parallelization
much harder.

2.2. Parallelizing SystemC
The evaluation phase is usually the most compute in-

tensive, which makes it the target of most parallelization
approaches (including this work). But SystemC paralleliza-
tion presents several challenges described in [4, 5]. The first
of them is the co-routine semantics of SystemC. It requires
that all processes scheduled during a given evaluation cycle
be evaluated atomically. The SystemC standard however
allows parallel evaluation as long as this co-routine seman-
tics is preserved but it does not give hints about how to
achieve it. Most solutions presented in section 3 try to
preserve the co-routine semantics but at the cost of various
restrictive assumptions. For instance, the communication
mediums between processes or the event delivery policy
are constrained in order to provide guaranties that can be
exploited by the parallel simulator.

Another threat to parallelization especially present in
TLM models is the lack of opportunities to run processes
in parallel. Indeed, at first sight, only processes scheduled
during the same evaluation cycle are good candidates for
parallel evaluation. In [5], the authors show that most of
the time, less than two processes can be scheduled simul-
taneously in a classic TLM model. This is mostly due to
the fact that, in TLM models, processes are not synchro-
nized by a central clock like it is often the case in RTL
models, reducing the probability of several processes being
scheduled at the same time.
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Figure 1: An example of process atomicity violation caused by con-
current access to a same memory location: a is initially 0, P1 reads a
as 1, which would be an impossible value in sequential evaluation.

TLM is also very challenging for parallel simulation
as it replaces the channel-based communication between
modules with interface methods calls, that is classic C++
function calls. While the various modules’ states and pro-
cesses tend to remain mostly isolated during the evaluation
phase when using channels to communicate, TLM causes
much more state sharing between processes throughout
shared TLM slave accesses, threatening processes atomicity.
When dealing with classic TLM models, even thread-safety
is usually not guaranteed as these models are designed with
a sequential mindset. The fact that all C++ constructs
are allowed in SystemC makes it even harder to ensure
even only thread safety, let alone processes atomicity. Pro-
tecting shared resources with critical section helps with
thread-safety but has no effect on atomicity and severely
hampers performance. In addition, all processes that use
a same DMI pointer are susceptible to cause data-races if
evaluated in parallel. To make matters worse, TLM-2.0
enables temporal decoupling, allowing processes to run for
much longer periods of time, multiplying the risk of process
atomicity violations like on fig. 1.

Finally, modern ISS’s such as QEMU [6] have achieved
great speedups in the recent years, reaching speeds above
1000 MIPS on a single-core host machine [7]. Also, tempo-
ral decoupling is mandatory in order to exploit the speed
of such ISS’s. Hence, the solutions used to allow parallel
simulation must incur a very small overhead not to hamper
the speed of a modern ISS.

Having highlighted the major challenges of SystemC
parallelization, section 3 presents the existing work related
to parallel SystemC simulation and shows that many of
these issues remain unsolved.

3. Related Work

To this day, all attempts to parallelize SystemC simula-
tions have made some restrictive assumptions. They are
usually related to the abstraction level of the models that
can be efficiently simulated in compliance with the SystemC
semantics and, by extension, to the type of communications
used in these models. Parallel SystemC solutions differ
by many aspects: multi-thread, multi-process, distributed,
hardware accelerated, static code-base analysis or even
introduction of new semantics on top of SystemC. However,
the most fundamental difference between two solutions lies
in the way it manipulates the simulation time: synchronous
or decoupled. Synchronous simulation (section 3.1) is well

suited to RTL models as they tend to be synchronized with
a central clock, thus offering a lot of parallelism in each
evaluation phase. However, with TLM, time decoupling
(section 3.2) is better suited in order to allow processes
scheduled at close-enough time points to run in parallel.
Similarly, temporal decoupling can also be exploited to
restore process simultaneity but only [8] presented in sec-
tion 3.3 deals with some TLM-specific issues like the tight
coupling of processes.

3.1. Synchronous SystemC Parallelization
In the early days of SystemC parallelization, mostly

cycle-accurate model simulation (e.g. RTL) was explored.
A conservative approach is presented in [9]. The design to
be simulated must be split into several subsystems chosen
to be as independent as possible. These subsystems will be
simulated in parallel. Processes communicate using regular
channels, but a central process is in charge of computing the
next simulation time after each evaluation phase. Shared
variables and remote timed event notifications are not
supported.

In [10], parSC, a centralized parallel SystemC scheduler
uses multiple workers to run the evaluation phase. SystemC
processes are mapped to these workers and the evaluation
phase is bounded with barriers in order to synchronize the
workers. The rest of the kernel logic remains sequential,
including requests to the kernel that are buffered by each
worker and processed sequentially after each evaluation
phase. It is however the responsibility of the user to protect
all resources shared between concurrently running processes.
It is likely that in case of resource sharing, process atomicity
is compromised together with simulation determinism.

LegaSCi [11], the sequel to parSC with better support
for TLM, addresses this issue with the introduction of
containment zones. All resources (data and processes)
belong to a given zone. Only processes of a given zone
can address resources of the same zone and processes of
a zone run sequentially, thus preventing race conditions
from happening. In case a process crosses a zone boundary
through an IMC, it is migrated to the accessed zone and
blocked until all processes of this zone are done. However,
the user must ensure that a migrated process does not
access data from its original zone after migration unless no
other process of its original zone accesses this data again.
Otherwise, data races could occur, compromising the whole
simulation. Also, data sharing is only allowed after going
through an IMC, unlike when using a DMI pointer to a
shared memory for instance.

With raw simulation speed and ease of use in mind, [12]
proposes a multiprocess and multi-kernel simulation en-
gine designed around IPTLM, an inter-process adaptation
of the TLM protocol. Interprocess communications are
then strictly restricted to messages going through IPTLM
sockets implemented using POSIX shared memories. In
particular, shared variables and events are strongly dis-
couraged. Determinism is not guaranteed anymore and
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there are no references to time synchronization between pro-
cesses. Also, interprocess communications must be avoided
as much as possible to keep performance high.

Hardware acceleration has also been explored. For
instance, [13] proposes a multicore shared memory SoC
coupled with a SystemC kernel accelerator. While SystemC
processes are evaluated in parallel by the numerous avail-
able cores, the update and notification phases are hardware
accelerated. The update phase relies on a parity register
telling which value is to be read or written on each channel.
The notification phase uses a parallel search to find the
processes sensitive to a given event. Communication be-
tween processes is obviously limited to signals as race and
processes atomicity violations are not considered. Hence,
this is a very RTL-oriented solution.

GP-GPU based acceleration has also been explored like
with SAGA [14]. An RTL model is statically analyzed in
order to construct the process dependency graph based
on the model signals. Independent dataflows between pro-
cesses are then extracted after possibly duplicating some
processes to reduce dataflow coupling. Each dataflow is
then executed on a different GPU warp in a sequential
order respecting the dependency between processes. Warps
synchronize after all processes of each dataflow have been
evaluated, that is at least before every timed notification.
A CPU/GP-GPU hybrid solution is detailed in [15]. It al-
lows efficient simulation of mixed-abstraction models that
include RTL and TLM modules. A toolchain enables au-
tomatic mapping of process on GPU or CPU depending
on their nature in order to perform parallel process eval-
uation. While a GP-GPU can support great amounts of
parallelism, this solution will only be efficient on sufficiently
homogeneous designs. Also, not all C++ is compatible
with CUDA kernels, thus limiting the expressivity of Sys-
temC when simulated on a GP-GPU. In particular, TLM
processes are unlikely to support GP-GPU evaluation. In
case of a hybrid solution, CPU-GPU synchronization might
introduce high latencies.

3.2. Time Decoupling
At the root of all the approaches presented in this sec-

tion is the Parallel Discrete Event Simulation (PDES) [16].
This technique essentially allows to run processes sched-
uled at different times while maintaining timing consistency.
However, the amount of decoupling varies from one imple-
mentation to another. PDES can be either conservative
or optimistic. The former guaranties that the local time
of each part of the design will never be greater than any
message it receives (i.e. timing violations never occur). The
later takes the risk to sometimes cause timing violations
but provides a rollback mechanism to recover from such
error. Optimistic PDES is considered too hard to apply
to SystemC due to the complex state of a simulation pre-
venting a general approach to rollback and thus is never
used.

A distributed SystemC simulation framework based on
ArchSim [17], a distributed simulation platform for system

level high performance computer design, is presented in [18].
It mainly requires that processes communicate only using
channels and that the design can be partitioned into rela-
tively independent subsystems. These subsystems are then
mapped to several host computers using the ArchSim [17]
parallel simulation framework. Each subsystem has its own
SystemC scheduler. Communications between subsystems
are achieved using ArchSim channels that wrap and mul-
tiplex the behavior of conventional SystemC channels in
a distributed context. Time synchronization between pro-
cesses is achieved by waiting on all remote input channels of
each node to determine the next earliest timestamped mes-
sage. According to this and to its own internal events, each
subsystem can compute its next simulation time. However,
remote timed event notification is not supported. Dis-
tributed simulation can scale up to hundreds of nodes but
synchronization between these nodes relies on networking
whose latency is order of magnitudes higher than shared
memory synchronization. Also, the amount of parallelism
will often be limited by the number of relatively indepen-
dent parts in the simulated system. With the advent of
Uniform Memory Access (UMA) chips reaching up to 64
cores to this day, distributed simulation might become less
attractive.

While the previous approach is more oriented toward
RTL simulations, [19] tackles TLM simulations with TLM-
DT. This solution is explicitly targeted at shared memory
SoC simulation. Thus, three types of components are
defined (initiator, interconnect and target) and three types
of communications (request from an initiator to a target
going through an interconnect, the associated response or
an interrupt from a target to an initiator). Here, each
component of the design has its own local time and there
is no more global simulation time. Initiators are free to
run until they send a request to a target or they reach
the lookahead time set by the user before the simulation.
Interconnects wait for a packet to be present on all their
inputs in order to choose the most recent one. It can
then compute its new local time before forwarding the
earliest request to the correct target. The target updates
its local time in turn using the transaction timestamp
before sending back the answer. The transaction delay is
added to the request timestamp at each processing step
so that the initiator can update its own local time at the
end of the transaction. However, interrupts cannot be
handled the same way as it would cause deadlock (e.g. an
interrupt from a target to an initiator waiting for this same
target). Thus, interrupt requests are polled by initiators
and handled as soon as their local time is greater than the
interrupt timestamp, causing small timing errors and non-
determinism. The timing accuracy is comparable to a TLM-
AT model. SystemC-SMP, a parallel simulator dedicated
to these types of models is proposed in [20]. Processes
are grouped in order to favor internal communications and
then mapped to different CPUs, each running its own local
scheduler.

The lookahead time is exploited differently in [21].
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While it was only a limit to the amount of time a pro-
cess can run without synchronizing in [19], the lookahead
time tla also defines the minimum amount of time that
a remote event notification must be triggered in advance.
For instance, if the local time of a process is tp, then it
must not notify events to process in other time zones before
tp + tla because it guaranties that the remote process will
not see the event in the past. This is a direct application of
conservative PDES. However, this constraint can be hard
to honor in a real-world model, so the authors introduced
flexible time decoupling. It consists in adjusting all remote
event notification delays according to the chosen policy.
The accurate policy forbids any adjustment and raise errors
if the lookahead is not respected. The deterministic mode
increases the notification delay just as much as required
for the lookahead to be respected. Finally, the fast mode
increases the delay to be just ahead of the targeted thread
time, which sacrifices determinism. This solution can take
advantage of temporal decoupling as the local time advance
guarantees that events will be notified ahead of time of
remote processes. However, remote transactions remain
blocking, reducing the benefits of temporal decoupling.

SystemC-Link [22] brings an additional refinement defin-
ing delays for channels linking two time zones. This delay
becomes is a kind of local lookahead time that is applied
only to processes in time zones connected by the chan-
nel. Two scheduling policies are also provided: as-soon-as-
possible and as-late-as-possible. The former makes each
process yield whenever it wants to advance its local time
while the later lets processes run until they reach the max-
imum lookahead allowed by the delays of the neighbor
channels.

Imposing no constraint on the simulated design, [23]
proposed an approach based on compiler-driven static anal-
ysis. A standard model can be analyzed by a SystemC
semantics aware compiler in order to detect the depen-
dencies between code segments (i.e. the code between two
scheduling points). Based on this analysis, segments can
run in parallel if they do not have dependencies like access-
ing a same variable. But also, if the compiler can prove
that a given segment will not receive any event before its
current next scheduling time, this segment can be issued
in advance. This is called out-of-order parallel evaluation.
Load balancing based on the compiler-estimated run time
of each segment is added in [24]. A major limitation of this
approach, however, is its lack of support for programmati-
cally constructed platforms (e.g. CPUs instantiated in a
for loop). This is addressed in [25] where the previously
compile-time information can now be completed at run-time
after platform elaboration. Also, closed source libraries
can be manually annotated to be handled appropriately by
the scheduling algorithm. In order to reduce false positives,
the modules interconnections are considered in what is
called port-call-path-sensitive analysis [26]: two segments
of modules that are not connected are guaranteed not to
have dependencies. Finally, [27] adds event delivery predic-
tion so that processes can be scheduled even before any of

their sensitive events is triggered. The major limitation of
this approach, however, is the drastic pessimization caused
by pointer dereferencing: two segments that dereference a
pointer are systematically conflicting if the content of the
pointer is not statically known. As a result, a Symmetric
Multiprocessing (SMP) TLM-LT model will always run
sequentially because of the dynamically defined address of
transactions targeting the shared memory component.

Some sort of time decoupling is also provided by the
sc_during semantics defined in [28]. While in classic DES,
a task always run instantaneously before catching up by
waiting for the amount of time it would have taken on the
real system, sc_during allows to start a task with a dura-
tion associated. The explicit use of a duration helps deter-
mining which tasks are independent so that they can run in
parallel: two tasks whose durations overlap are independent
as they do not need the result from the other one to start.
Starting a task with duration is as simple as spawning an
OS thread to run the task, call wait(<task_duration>),
which does not suspend the task itself, and then join the
task when the wait returns. Additional functionalities are
provided in order to control sc_during tasks and interact
with the simulation kernel from such task. Tasks with
duration is implemented as an independent library and
thus can be used with any standard compliant SystemC
simulation kernel. This approach introduces parallelism
in a very simple way. However, this is the responsibility
of the user to guarantee that tasks are running in isola-
tion, otherwise race conditions and non-determinism could
occur.

3.3. SCale: Optimistic Parallel SystemC Simulation
As they require frequent enough synchronization most

of the aforementioned standard-compliant approaches tar-
get at most TLM-AT models which are rather slow at a few
MIPS or TLM-DT models offering sufficient architectural
decoupling. General TLM-LT models can reach hundreds
of MIPS thanks to temporal decoupling but present several
additional obstacles to parallelization as they tend to make
extensive use of shared host resources. It is especially true
when considering the DMI interface which bypasses transac-
tions all together and is not efficiently supported by any of
the previously mentioned approaches in the case of an SMP
model with a single shared-memory for instance. While
interoperability relies on users implementing the standard
interfaces, it is not uncommon to see model vendors rely
on custom interfaces for the internals of their components.
For instance, the interrupt lines of a CPU model could be
exposed directly to an interrupt controller via a regular
C++ method. This avoids the cost of an extra process
responsible only for raising interrupts using a signal raised
at times potentially not aligned on the quantum. Also, as
the time between two synchronizations increases, so does
the risk of atomicity violations. As a result, quantum-based
temporal decoupling is an additional obstacle to the use of
all previously described approaches.
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SCale, the parallel SystemC kernel described in [8] relies
on the same general principle as SCale 2.0, the work pre-
sented in this article: memory accesses monitoring. SCale
2.0 has already been introduced in [29] but new features
related to Linux-based benchmark simulation (section 6)
and a lot more insights (section 4) are given in this article.

In SCale, SystemC processes are grouped by the user
in order to be assigned to workers evaluated in parallel by
different pthreads. Each worker is responsible for evalu-
ating sequentially its processes scheduled in the current
evaluation phase (also referred as quantum). SCale then
uses memory access monitoring as its central mechanism to
prevent and detect process atomicity violations and gener-
ate a simulation trace used when replaying the simulation
(e.g. for debugging). When a process tries to access some
shared memory, its worker is unscheduled and resumed
during the sequential evaluation phase that follows imme-
diately the parallel one. While limited to evaluation phase
level parallelism (as opposed to time-decoupled PDES ap-
proaches), temporal decoupling usually allows for most
processes (e.g. ISS’s) to be scheduled at synchronized time
points, maintaining a very high level of parallelism in most
evaluation phase.

Monitoring memory accesses also allows for building
a worker dependency graph for each evaluation phase. If
workers have been evaluated atomically, then processes
also have been evaluated atomically. A dependency be-
tween workers Wa and Wb written as Wa →Wb is created
when a pair of memory accesses implies that an equivalent
sequential schedule of the current evaluation phase must
evaluate Wa before Wb in order to yield the same result.
Specifically, a dependency exists when one of the following
pair of memory accesses involves two different workers:

• Read After Write (RAW): If Wb reads a value after
Wa wrote it during a parallel evaluation, a sequential
schedule where Wb comes before Wa would make Wb

read a different value.

• Write After Read (WAR): The reason is similar to
the RAW case.

• Write After Write (WAW): If Wb overwrites a value
previously written by Wa, the final value differs from
a sequential schedule where Wb comes before Wa.

From that point, we can check whether workers have been
evaluated atomically by checking if there exists a sequential
schedule that yields to the same state at the end of the
evaluation phase, that is if and only if the dependency graph
defines a partial order on the workers, that is if and only if
it is acyclic. This assertion is checked after every evaluation
phase using the Tarjan’s strongly connected components
algorithm (any cycle detection algorithm would do). If
the graph is acyclic, then it can be used to define an
equivalent sequential schedule of workers for simulation
replay purpose (only the workers involved in dependencies
need to be scheduled sequentially during the simulation

replay). If there is a circular dependency, however, this is
called a conflict.

SCale provides an annotation function that must be
called before every memory access. The internal logic of
this function has been greatly modified between SCale and
SCale 2.0 and is detailed in section 4. What remains is that
this function returns immediately if the calling worker can
perform the instrumented access during the parallel phase
or else the worker is paused until the sequential phase (i.e.
it is unscheduled). However, SCale relies on user-provided
annotations to tag some address ranges as shared and force
sequential evaluation of workers that may otherwise vio-
late the co-routine semantics by accessing shared memory
concurrently with another worker. It is often very hard
to predict which memory regions are going to be shared
during the simulation, especially in the presence of dynamic
memory allocation and memory virtualization which both
prevent static code analysis. Also, shared memory regions
often move during a simulation. Declaring all of them as
shared from the beginning to the end of a simulation is
very suboptimal. This makes SCale unfit for the simulation
of architecture using modern guest OSs such as Linux.

Memory accesses must be recorded in the same order
as they are performed in the simulation for the conflict
checking to be correct. This constraint is not addressed
in [8], leaving it to the user to implement an atomicity
mechanism. The simplest solution consists in putting the
instrumentation and the access together inside a critical
section protected by a mutex, but this is very costly and
does not accommodate high worker counts.

The work presented in the present article is inspired
from SCale [8] but tackles its main functional limitations
while providing significant speed and scaling improvements.
We no longer require any manual annotation of address
ranges and detect shared addresses at runtime. Also, in-
strumentation and accesses are atomically performed with-
out requiring any additional synchronization. Finally, the
approach has been generalized to all types of workers in-
teractions instead of only shared memory related ones. All
these improvements drastically improve speed of baremetal
applications and show promising results on some Linux-
based applications while simplifying the instrumentation
of shared resources accesses.

4. Proposed Parallel SystemC Kernel

4.1. Overview
For the sake of simplicity, it is assumed in this section

that the only shared resource of the simulation is the model
memory. We explain in section 4.4 how the presented sys-
tem is easily generalized to any form of shared resources
like peripherals, interrupt lines, etc. Assuming only mem-
ory is shared during the simulation, we also assume that
the user has correctly instrumented all memory accesses
through a call to the provided function mem_instr before
each memory access in the platform model. Note that since
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most shared memory accesses are issued by the ISS (e.g.,
QEMU), the instrumentation can be done once and for all
in the ISS. In our case, it results in a single line of code for
the whole model. The software code is run unmodified.
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Figure 2: Evaluation phase flow chart of our parallel SystemC kernel.

The evaluation phase flow chart of our parallel Sys-
temC simulation kernel is summarized fig. 2. We start
each evaluation phase with a parallel phase (section 4.2)
where all the ready processes are evaluated in parallel by
worker threads. During this parallel phase, worker access-
ing memory addresses detected as shared are unscheduled
by the mem_instr function until the sequential phase (sec-
tion 4.3) where they are resumed in a sequential order in
order to prevent race conditions (section 4.3.1). Workers
are unscheduled before performing the suspicious mem-
ory access, so that potentially problematic accesses are
integrally performed in the sequential phase.

mem_instr takes three arguments: the accessed address,
the number of bytes accessed and the type of access. This
function is outlined in algorithm 1.

After each evaluation phase, it is checked that no con-
flict occurred, i.e., that no circular dependencies between
workers exist (section 4.3.2). The conflict check is dele-
gated to additional OS threads and the result collected
when ready during a posterior evaluation phase. If no
conflict occurred, the list of dependencies is recorded in
order to generate the simulation trace that can be used
for deterministic simulation replay (section 4.3.3). If a

Algorithm 1 mem_instr function outline
1: procedure mem_instr(addr, nBytes, isWrite)
2: if not in sequential phase then
3: w ← getCurrentWorkerId()
4: a← reducedAddr(addr) . c.f. 4.2.2
5: m← FSMarray[a] . c.f. 4.2.5
6: go← m.updateFSM(w, isWrite) . c.f. 4.2.2
7: if not go then
8: wait sequential phase . c.f. 4.3
9: end if
10: end if
11: recordAccess(addr, nBytes, isWrite, w) . c.f. 4.3.2
12: end procedure

conflict did occur, we rely on host process level rollback
(section 4.3.4) to reinstate the simulation in a valid ante-
rior state and start over. The conflict can now be avoided
thanks to a proper sequentialization defined by knowledge
from previous run.

The instrumentation atomicity is guaranteed at no cost
due to the zero dependencies guaranty (section 4.2.1) pro-
vided by the FSM-based memory access granting policy of
SCale (section 4.2.3).

Finally, FSMs need to be periodically reset in order
to reflect the most accurately possible the current sharing
state of the associated address and not compromise the
simulation speed with unnecessary unscheduling.

4.2. The Parallel Evaluation Phase
All evaluation phases start with a parallel phase where

processes are evaluated in parallel by the worker they are
attached to.

4.2.1. Advantages of Zero Dependencies Parallel Phase
During a simulation, most of the evaluation phases do

not present any dependency. This is because shared vari-
ables tend to rarely be used in real-world applications in
order to preserve execution speed in the real system. For
that reason, we have made design choices that take advan-
tage of this assessment. We enforce that no dependency
occurs during the parallel evaluation phase, postponing
all the complex logic to the sequential phase. In practice,
because most evaluation phase cannot cause dependencies,
this does not significantly limit performance.

Knowing that zero dependencies can occur during the
parallel phase, several properties are obtained and detailed
in the following sections:

1. “Instrumentation + memory access” needs not be
atomic as long as instrumentation comes first.

2. Memory accesses during the parallel phase can be
recorded in parallel as they never depend on each
other, so a total order is not required.

3. If no workers have been unscheduled during the paral-
lel phase, then no conflicts have occurred, and check
is not required.
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Hence, the “zero dependencies during parallel phase”
property is a strict prerequisite to enable vital optimizations
across the whole system. We provide it using an FSM-based
granting policy detailed in the next section.

4.2.2. The Address FSM
Keeping in mind that zero dependencies must occur

during the parallel phase, we must choose a memory ac-
cess granting policy to determine which accesses can be
performed during the parallel phase and which cannot.

The optimum strategy would consist in recording, for
each address and for each evaluation phase, the list of
accesses to check if the new accesses introduce a depen-
dency (RAW, WAR or WAW). This would be, however,
very expensive as it requires memory allocation and mutex
synchronization at every access. Thus, we had to define a
memory access policy with a much faster decision time.

In SCale [8], it was up to the user to define the shared
and the read-only addresses in order to check if each access
targets one of these addresses. However, in most applica-
tions, shared memory addresses are too complex or even
impossible to statically enumerate mainly because of dy-
namic memory allocation and memory virtualization. Also,
a memory region might be shared only during some parts of
the simulated program. Declaring all regions shared at some
point of the simulation as shared for the entire simulation
would then result in numerous useless sequentializations
and an important performance degradation.

To implement our memory access granting policy, ad-
dresses are first grouped into blocks of size S, defined by
the user. A good size to choose is typically the largest
number of bytes accessible with a single CPU instruction
(e.g. 8 bytes on RISC-V 64 bits) as it includes the most
common memory access. When calling mem_instr with
address a as argument, the reduced address a′ is computed
first (algorithm 1 line 4) as a′ = a/S. If the worker is
not unscheduled, it can then access any address in the
range [a′, a′ + S). In case a memory access spreads among
several S bytes aligned intervals because it is either un-
aligned or it accesses more than S bytes, a helper func-
tion mem_instr_slow that calls mem_instr several times
in order to protect all the accessed memory must be used
instead. We have chosen to have two functions so that
memory accesses that require a single call to mem_instr
are instrumented as fast as possible. Grouping addresses
may lead to an approximation, but the approximation is
conservative: we may unschedule a worker that could have
been granted the access, but we never grant an unsafe
access.

An FSM described fig. 3 is then associated to each ad-
dress block using a data structure described in section 4.2.5.
Each address block can independently be in one of these 4
states:

1. no_access: After initialization or reset (c.f. sec-
tion 4.2.4).

no_access
Owner=⊥

owned
Owner=x

read_exclusive
Owner=x

read_shared
Owner=⊥

w(x) r(x)

rw(x)

rw(x̄)

w(x)

r(x̄)

r(x)

w(x̄)

w(x|x̄) r(x|x̄)

Figure 3: Memory access monitoring FSM. x is the worker identifier
(WID) of the worker doing the access from no_access; x̄ designates
any worker other than x; r and w stand for read and write. Workers
are unscheduled on transitions.

2. owned: When an address has been accessed by only
one worker and with at least one write since last reset.
This worker is called the owner of the address.

3. read_exclusive: When an address has been only
read by a single worker since last reset. This worker
is also called the owner of the address.

4. read_shared: When an address has been only read
and by at least two workers since last reset.

The goal behind this FSM is to allow workers to access
the memory they are not sharing freely (the owned state)
and to allow read-only memory to be accessed concurrently
(the read_shared state) in order to unschedule as few
workers as possible. However, these two states are not
sufficient and the read_exclusive state is crucial to
make the FSM efficient. Indeed, when the FSMs get reset,
memory was being used by the various workers of the
simulation. Let us assume that address a was owned by
worker W (e.g. a is some stack memory in the simulated
program). If the next access to a done by W is a read,
it does not mean that a has become a read-only shared
address and must go in the read_shared state. It is very
likely that a is still used by W only and should come back
to the owned state. However, not all addresses that are
read first are owned by the reader (e.g. read-only shared
memory). The read_exclusive state allows to differ
the decision until it is possible to choose between owned
and read_shared based on more than only reads from a
single worker.

It can be noted that any access causing a dependency
corresponds to a “ ” transition, causing the offending
worker to be unscheduled. Thus, the zero dependencies
guaranty is provided by this FSM.

The FSM state is composed of the following fields
packed in 4 bytes to allow for fast Compare And Swap
(CAS): the state id, the owner WID and a generation
counter for fast reset (see section 4.2.4).

Upon memory access, algorithm 2 is used in algorithm 1
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Algorithm 2 FSM update algorithm
1: procedure updateFSM(WID, accessType)
2: Sold ← S . S is the FSM 4-byte state
3: Snew, go← getNewS(Sold, WID, accessType)
4: if Snew! = Sold then
5: S.CAS(expected=Sold, new=Snew)
6: if CAS failed then
7: return updateFSM(WID, accessType)
8: end if
9: end if
10: return go
11: end procedure

at line 6 for fast and wait-free FSM update. The transition
computation getNewS is defined by fig. 3 and consists in a
4-case switch statement with a couple of ternary expressions
per case. getNewS returns the new state and a boolean
which is true if and only if the transition is not a “ ”,
that is if the access is granted.

It can be noted that the transition application requires
an atomic CAS as two or more workers might attempt to
update the FSM concurrently. However, doing the CAS
is required only if changing the state (c.f. line 4). It is an
optimization that happens to be correct for this specific
FSM. It can be verified by assuming the CAS is always done.
In the cases where it would have failed while being skipped
by the line 4, the final state of the FSM and the value
returned by updateFSM are actually the same whether a
second attempt is done on line 7 or not. Hence, the CAS
is useless in those cases in the first place.

Keeping the state from one quantum to another makes
this approach extremely fast but also causes unnecessary
unscheduling. For instance, if the first access to an ad-
dress in the read_shared state is a write, it will lead
to unscheduling despite causing no dependency. However,
preserving the state across evaluation phases also help
triggering the optimization on line 4 more often because
addresses tend to be used in the same way for relatively
long periods of time (c.f. temporal reference locality prin-
ciple [30]). But just as an address is not used for a single
purpose for the whole power-on time of a computer, keeping
the same state for an address during the whole simulation
is not efficient either. Choosing a good reset policy is a
difficult question by itself and is discussed in section 4.2.4.

4.2.3. Correct access recording order
One crucial correctness condition is the memory accesses

are recorded in the same order as they are performed. At
least, they must be recorded in an order that exhibits the
same dependencies as their real order.

Let us assume an alternate FSM that does not provide
the zero-dependencies guaranty, applied in the example
Figure 4. The instrumentation records the write of P0 to
address a before the read of P1 while P1 reads a before P0
writes it. The dependency analysis would then consider

W0

W1

mem_instr(w(a, 1)) w(a, 1)

mem_instr(r(a)) r(a)
W0 →W1

W1 →W0

Figure 4: Example of bad memory access recording order. Axes
represent the wall clock time.

P0 → P1 because of a RAW on a while the real dependency
is P1 → P0 because of a WAR. Such error could lead
to undetected conflicts which is not acceptable from a
correctness standpoint. An obvious workaround would be
to include the instrumentation and the access in a critical
section prohibiting at least the other memory accesses to
the same variable to happen simultaneously, but that would
result in unacceptable performance degradation.

However, enforcing strictly identical order between ac-
cesses and their recording is not necessary as long as the
correct dependencies are detected. In particular, if the
recorded order of independent memory accesses differs
from their real order, no dependencies are missed as theses
accesses are independent by hypothesis. The zero depen-
dencies guaranty provided by our FSM implies that no two
dependent memory accesses can occur concurrently dur-
ing the parallel phase. The scenario fig. 4 cannot happen
as P1 would be unscheduled before the read to a is both
recorded and performed. In general, the order in which
memory accesses are recorded during the parallel phase is
not significant in our case. Indeed, any reordering of the
recorded accesses would not produce any dependency as
they are all independent.

Eventually, we do not guaranty strict memory access
recording order. Instead, we provide a sufficient guaranty
so that the instrumentation and the corresponding access
need not be protected by any sort of additional synchro-
nization for the recorded order to be correct. This has
a major impact on performance and allows perfect algo-
rithmic scaling with the number of workers running in
parallel.

4.2.4. Efficient FSMs Reset
In the FSM depicted on fig. 3 no transitions leave the

states owned and read_shared: they are fixed points.
Therefore, once reached, such state would last during the
entire simulation. This accommodates programs whose
memory accesses pattern is constant over its execution.
For instance, if the simulated program only consists in
multiplying two squared matrices of size n and storing
the result in a third one: C = A × B. Each one of the
N threads is responsible for computing n

N consecutive
lines of C. A would stay in the read_exclusive state
as each line is only read by a single worker. B would
stay in the read_shared state as all workers read the
entire matrix. C would stay in the owned state as each
line is written by a single worker. However, addresses
are often used by a worker for a certain amount of time
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and then by another like in the Deriche filter. In this
algorithm, horizontal and vertical pass on an image are
alternated. In a naive parallel implementation, the image
is split horizontally for the horizontal pass and vertically
for the vertical pass. Consequently, pixels are all in the
owned state after the horizontal pass and need to change
owner before the vertical pass in order not to unschedule
most memory accesses. However, setting the owner of an
address is only possible from the no_access state.

Efficient simulation of the Deriche filter (and of most
algorithms), hence requires to be able to reset the FSMs
at well-chosen instants. We will discuss here two aspects
of the problem:

1. When to reset the FSMs;
2. How to reset the FSMs efficiently.

Ideally, an FSM should be reset whenever its state does
not reflect the real state of the associated address (e.g.
an owner change in the Deriche filter). This is very hard
to detect accurately but an incorrectly classified address
will cause quasi systematic unscheduling, which is easy to
measure. A first approach could be to reset all addresses
that caused some unscheduling during the previous quan-
tum. However, a worker can only be unscheduled once
per quantum so no more addresses than there are workers
can be reset in each quantum with this approach. This
is inefficient as large amounts of addresses usually should
change owner simultaneously (e.g. the Deriche filter again).
Setting apart the addresses that need to be reset from those
that do not is impossible as it depends on the future of the
application.

As a result, we have chosen to reset all addresses every
time a worker is unscheduled. That way, all addresses can
transit to their most appropriate state from that point.
Addresses that did not need to be reset will only incur at
most a couple of additional CASs that are relatively inex-
pensive and performed in parallel by all workers. Resetting
all addresses is a good strategy to avoid further workers un-
scheduling. This reset policy also relies on the observation
that truly shared addresses such as mutexes are seldom
used in parallel programs relatively to the computational
workload due to their performance cost.

Other reset policies have been tested but gave no per-
formance improvement at best:

• Reset every N quantum

• Reset every N unscheduling

• Reset after one worker is unscheduled N times

Note that the special case “reset every N = 1 quantum”
with addresses grouped byte by byte makes our access grant-
ing policy optimal in the sense that it only unschedules all
workers introducing actual dependencies and only those.
However, systematic reset together with undersized ad-
dress groups leads to important instrumentation overhead.
This is mostly caused by the multiple calls to mem_instr

Algorithm 3 FSM update algorithm with lazy reset
1: procedure updateFSM(WID, accessType, gen)
2: Sold ← S
3: curGen← Sold.gen
4: if curGen 6= gen then . reset
5: Stmp.state← no_access
6: Stmp.owner ← ⊥
7: Stmp.gen← gen
8: else Stmp ← Sold

9: end if
10: Snew, go← getNewS(Stmp, WID, accessType)
11: if Snew! = Sold then
12: S.CAS(expected=Sold, new=Snew)
13: if CAS failed then
14: return updateFSM(WID, accessType, gen)
15: end if
16: end if
17: return go
18: end procedure

required for instance for typical word-sized memory ac-
cesses together with many additional FSM non-fixed-point
transitions.

Choosing to reset either none or all FSMs also enables
O(1) reset implementation using a generation-based reset.
As mentioned in section 4.2.2, a generation counter is part
of the state of the FSM. To virtually reset all FSM, a single
counter called fsm_gen needs to be incremented. The
value of fsm_gen is then passed to updateFSM as third
argument in algorithm 2 which is updated as in algorithm 3
in order to perform lazy reset. That way, FSMs are only
reset if they are accessed and directly by the very first
worker accessing them. The zero dependencies guaranty is
maintained as the reset of an FSM can only occur at the
very first access of the quantum. Thus, no dependency can
be introduced.

4.2.5. Ultra-Fast Scalable FSM Storage
On one hand, for memory accesses instrumentation to

be fast and scalable with the number of workers, they must
be stored in a container that supports concurrent accesses
while requiring little to no synchronization. However, we
do not require deletion or iteration. On the other hand,
the memory map of the simulated platform can be shaped
in arbitrary ways. It can span over huge memory ranges,
be sparse or even runtime defined (e.g. the PCI-e protocol).
The memory usage of our map must also remain contained
as it affects rollback performance (c.f. section 4.3.4).

Let us first briefly discuss the most common containers
and why they do not fulfill our requirements:

• A statically allocated contiguous array of FSMs would
potentially guzzle huge amounts of memory in order
to cover all the whole address map;

• Splitting it into a list of arrays in order to cover
only the used memory ranges is still quite memory
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Figure 5: Multi-level FSM table. Only tables hit by the access are
drawn.

intensive, requires additional target dependent pa-
rameterization from the user, is algorithmically inef-
ficient if there are many holes and does not support
dynamically defined memory maps;

• std::map and std::unordered_map both require ex-
ternal synchronization for concurrent accesses, which
would compromise performances.

Instead, we designed a custom container inspired from
multilevel page tables as illustrated fig. 5. Accessing an
element is done by using the successive fields of the address
to compute offsets in successive levels of nested tables. If
the table is defined with N levels, the N − 1 first levels
(the intermediate levels) contains pointers to the beginning
of the next level tables. The last level contains the element
themselves (i.e. FSMs in our case). When an intermediate
table is allocated, all pointers are set to nullptr. When
a worker W reaches a nullptr on the path to an FSM,
the next levels of the table need to be allocated. To that
extent, W first allocates the next level of the table before
attempting an atomic CAS on the null pointer in order
to make it point to the freshly allocated next level of the
table. If the CAS fails, it means that another worker has
concurrently allocated the next level so W can free the
allocated next level and proceed. When allocating the
last level of the table, all FSMs must be initialized to the
no_access state. Non-null pointers in the intermediate
levels of the table being constant, no synchronization is
required for concurrent access once initialized.

This container supports constant time random access
and concurrent wait-free reads and allocation. We are also
compatible out of the box with a 64-bit physical memory
map with a memory usage dedicated to FSM storage close
to the real memory usage of the simulated software. Also,
the locality of reference of the simulated application is
reflected in the container layout, thus benefiting from the
host caching system. A software caching system could also
be implemented in order to memorize the lastly accessed
page of FSM, but the additional logic cancels the theoretical
benefit.

We have implemented a template-parameterized page
table allowing us to experiment several configurations. Such
structure presents a speed-memory trade-off as increasing
the number of levels tends to improve the allocation gran-
ularity but increases the number of pointer indirections
required to access an element at the same time. The best
configuration can depend slightly on the simulated plat-
form but usually lies between 3 and 4 levels. Using a larger
first level (allocated only once) and successive levels of
decreasing size seems to give the best compromise on the
experiments conducted but the impact is small. Also step-
ping down to 2 levels in case of a 32-bit target platform
does not show any significant speedup (∼ 1%). We eventu-
ally chose a 3-level table with respective sizes (223, 221, 220)
in order to be able to cover all individual bytes in a 64-bit
address space.

4.3. The Sequential Evaluation Phase
When one or more workers have been unscheduled dur-

ing the parallel phase, they must complete their execution
during the sequential phase. First, we need to choose an
order to resume them (section 4.3.1). Also, dependency
can appear during the sequential phase, so we perform
dependency analysis at the end of each sequential phase
(section 4.3.2). In case no conflict is detected but dependen-
cies exist, they are recorded to be used during simulation
replay (section 4.3.3). However, if a conflict did occur, then
the simulation is no longer valid, so we use rollback to start
over from the last checkpointed valid state (section 4.3.4).

4.3.1. Choosing the Sequential Evaluation Order
A priori, any worker order is valid for the sequential

phase, but some orders are more likely to trigger conflicts
than others. Indeed, the dependencies formed during the
sequential phase depend on the order in which workers are
resumed. Figure 6 illustrates how the sequential schedul-
ing can cause a conflict or avoid it. In this example, we
assume P0 and P1 are unscheduled because of an access
to an already owned address not part of the illustration.
Independently from this unscheduling access, they both
access the shared variable x during the evaluation phase. If
P1 is scheduled before P0 like in case a© a conflict is formed
as P1 reads between the two writes of P0. However, if P0
is scheduled before P1 like in case b©, both writes happen
before the read from P1, avoiding the conflict.

This simple example illustrates the need for an efficient
sequential scheduling policy. Having no existing depen-
dency at the beginning of sequential phase, these cannot
be used to constrain the scheduling order. However, when
a worker W0 is unscheduled due to an access to an address
a that has W1 registered as its owner in the FSM, it is
likely that W1 has recently accessed a. As a result, it is
likely that when W0 will resume and do the access to a, the
dependency W1 → W0 will instantly form, whatever the
chosen sequential scheduling. A reasonable choice, then,
is to schedule W1 before W0 to minimize the risk for a
dependency W0 →W1 to form.
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Figure 6: Two sequential worker scheduling leading to different de-
pendencies.

To achieve this, every time a worker is unscheduled, we
register in a temporary potential dependency graph G a
dependency with the owner of the considered address, if
it exists. At the end of the parallel phase, we attempt a
topological sort on G to obtain an optimized scheduling
order. We also add the unscheduled worker that are not
in G at the end of the sequential schedule. In case G is
cyclic, we schedule all workers in ascending WID order for
simplicity.

One thing to keep in mind, however, is that the sequen-
tial phase might or might not issue a conflict, independently
from the shape of G. G is only a heuristic which has proven
to give significantly better results than random scheduling
on most applications. For that reason, a strict dependency
analysis is always required as explained in the next section.

4.3.2. Asynchronous Dependencies Analysis
We have demonstrated in Section 4.2 that dependen-

cies cannot occur during the parallel phase thanks to our
memory access granting policy and worker unscheduling.
In case there is no sequential phase because no workers
have been unscheduled — which is the case more than 99%
of the time in most applications — we can simply proceed
to the next evaluation phase without any extra precaution.

To that extent, during both the parallel and the sequen-
tial phases, all memory accesses are recorded in order to
construct the worker dependency graph at the end, if need
be (line 11 of algorithm 1). The required information is the
accessed address, the number of bytes, the type of access
and the WID of the accessing worker.

Recording all accesses during the parallel phase in a
conventional container such as an std::vector would cre-
ate huge contention. Fortunately, thanks again to the zero
dependencies guaranty, the recording order of memory ac-

W0

W1

W2 Access record
traversal

Parallel phase Sequential phase

Figure 7: Structure used to record memory accesses with a valid
traversal order used for dependency analysis.

cesses during the parallel phase does not change the final
dependencies. We only need that all accesses recorded dur-
ing the sequential phase are recorded before the accesses
of the sequential phase which, in turn, must be recorded
in correct order.

Recording the sequential phase in the real order is
achieved using a simple std::vector shared by all workers
in the sequential phase. For the parallel phase where
the order does not matter, we use one vector per worker
to guarantee maximum decoupling of memory accesses
recording. Accesses can then be enumerated one vector at
a time finishing with the vector of the sequential phase like
on fig. 7.

At the end of the sequential evaluation phase, the
recorded accesses are analyzed using another OS thread
while the simulation continues. We use the same graph
cycle detection algorithm to check for conflicts as in [8] (i.e.
Tarjan’s algorithm) but with a thinner resolution. Indeed,
accesses are analyzed at the byte level, meaning that ac-
cesses that hit the same block of memory addresses but
different bytes inside this block will not cause dependencies.
Because this analysis seldom takes place and is performed
asynchronously and can use spare host cores, its impact on
simulation speed is reduced to the bare minimum.

An important optimization consists in recycling the
memory access records once they are checked. Indeed, grow-
ing newly constructed vectors causes numerous memory
allocations and initializations that are expensive compared
to the rest of the memory accesses monitoring procedure.
For that reason, we only empty out these vectors in order
to reuse their existing buffers.

The dependencies analysis results are gathered by the
kernel thread during a subsequent parallel phase while it
waits for workers to finish as shown on fig. 2. Two results
are returned. First, the analysis tells if there was a conflict
during the analyzed evaluation phase. If there is, rollback is
used to recover from the error (c.f. section 4.3.4). If there
is no conflict, a linear ordering of the workers involved
in the dependencies is saved in the output replay vector
alongside the analyzed phase identifier to later be able
to replay the simulation (c.f. section 4.3.3). The rollback
functionality will need to replay the simulation from the
restoration point up to the problematic evaluation phase,
which uses the same mechanism as full simulation replay
for debugging purpose. We therefore present the replay
mechanism first.
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4.3.3. Replay Trace Generation
SCale 2.0 allows for simulation replay. That is, the

first run of a simulation, which we call the recording run
generates an execution trace that can be used during sub-
sequent runs of the same simulation to reproduce the same
behavior. We call such run a replay run. Notice that the
recording run, while being non-deterministic in the sense
that the equivalent sequential schedule of each phase is
not predetermined, respects the co-routine semantics and
is already standard compliant. Replay is an additional
convenience offered for debugging purpose.

Simulation replay is useful for debugging purpose in
order to reproduce a faulty behavior and fix it. However,
replaying a simulation requires determinism, which is our
first motivation in achieving standard-compliant parallel
simulation, that is having each evaluation phase be equiva-
lent to a sequential evaluation. In order to be able to replay
a simulation, we need to know which sequential schedule
we are equivalent to.

This is achieved after each sequential phase of the record-
ing run using worker dependencies analysis yielding an
equivalent partial sequential schedule after each sequential
phase. Only the workers involved in dependencies appear in
this sequential schedule. For instance, if there are 5 workers
with WIDs ranging from 0 to 4 and the dependency graph
after evaluation phase E is

2→ 0, 2→ 3

then the equivalent sequential schedule provided by the
dependencies analysis can be 2→ 0→ 3 or 2→ 3→ 0. As
1 and 4 are not part of it, it implicitly means that they
can be scheduled at any time in the equivalent sequential
schedule of E, during the parallel phase of the replay run.

To enable simulation replay, the recording run only
need to store in a file all the equivalent partial sequential
schedule returned by the dependencies analysis associated
to the identifier of the evaluation phase they relate to. This
identifier is an integer incremented before each evaluation
phase.

When replay is activated by passing the trace file to
the simulator, an input replay vector is initialized with
the replay file content ordered by decreasing order. The
scheduler logic in replay mode is then described in algo-
rithm 4. In particular, line 3 is responsible for testing if the
next evaluation phase has a constrained order by checking
the phase identifier of the last element of the input replay
vector; line 4 retrieves this order; line 5 pops the last entry
in the input replay vector; line 10 performs the constrained
evaluation. The evaluation can be conducted in several
ways. The sequential workers being independent from the
ones in the parallel phase, they can be evaluated in parallel
with the parallel phase (i.e. the sequential phase runs in
parallel with the parallel phase). However, maintaining the
sequential phase after the parallel phase allows safe replay
verification using the same memory accesses instrumenta-
tion as during the recording run. We have selected the first

Algorithm 4 Scheduler logic outline. irv is the input
replay vector.
1: procedure evaluateNextPhaseReplay(irv)
2: ++phaseID
3: if phaseID == irv.back().phaseID then
4: seq ← irv.back().orderedworkers
5: irv.pop_back()
6: else
7: seq ← ∅
8: end if
9: par ← {pid | pid is ready and pid /∈ seq}
10: parAndSeqEval(par, seq)
11: end procedure

option for our experiments but the second one helped for
model instrumentation debugging.

Memory accesses instrumentation could be disabled in
replay mode if the model is guaranteed to be correctly
instrumented. The most efficient way to do it would be
to have a replay-specific binary with all the dependency
analysis related functions replaced by empty functions in-
stead of repeatedly checking if replay is active in numerous
places of the simulation. However, due to the relatively
low overhead of instrumentation and the debugging help it
provides in case of bugged model instrumentation, we have
chosen to keep instrumentation active in replay mode.

Replay is also used in case of rollback as it is developed
in the next section.

4.3.4. Conflict Recovery With Rollback
In case of conflict, the simulation is no longer valid, and

it must rollback to the last valid checkpointed state. While
rollback has never been considered for optimistic PDES
of SystemC models due to its cost and complexity, it has
been used for other purposes. For instance, [31] proposes
a Checkpoint/Restore (C/R) framework for SystemC vir-
tual platform that enables resuming a regular SystemC
simulation at different points for debugging purpose. In
a completely different approach, [32] proposes to rely on
posix’s fork() to recover from timing errors caused by
temporal decoupling. While fork() cannot be used for
multithreaded process checkpointing because threads do
not survive forking, process level checkpointing like in [31]
supports it. However, we make a different use of it. A
complimentary and non SystemC-specific approach can be
found in the rr-project [33]. rr —for record and replay—
runs a process in a virtually sequential environment while
recording all its inputs (e.g. data returned by system calls).
It allows to replay execution of large-scale processes such
as a full featured browser but enforces sequential execution
where SCale 2.0 aims at the opposite: adding parallelism to
an originally sequential and deterministic simulator. These
two approaches to recording and replay are not to be con-
fused but could be combined in order to increase SCale 2.0
compatibility with simulation that rely on external outputs.
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For simulation rollback, we rely on process C/R using
CRIU [34]. This tool can perform full OS process state
checkpoint to drive and restore a process from these gener-
ated files. Also, CRIU supports incremental checkpoints,
that is it can checkpoint only the memory that has been
modified since the last process checkpoint. This speeds up
drastically the checkpointing operation allowing to increase
their frequency. Together with OS automatic file caching
or the use of a RAM disk, process checkpoint overhead is
limited. Typically, a simulation using 1 GB of physical
memory can be checkpointed in less than 500 ms while
incremental checkpoints take about 100 ms.

Figure 8 illustrates the overall rollback-based conflict
recovery logic. An initial dump is performed before the
first evaluation phase. Then, the simulation runs until a
conflict arises. If so, the simulation is restored to the last
valid checkpointed state and runs again in replay mode
until the conflicting quantum is reached. This quantum is
sequentially evaluated to prevent the conflict from occurring
again. A new snapshot is made right after this quantum to
be used as the next restore point in case another conflict
arises later. Checkpointing once the conflicting quantum
finishes guaranties faster simulation progress in case another
conflict arises briefly after.

Notice that it is required to use simulation replay be-
tween the restored checkpoint and the conflicting phase as
a conflict could occur at a different place otherwise, causing
simulation to rollback to the same checkpoint several times
in a raw, preventing progress. It is also mandatory to wait
for all pending evaluation phase check to complete in order
to ensure the next checkpoint contains a valid state of the
simulation.

Checkpoint frequency impacts could benefit from more
in-depth investigation, but we have sufficient insights that
allows to choose an appropriate parameter. To this day,
we perform regularly spaced dumps at between 1- and 2-
secons intervals depending on the simulated application
profile. It appeared that the impact on final performance
is minor as conflicts tend to be densely distributed in some
areas, making the checkpoint frequency determined by the
rollback frequency, while they are seldom in other areas of
the simulation, making the checkpoints spaced at the chose
frequency. Excessively reducing the checkpoint frequency
will also incur a longer replay phase after each extended
conflict-free period, canceling the small benefit of a large
checkpoint interval. We settled at a 1.5 second checkpoint
interval as a good compromise.

Performing a rollback is useful only if able to memorize
the information required to avoid the conflict the next time.
In our case, we want to transfer the replay instructions
and the conflicting phase identifier. Figure 9 illustrates the
principles of the rollback system designed toward that goal.
It is packaged as an external library as rollback-based error
recovery could be applied to other applications than Sys-
temC simulation. While the simulation can self-checkpoint
sending a request to the CRIU service, it cannot self-restore.
Hence, for a C/R cycle to complete autonomously, we need
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Figure 9: Protocol of interaction between CRIU, driver and simulation.
In SCale 2.0, an error always corresponds to a conflict during an
evaluation phase.

two processes: the driver and the simulation. The simula-
tion is the actual workload that can encounter errors and
requires rollback. The driver is an idle process that only
spawns the simulation and wakes up to serve rollback re-
quests from the simulation. The simulation and the driver
communicate together with named pipes as the link must
survive one of the two processes dying. The QEMU service
process listen to requests on a UNIX-domain socket.

When the simulation needs to be restored, it sends a
request to the driver together with some serialized data
before aborting. Once the simulation process is done, the
driver sends to CRIU a restore request. Finally, once the
simulation is restored, it retrieves the serialized data that
the driver immediately sends back and starts simulating
again.

However, while being a fast and powerful C/R tool,
CRIU has not been designed for error recovery using roll-
back. It presents certain limitations that require some
additional engineering on our side to circumvent. The ma-
jor limitation is that a process can only be checkpoint and
restore with the same OS process identifier. However, if
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such identifier has been recycled for another process be-
tween simulation abort and restore, CRIU will not restore
the simulation until the process identifier is freed. For roll-
back to be usable, we had to run simulations in a process
identifier namespace [35]. Other technicalities outside of
the scope of this paper also required to use a program as
dumb-init [36] for zombie process reaping as CRIU restores
processes as daemons.

Additional minor limitations are CRIU’s flat refusal
to restore processes with handles to files whose size have
changed. For instance, if a file contained 35kB at check-
point time but is 42kB at restore time, CRIU refuses to
proceed for safety reasons. This could be fixed as a patch
on CRIU side in order to ignore such check (thus overwrit-
ing the content written after the last checkpoint) or by
truncating all files to their checkpoint size before sending
the restore request. The simplest fix is to flush streams to
files only right before each checkpoint, when the simulation
has been fully checked up to this point and it is guaranteed
it will never need to revert to an earlier checkpoint. Also,
CRIU accesses some kernel facilities restricted to root, thus
requiring starting its service manually or to run the whole
simulation as root. Lastly, incremental memory dump is
not supported for the first checkpoint after a rollback, re-
quiring a full and slower dump. As a result, even if memory
can be checkpointed and restored at close to 3GB/s, freeing
unnecessary memory before checkpoints can be beneficial
to both restore and non-incremental checkpoint speed. We
do so by freeing all memory access records used as part of
the dependencies analysis system. The cost of reallocating
access records buffers every 1.5 seconds or so is negligible.
This limitation could however also be relatively easily fixed
on CRIU side and is discussed on their side.

4.4. Generalization to Any Shared Resources
As explained in the section 4.1, we have assumed up

to this point that the only worker interactions come from
shared model memory accesses. However, interactions
could happen at many other locations of a SystemC model.
For instance, the interrupt management system of an ISS
such a QEMU is a complex set of variables read and written
from both inside and outside the ISS. All these shared
resources must be handled carefully.

We distinguish 2 types of shared resources based on the
type of interactions they cause:

1. with external side effects: changing the order of in-
teraction changes the behavior of the simulation pro-
cesses. For instance, model memory accesses, inter-
rupt raising, or timer component access often have
consequences on the rest of the simulation.

2. without external side effects: changing the order of
interaction does not changes the behavior of the pro-
cesses. For instance, incrementing an atomic access
counter on a component, allocating system memory
or reading a constant shared variable does not influ-
ence the rest of the simulation. However, the value of

an atomic counter must never be used as a condition
for anything or it would have side effects.

It is up to the user to detect all potential interactions
between worker, just as when checking interactions between
threads in a regular multithreaded program. A number
of these interactions cause data races but end up being
without external side effects once protected either using
atomic operations or mutexes. The rest of the interactions
(i.e. with external side effects) must be protected using our
system.

To that extent, the user first must define each shared
resource perimeter. Just as memory bytes are grouped
to increase monitoring efficiency, a shared resource such
as the interrupt management system of an ISS can either
be considered as a set of shared resources (each one of
its variables) or as a unique resource. Similarly, a timer
module likely has some internal logic that is shared between
processes and only making it thread safe could change the
event delivery order. This makes the timer a resource
with external side effects, thus requiring monitoring of its
accesses. The question is again whether the timer should
be considered as a single resource or as a set of resources.
After our experience, considering such aggregated resources
as a unique resource is often the safest and faster choice.

At this point, resources are delimited but we have only
explained how we can protect a full 64-bit memory map.
We generalize this approach by classifying all operations
on a resource as reads or writes. The former are operations
that do not modify the accessed resource while the later
do. Then, we define identifiers for all these resources and
associate an FSM to each one of them. The identifiers can
be contiguous integers, enabling the use of a preallocated
vector to store the FSMs. Finally, the user just needs to
insert calls to the provided generic_instr function that
does the same as the mem_instr function but for the other
resources designated as generic resources. In case it is not
clear whether some code, for instance hidden inside an
ISS, performs reads or writes, it is a conservative choice to
declare the whole as a write.

All the required elements for standard compliant paral-
lel simulation of time-decoupled TLM-LT models have been
exposed. Section 6 will discuss some extra functionalities
brought in order to answer some Linux-specific issues we
have encountered.

5. Evaluation

5.1. Experimental Setup
Experiments have been conducted on a 36-core bi-Xeon

Gold 6154 clocked at 3.5GHz with frequency scaling dis-
abled.

The reference VP used for the evaluation of our contri-
butions is a RISC-V SMP platform illustrated fig. 10. Each
core is modeled by an instance of QEMU encapsulated in
a SystemC wrapper implemented after [7]. The platform is
composed of 1 to 32 cores for baremetal benchmarks, thus
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Figure 10: Architecture of the simulated platform here with 3 cores

using 2 to 33 cores on the host machine because of the ker-
nel thread. For Linux benchmarks, only the 32-core version
of the platform is used. The cores are connected through
a bus to a RAM, an UART and an interrupt controller.
DMI is used to access the memory for faster simulation.
Our goal here is to shorten the memory accesses simulation
in order to evaluate the relative overhead of instrumenta-
tion in worst-case conditions. In our case, DMI reduces a
memory access to checking that it targets the RAM and
doing an access of the size required by QEMU using a raw
pointer to the underlying memory of the RAM component.

We have selected five benchmarks to evaluate the per-
formance of the proposed approach. Three of them are
implemented both in baremetal, that is to run without the
support and complexity of a guest OS, and on Linux 4.10:

1. Matmul: 10 parallel multiplications of two square
matrices of size 512. Each thread computes a hori-
zontal block of the result. Threads only synchronize
between each of the 10 multiplications.

2. Deriche [37]: A 10-pass Deriche filtering is applied
in place to a 4 megapixels image. This benchmark
is composed of a horizontal followed by a vertical
filtering, making the whole image shared by all the
threads. Each core processes a contiguous block of
the image, either horizontal or vertical depending on
the filtering stage.

3. MobileNet [38]: a 31-layer classification convolutional
neural network analyzing a triple channel 160× 160
images. The parallelism potential varies depending
on the computed layer and much more synchroniza-
tions occur than in the first two benchmarks. Each
convolution of each layer is attributed to a different
thread.

All these three applications were ported to Linux using
posix’s threads. Synchronization is achieved in both cases
using a spinlock-based barrier.

Two other benchmarks from the PARSEC3.0 suite [39]
were only used on Linux as they make extensive use of OS
supported functionalities (e.g. dynamic memory allocation
or filesystem accesses):

1. Blackscholes: An Intel RMS benchmark computing
options pricing using the Black-Scholes partial differ-
ential equation;

2. Swaptions: Another Intel RMS benchmark comput-
ing options pricing but using the Heath-Jarrow-Morton
framework.

Despite looking similar from the description standpoint,
these two applications have drastically different behavior.

Please also notice that the results obtained in the follow-
ing experiments cannot be compared to other approaches
conveniently. First, most of the other contributions have
no public release. Then, none of the other approaches
tackles parallel simulation of LT-TLM models of SMP plat-
forms. Only SCale 1.0 does and a comparison is done in
section 5.3.1.

5.2. Experimental functional validation
In addition to performance evaluations, functional va-

lidity and robustness of simulation replay have been exper-
imentally asserted using a synthetic baremetal benchmark.
It consists in a master thread that sends software interrupts
to a set of slave threads upon reception of a timer inter-
rupt scheduled at regular intervals. Between interrupts,
slave threads hash a local variable h repeatability in an
infinite loop. When they receive the interrupt, they all
pause and the value of h for each thread is collected by the
master thread and hashed in a total variable. This cycle
is repeated up to 1024 times varying the timer interrupt
interval. The output of the program is the final value of
total which shows pseudo random variations from an ex-
ecution to the next when not using deterministic replay
as interrupts are raised and handled at non-deterministic
times. To the contrary, the value of total at the end of
the replay runs is always the same as at the end of the
corresponding recording run.

We also checked on Blackscholes and PARSEC and on
many other complex Linux applications from the PAR-
SEC suite (e.g. ferret, fluidanimate, freqmine, etc.) that
replay with monitoring enabled exhibits no conflict nor
deadlocks caused by atomicity violations for instance. Con-
sidering some of these applications can cause hundreds of
rollbacks and generate replay traces with tens of thousands
of scheduling constraints, we consider this as an additional
experimental proof of validity.

The remaining of this section now focuses on the per-
formance of SCale 2.0.

5.3. Performance Evaluation
As the baremetal and Linux-based applications behave

differently with SCale 2.0, they are analyzed in separate
sections, respectively sections 5.3.1 and 5.3.2.

5.3.1. Baremetal Performance Evaluation
Baremetal applications present the advantage to be very

predictable and to offer the highest simulation speed in
most simulators. We use them as semi-synthetic use cases

16



to characterize the impact of our approach on simulation
speed (mainly the speedup from parallelization and instru-
mentation overhead) and as a comparison against SCale in
its original version.

Figure 11a illustrates the impact of quantum size on
simulation speed. As expected, increasing the quantum
size results in a significant speedup reaching up to 2,300
MIPS with Matmul. However, when the quantum gets too
large, speed decreases for Deriche and MobileNet. This
is due to the much higher number of synchronizations
in a single quantum. Relying on shared variables, each
synchronization leads to worker sequentializations and FSM
reset. When the quantum increases, the amount of time
spend in sequential phases because of worker unscheduling
increases to a point where it is no longer compensated
by the speedup in the parallel phase. For the rest of
the baremetal evaluations, we use a quantum of 30,000
instructions with 1GHz simulated processors (i.e., 30,000
ns quantum) as a performance compromise between the
three benchmarks.

To evaluate the influence of memory accesses instru-
mentation and worker sequentialization, four versions of
the kernel are compared on fig. 11b. The overhead of
instrumentation and sequentialization compared to fully
parallel simulation ranges from 34 to 48%. Part of this
speed reduction is due to sequentialization as the overhead
of instrumentation. The rest is caused by instrumenta-
tion overhead which is to put in perspective with the raw
speed of the free parallel simulation: from 1,600 to 3,200
MIPS. Sequentialization overhead is hardly compressible
as it results from strict co-routine semantics enforcement.
Instrumentation overhead is to compare to the already
extremely low memory access simulation cost: a pair of
function calls and a raw pointer-based memory access. Also,
the increase in speed compared to [8] is significant ranging
from ×60 to ×110. It is mostly due to the much faster
instrumentation technique together with the asynchronous
conflict checking.

Figure 11c illustrates how our simulation kernel scales
with the number of host cores used to simulate a 32-core
platform. Overall, speedups using 32 host cores (plus the
kernel core) range between ×17 and ×21 compared to
using a single host core on SCale 2.0. The exact cause of
sublinear speedups in unknown but is also observed when
running a parallel simulation without memory accesses
instrumentation. As a result, either SCale 2.0, the model,
the simulated software or the host inherently do not scale
up to 32 workers. A combination of these factors is probably
in play.

fig. 11d shows the impact of simulated platform com-
plexity (number of simulated cores) on speed when always
using one host core per simulated core. While using the
Accellera kernel is faster to simulate a single core platform
due to a simpler scheduler and the absence of instrumen-
tation, the speedup is already significant on a dual-core
platform simulated in parallel as shown on fig. 11d. It
reaches up to ×15 on a 32-core simulated platform running

Matmul.
In all baremetal benchmarks, all conflicts were avoided,

and rollback was unnecessary. In general, conflicts are sys-
tematically avoided if processes always synchronize using
a same shared variable before accessing data previously
owned by another worker. It is the case in our baremetal
benchmarks as they all implement a fork join pattern with
barriers every time the working set of the threads changes
(e.g. between the horizontal and vertical passes in Deriche).
This barrier being a single shared variable, all but one
worker are unscheduled when accessing it (c.f. zero depen-
dencies guaranty), resulting in a fully sequential evaluation
at barrier crossing. Before and after the barrier, working
sets are disjoined in order to avoid data races, as in most
lock-based parallel algorithms.

However, whenever lock-less programming patterns are
used in the simulated software, shared variables can be
used in unpredictable order and conflicts arise. This is
typically the case in Linux based application as detailed in
section 5.3.2.

5.3.2. Linux Performance Evaluation
Figure 12 shows that, without further measures to avoid

conflicts, while the speedup ranges from ×2 to ×8.5 during
replay runs, it caps at ×3 during the recording run and
is sometimes lower than ×1, going down to ×0.5. This
section will further analyze the root causes of these lower
performance and provide solutions to some of them.

Lower speedups can have many causes, either internal
or external to Scale 2.0. For instance, bad parallelism in
the simulated platform causing unbalanced load between
workers. This is not the case here as each worker evaluates
the same number of processes all simulating symmetrical
cores.

Bad parallelism in the simulated software can also cause
bad load balancing among workers. For instance, simu-
lating an idle core is almost instantaneous in our model
resulting in some workers waiting for those simulating
non idle cores. This is the case during the Linux boot
and poweroff which are mostly sequential procedures and
during some parts of each benchmark (e.g. setup, result
aggregation, etc.). For instance, the parallel section of the
Blackscholes benchmark accounts for less than 50% of the
total simulation duration when simulated on the ASI kernel
and the rest of the simulation being mostly single threaded.
According to Amdahl’s law, the maximum speedup achiev-
able through parallelization is less than ×2. In general,
when simulating a full software stack that includes numer-
ous sequential sections, the maximum achievable speedup
cannot be proportional to the number of workers, but the
upper limit is very hard to determine accurately. In order
to eliminate this unknown from the causes of sub-linear
speedup, all subsequent measures ignore the boot, the
poweroff and the benchmark loading procedure from the
measure to focus on the parallel workload only.

However, OS provided functionalities such as virtual
memory or filesystem management can introduce massive
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Figure 11: (a) Simulation speed analysis depending on the simulation quantum size. The highest point of each curve is annotated. (b)
Impact of instrumentation and worker unscheduling compared to free parallel execution when simulating 32 cores. Version 1 consists in a
parallel simulation without enforcing processes atomicity. It includes the required synchronization for peripheral accesses of atomic instruction
simulation for instance. Version 2 shows the overhead of instrumentation and conflicts detection alone without worker sequentialization.
Version 3 implements all the contributions of this paper and is standard compliant. Version 4 is the same model but linked with version 1.0 of
SCale from [8] without the ensuring correct memory order recording as explained in section 4.2.3 as systematic locking is unfair to this solution.
(c) Scaling of the simulation speed with the number of used host cores (excluding the kernel core). (d) Simulation speed per simulated core
with parallel (1 host core per simulated core) and sequential simulation (Accellera kernel).

amounts of synchronizations compared to the benchmark
workload itself. The resulting numerous worker interdepen-
dencies lead to a lot of sequential worker evaluations that
can be a major cause of sub-linear speedup in some por-
tions of the simulation. Still, sequential worker evaluation
account for less than 5% of the total simulation time in
all benchmarks as shown on fig. 13, making it a secondary
cause of reduced speedup. Frequent checkpointing cost is
also to be considered. While incremental checkpointing
drastically reduces its cost, it accounts for up to 10% of
the total simulation time.

However, the sources of slow down are dominated by the
cost of conflicts. Rollback and resimulation alone account
for 40% to 50% of the simulation. Adding the cost of the
non-incremental checkpoint required after each rollback,
conflicts account for closer to 60% of the total simulation
time.

As a result, reducing the number of conflicts to a min-

imum is essential in order to preserve overall simulation
speed. The various options explored are discussed in sec-
tion 6.

6. Full Software Stack Simulation

6.1. Obstacles to Conflicts Suppression
The first improvement one could think of would be to

improve the conflict avoidance measures. We have identified
two direct improvement tracks:

1. Issuing better schedules in the sequential phase as
not all of them always lead to conflicts;

2. Unscheduling workers earlier using a more refined
access granting policy in order to increase the amount
of sequential execution as a trade of with rollback
and resimulation.
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investigation using 2 and 4 workers with the MobileNet benchmark,
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On the one hand, rapidly issuing a good sequential
schedule is difficult as no dependencies yet exist at the end
of the parallel evaluation phase. Also, there is no guarantee
that there exists a sequential schedule that would prevent a
given conflict from occurring. Determining, after a conflict
has occurred, if a different sequential schedule would have
prevented any conflict from happening is impossible with-
out running this very same sequential phase in a different
order. We plan on doing extensive testing soon taking
advantage of our rollback mechanism in order to determine
the room for improvement on this track.

On the other hand, a better access granting policy often
results in a compromise between the time required to de-
termine if an access can proceed or lead to a worker being
unscheduled, the amount of additional unscheduling done
while no conflict would have occurred anyway (i.e. pes-
simization) and the amount of conflicts let through. While
we plan on performing in-depth analysis of conflicts causes
in order to quantify the room for improvement, we have
resorted to other strategies detailed in the next sections in
order to significantly reduce conflicts occurrences.

6.2. Adaptive parallel/sequential evaluation and variable
accuracy

While characterizing the memory access patterns re-
sponsible for the conflicts is a difficult problem, the code
sections responsible for conflicts are easier to identify. The
first obvious code sections that cause many conflicts are
the Linux boot and poweroff procedures. At the same time,
these code sections are of little interest to the simulator
user who usually wants to analyze the behavior of its plat-
form in the application under development, not the OS
setup and tear down code.

We define the Region of Interest (ROI) as the part of
the code where the user needs more accurate information
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Figure 13: Analysis of the time spent in parallel and sequential
simulation, in checkpointing and rollback procedures as well as the
overhead caused by re-simulation after rollback, when using 8 workers
(the trend is the same with all numbers of workers). Note that
non-parallel simulated code might not result in sequential worker
evaluation. The sequential time only reflects the amount of time
spent in sequential evaluation phases.

about the simulated platform behavior such as timing or
cache behavior. On the opposite, we assume that the user
only needs the platform behavior to be functionally correct
outside of the ROI. It generally requires that the instruction
set and peripheral accesses are consistently simulated in
order to guarantee progress and valid model state. In
particular, timing information is of little interests outside
of the ROI. However, determinism must be preserved both
inside and outside the ROI to ensure determinism.

In order to maximize simulation speed outside of the
ROI, parallel execution is not always the fastest option if
timing is optional. QEMU on its own can reach very high
simulation speeds at the instruction set simulation level
thanks to dynamic binary translation. Though, as detailed
in [7], integrating QEMU to a timed SystemC/TLM model
requires that memory accesses (i.e. load, stores and fetches)
are instrumented in order to hand over to the SystemC
model each time such access occurs. This instrumentation,
while being a pair of indirect function calls followed by a
DMI memory access in our case significantly slows down
QEMU but still maintains top level performances in the
class of SystemC/TLM models.

In order to take advantage of the huge raw speed of
QEMU outside of the ROI, while preserving modelling accu-
racy inside, we have setup dynamic accuracy also described
in [7]. It allows to switch during the simulation from what
we call fast mode, that is limiting memory access instru-
mentation to peripheral accesses and instruction counting
for rough timing estimation, to accurate mode enabling
full memory access instrumentation in QEMU for SystemC
modelling. However, the fast mode does not support paral-
lel execution as mem_instr, the SCale 2.0 instrumentation
function, cannot be called if memory accesses are not in-
strumented in QEMU. As a result, standard-compliant
parallel execution cannot be ensured anymore but sequen-
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Figure 14: Temporal repartition of conflicts in ROI (cumulative
curves).

tial evaluation remains valid.
Because we have measured that our model in fast mode

is faster than parallel execution in accurate mode during
the Linux Boot and poweroff, we have integrated a variable
parallel/sequential evaluation feature to SCale 2.0 allowing
to switch during the simulation from sequential to parallel
scheduling. Together with dynamic accuracy, the variable
parallel/sequential evaluation allows to choose the faster
and lighter yet deterministic sequential fast mode outside
of the ROI while using the parallel accurate mode during
the ROI.

Remains the question of the performance inside the
ROI. Each benchmark behaves differently, some giving
very good speedups in parallel execution while others cause
so many conflicts that the ROI is even slower than using
the sequential ASI SystemC kernel. We further investigate
this issue in the next section.

6.3. CPU Mode Based Unscheduling
We have studied the conflicts distribution in each bench-

mark ROI using 2, 8 and 32 workers on fig. 14. Indepen-
dently from the benchmark, conflicts tend to be grouped
at the beginning or the end of the ROI. In-depth analysis
showed us that the conflicts frequency is much higher dur-
ing the first pass on the benchmark dataset. For instance,
in Deriche, conflicts occur when the input image is copied
into the working buffer while in MobileNet conflicts occur
mostly during the first iteration (out of three on the same
input) during which the input and network coefficients are
loaded into memory. Similarly, the final conflicts can either
be caused by the writing of the result into the result buffer
or by the threads joining.

In order to validate those assumptions, we edited four
versions of the Matmul, Deriche and MobileNet bench-
marks:

1. native: No modification
2. no join: The end of the ROI is triggered before the

benchmark threads exit.
3. warmup: All data buffers used during the benchmark

are accessed once before the ROI starts.

Table 1: Number of conflicts depending on benchmark variant and
number of workers

Benchmark Variant Conflicts
(nb. workers)
2 8 32

Matmul

original 4 3 5
no join 10 1 1
warmup 10 4 4
warmup no join 5 0 0

Deriche

original 53 104 136
no join 33 109 121
warmup 5 6 5
warmup no join 0 0 0

MobileNet

original 88 411 479
no join 84 386 418
warmup 18 16 14
warmup no join 9 2 0

4. warmup no join: Both 2. and 3.

The number of conflicts in each one of these variations is
shown in table 1. Set aside some minor variations especially
on Matmul which natively presents few conflicts, each
variant in the list is an improvement over the previous one,
with the warmup-enabled variants being strongly better
than the others.

When running under an OS such as Linux, even a
simple variable initialization can cause a lot of extra code
to be executed like a page fault handling procedure for
instance. This translates into a strong correlation between
the conflicts frequency and the amount of system code being
executed in the benchmark.

Then, in order to reduce the number of conflicts, we
have chosen to run all the system code in the sequential
phase. System code can be identified by looking at the
CPU mode [40]. If it is in machine or supervisor mode,
then we are facing system code and if it is in user mode,
then we are facing user code.

We added a callback to QEMU in order to catch CPU
mode changes. In addition, a force_sequential(bool)
function has been added to SCale 2.0. This function al-
lows a worker to self unschedule and be executed sequen-
tially when calling force_sequential(true) until it calls
force_sequential(false). In order to run all system
code sequentially,

force_sequential(new_mode != user_mode)

is called upon every CPU mode changes.
The number of conflicts when executing the system code

sequentially as well as the speedup in the ROI compared to
the ASI kernel are shown on table 2 and fig. 15. It can be
observed that the number of conflicts is drastically reduced
to between 0 and 3 for the whole simulation (this number
varies slightly from one recording run to the other). It
leads to a speedup greater than 1 in all benchmarks using
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Table 2: Number of conflicts during the ROI using
force_sequential() with benchmarks Matmul, Deriche, Blacksc-
holes and Swaptions, enabling 2, 4, 8, 16, and 32 workers

Nb. workers 2 4 8 16 32
Deriche 1 1 0 1 2
Matmul 1 1 1 1 0
Blackscholes 1 3 0 0 3
Swaptions 0 1 0 0 3

2 4 8 16 32
nb workers

1
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Figure 15: Speedup Vs. ASI kernel during the ROI using
force_sequential() with benchmarks Matmul, Deriche, Blacksc-
holes and Swaptions1, enabling 2, 4, 8, 16, and 32 workers

2 to 32 workers. Specifically, depending on the benchmark,
the recording run speedup ranges from ×9 to ×13 and the
replay run speedup ranges from ×11.5 to ×24. It should
also be noted that going from 16 to 32 workers leads to little
improvements. This is partly due to the ROI not being
fully parallel and getting too short to show a significant
speedup when using 32 cores.

The Linux-based benchmark results are showed in sim-
ulation time instead of MIPS. MIPS are irrelevant in these
benchmarks because of the Wait For Interrupt (WFI) in-
struction. Indeed, in our model, WFI is simulated by
immediately waiting for the rest of the quantum time until
an interrupt is raised. It results in zero simulated instruc-
tion the WFI instruction and the next interrupt, that is
during all processors idle time. Because benchmark par-
allelism is not perfect, processors idle for a non-negligible
amount of time, resulting in relatively low MIPS values.
On the opposite, WFI is not used in baremetal benchmarks,
hence the use of MIPS in that case.

As a result, we have achieved fast parallel and standard
compliant simulation of TLM-LT models running Linux.
We mainly rely on memory-access-monitoring-based con-
flict avoidance but exclude notoriously conflicting code
sections of the parallel evaluation phase based on the CPU

1Due to inconsistencies still under investigation in the MobileNet
benchmark when using force_sequential(), this benchmark is not
included in these graphics. The trend is however the same as for the
other benchmarks.

mode provided by the ISS. The extra sequential evalua-
tions are largely compensated by the conflict occurrences
reduction. We now plan on doing in-depth analysis of the
conflicting sections in order to identify the root cause of the
conflicts. If regular access patterns are identified, it might
be possible to improve the memory access granting policy
at little performance cost. Calls to force_sequential()
could then be removed and even system code would be
parallelized properly.

7. Conclusion

This article details a new standard-compliant approach
for SystemC parallelization of TLM-LT models using tem-
poral decoupling and fast ISS’s. It relies on lightweight
resource access monitoring, conflict avoidance heuristic,
dependency analysis, error recovery through rollback and
fast replay. It is proven efficient on both baremetal and
Linux-based applications with speedups reaching ×15 com-
pared to the ASI reference implementation on baremetal
applications and on Linux-based applications, ×13 during
recording run and ×24 during the replay run.

However, some specific scenarios defeat the resource ac-
cess granting policy, triggering numerous conflicts and mak-
ing the cost of rollback cancel the parallelization speedup.
In general, SCale 2.0 is the most efficient when simulat-
ing code with few interactions in order to minimize the
sequential evaluations and the risk of conflict. Variable
parallel/sequential scheduling enables sequential execution
of code sections like the conflict-prone boot, which allows
to use of a very fast but untimed mode in our ISS. Also,
forced sequentialization of privileged code eliminates most
of the conflicts that remain in the ROI.

In addition, SCale 2.0 solves numerous issues related to
user software execution on top of an operating system that
SCale 1.0 could not deal with like virtualized memory. Also,
all interactions between processes like interrupts are now
now supported using the same mechanism as for memory
accesses.

We now plan on performing trace-based analysis of mem-
ory accesses and interrupts in order to refine the resource
access granting policy while maintaining its overhead mini-
mal. Also, reducing the quantum size could be beneficial
to reduce the number of conflicts, but it requires a faster
SystemC scheduler. Finally, resolving conflicts at the pro-
cess level instead of the worker level could reduce further
the number of conflicts and increase overall parallelism.
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