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ON THE SHORTEST DISTANCE BETWEEN ORBITS AND THE
LONGEST COMMON SUBSTRING PROBLEM

VANESSA BARROS, LINGMIN LIAO, JEROME ROUSSEAU

ABSTRACT. In this paper, we study the behaviour of the shortest distance between orbits
and show that under some rapidly mixing conditions, the decay of the shortest distance
depends on the correlation dimension. For irrational rotations, we prove a different behaviour
depending on the irrational exponent of the angle of the rotation. For random processes,
this problem corresponds to the longest common substring problem. We extend the result
of [5] on sequence matching to a-mixing processes with exponential decay.

1. INTRODUCTION

Motivations to study sequence matching or sequence alignment can be found in various
fields of research (e.g. computer science, biology, bioinformatics, geology and linguistics, etc).
For instance, to compare two DNA strands, one can be interested in finding the longest
common substring, i.e. the longest string of DNA which appears in both strands. Thus, one
can measure the level of relationship of the two strands by studying the length of this common
substring. For example, for the following two strands

ACAATGAGAGGATGACCTTG
TGACTGTAACTGACACAAGC

a longest common substring is ACAA (TGAC is also a longest common substring) and is of
length 4 when the total length of the strands is 20.

Other quantities may be of interest in DNA comparison or more generally in sequence
alignment and we refer to [44, 50] for more information on the subject. Here we will con-
centrate on the behaviour of the length of the longest common substring when the length of
the strings grows, more precisely, for two sequences X and Y, the behaviour, when n goes to
infinity, of

M,(X,Y) =max{m: X; 1, =Y for k=1,...,m and for some 0 <i,j <n —m}.

This problem was studied by Arratia and Waterman [5], who proved that if Xy, Xo, ...,
Y7,Ys, ... are ii.d. such that P(X; =Y7) =p € (0,1) then

M 2
P( lim —~ = =1
n—oo logn  —logp
The same result was also proved for independent irreducible and aperiodic Markov chains on

a finite alphabet, and in this case p is the largest eigenvalue of the matrix [(p;;)?] (where [p;;]
is the transition matrix).

This work was partially supported by CNPq and FAPESB.
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In this paper, we generalize Arratia and Waterman’s result to a-mixing process with ex-
ponential decay (or 1-mixing with polynomial decay) and prove that if the Rényi entropy Ho
exists then

M, 2
Pl l =— ] =1
(HLH;O logn H2>

Our theorem applies to both cases of [5] which are a-mixing with exponential decay.
Other examples of a-mixing process with exponential decay include Gibbs states of a Holder-
continuous potential [14, 49]. One can see [15] for a nice introduction on strong mixing
conditions of stochastic processes (or [16] for a more complete version).

Further developments of the work [5] (e.g. sequences of different lengths, different distri-
butions, more than two sequences, extreme value theory for sequence matching) can be found
in 6,9, 7, 8, 33, 20, 37]. We also refer the reader to [43, 36, 3| for related sequence matching
problems.

A generalization of the longest common substring problem for dynamical systems is to
study the behaviour of the shortest distance between two orbits, that is, for a dynamical
system (X, T, i), the behaviour, when n goes to infinity, of

ma(e,y) = min  (d(T'2,T7y)).

Indeed, when X = AN for some alphabet A and T is the shift on X, we can consider the
distance between two sequences z,y € X defined by d(x,y) = e”* where k = inf{i > 0, 2; #
Yi}-

Then, assuming that m,, is not too small, that is —logm,(z,y) < n (we will see in The-
orem 1 that this condition is satisfied for almost all couples (z,y) if n is large enough), one
can observe that almost surely

Mn(l‘,y) S _IOgmn(x7y) S M2n(l‘,y)

Thus M, (z,y) and —log m,(z,y) have the same asymptotic behaviour.

Even if the shortest distance between two orbits seems to be something natural to define
and study, to the best of our knowledge, it has not been done in the literature before. One can
observe that this quantity shares some similarities with the correlation sum and the correlation
integral of the Grassberger-Procaccia algorithm [26, 27] and the nearest neighbour analysis
[19], with the synchronization of coupled map lattices [21], with dynamical extremal index
[22], with the connectivity, proximality and recurrence gauges defined by Boshernitzan and
Chaika [13] and also with logarithm laws and shrinking target properties (see e.g. the survey
[10]). Ome can also remark that information on the hitting time (see e.g. [48]) can give
information on the shortest distance. Indeed, if we define the hitting time of a point z in
the ball B(y,r) as W,(z,y) = inf{k > 1,T*2 € B(y,r)} then if W,.(z,y) < n, we have
mp(z,y) < 7.

In this paper, we show that the behaviour of the shortest distance m,, is linked to the
correlation dimension of the invariant measure p, defined (when the limit exists) by

C, = lim log fX p (B (z,r)) du(z)

r—0 log r
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More precisely, if the correlation dimension exists, then under some rapid mixing conditions
of the system (X, T, 1), we deduce that for p ® p-almost every (z,y) € X x X,

. logmy(z,y) 2

lim ———M = —.

n—+too —logn Cy

For irrational rotations, we prove that this result does not hold and that the previous limit
depends on the irrationality exponent of the angle of the rotation. In the proof, the duality
between hitting times and the shortest distance and the result of Kim and Seo [35] on hitting
times for irrational rotations are useful.

Our main results on the shortest distance between orbits and its relation with the corre-
lation dimension are stated in Section 2 and proved in Section 6. In Section 3 we state an
equivalent formulation of our main theorem (Theorem 3) for random processes. More pre-
cisely, we establish a relation between the longest common substring and the Rényi entropy.
This result is proved in Section 7. The case of irrational rotations is treated in Section 4. We
apply our results to multidimensional expanding maps in Section 5.

2. SHORTEST DISTANCE BETWEEN ORBITS

Let (X, d) be a finite dimensional metric space and A its Borel o-algebra. Let (X, A, u,T)
be a measure preserving system (m.p.s.) which means that 7' : X — X is a transformation on
X and p is a probability measure on (X, A) such that yu is invariant by T, i.e., u(T~1A) = u(A)
for all A € A.

We would like to study the behaviour of the shortest distance between two orbits:

- i g, TV
ma(z,y) =, min _ (d(T'z,T7y)).
We will show that the behaviour of m,, as n — oo is linked with the correlation dimension.
Before stating the next theorem, we recall the definition of the lower and upper correlation
dimensions of p:
log [ (B (x,r) du(a) o log [y w(B (@) du(x)

and C, = lim

¢y = lim r—0 log r

r—0 IOg r

When the limit exists we will denote the common value of €, and 6# by C,,. The existence of
the correlation dimension and its relation with other dimensions can be found in [39, 40, 12].

Theorem 1. Let (X, A, 1, T) be a measure preserving system (m.p.s.) such that C), > 0.
Then for u ® p-almost every (xz,y) € X x X,

fim log mn(x7 Y)

2
n—+oo —logn c,

Theorem 1 is a general result which can be applied to any dynamical system such that
C,, > 0 and shows us that m,, cannot be too small. If €', = 0, one cannot expect to obtain
such information since one can have m,(x,y) = 0 on a set of positive measure (for example
if the measure p is a finite linear combination of Dirac measures). We can also observe that
the inequality in Theorem 1 can be strict (noting for example the trivial case when T is the
identity; a more interesting example, irrational rotations, will be treated in Section 4) but
under some natural rapidly mixing conditions we will prove an equality.
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We need the following hypotheses.
(H1) There exists a Banach space C, such that for all ¢, ¢ € C and for all n € N*, we have

‘/Xw-qboT”du—/deu/Xqﬁdu

with 6, = a"™ (0 < a < 1) and where || - ||¢ is the norm in the Banach space C.
There exist 0 < rg <1, ¢ > 0 and £ > 0 such that
(H2) For any 0 < r < ¢, the function ¢ : © — u(B(x,r)) belongs to the Banach space C and

l1lle < er™®.

(H3) For p-almost every y € X and any 0 < r < ro, the function 3 : x = 1, ,(7) belongs
to the Banach space C and

< [l llcll@llcOn,

[valle < er™®.
We observe that the hypothesis (H3) cannot be satisfied when the Banach space C is the space
of Holder functions since the characteristic functions are not continuous. We will treat this
case separately in Theorem 6.
We will also need some topological information on the space X.

Definition 2. A separable metric space (X, d) is called tight if there exist 1o > 0 and Ny € N,
such that for any 0 < r < roy and any x € X one can cover B(x,2r) by at most Ny balls of
radius 7.

We observe that this is not a very restrictive condition. Indeed, any subset of R™ with the
Euclidian metric is tight and any subset of a Riemannian manifold of bounded curvature is
tight (see [29]). In [29] it was also proved that if (X, d) admits a doubling measure then it is
tight and some examples of spaces which are not tight were given.

Now we can state our main result.

Theorem 3. Let (X, A, u, T) be a measure preserving system, such that (X,d) is tight, satis-
fying (H1), (H2), (H3) and such that C,, exists and is strictly positive. Then for @ p-almost
every (z,y) € X x X,
_logmy(z,y) 2
lim ——— = —.
n—+oco  —logn Cu
Since our hypotheses are similar to the ones in [25, 11], it is natural to apply our theorem
to the same family of examples. Here, we give a short list of simple examples. In Section 5,
we apply our results to a more interesting family of examples: multidimensional piecewise
expanding maps.

Denote by Leb the Lebesgue measure.

Example 4. Theorem 3 can be applied to the following systems:

(1) Form € {2,3,...}, let T : [0,1] — [0,1] be such that x — ma mod 1 and p = Leb.

(2) Let T : (0,1] — (0,1] be such that T(z) = 2F(x — 27F) for x € (27%,27**1] and
u = Leb.

(3) (B-transformations) For B > 1, let T : [0,1] — [0,1] be such that z — Bz mod 1
and p be the Parry measure (see [38]), which is an absolutely continuous probability
measure with density p satisfying 1 — % <plx) <(1- %)*1 for all x € [0,1].

(4) (Gauss map) Let T : (0,1] — (0,1] be such that T(z) = {%} and dp = 102216-%‘
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In these examples it is easy to see that Cy, = 1. Moreover, (H1), (H2) and (H3) are satisfied
with the Banach space C = BV of functions having bounded variations (see e.g. [24] Section
4.1 and [41, 42, 32]).

One can observe that Theorem 3 is an immediate consequence of Theorem 1 and the next
theorem.

Theorem 5. Let (X, A, pu, T) be a measure preserving system, such that €, > 0 and such that
(X,d) is tight, satisfying (H1), (H2) and (H3). Then for p® p-almost every (z,y) € X x X,
i 8 Y) 2
n—4oo 1Og n CH

When the Banach space C is the space of Holder functions H(X,R) we can adapt our
proof and do not need to assume (H3). Moreover, (H2) can be replaced by a condition on the
measure of an annulus:

(HA) There exist rg > 0, £ > 0 and # > 0 such that for every z € X and any rg > r > p > 0,

w(B(z, 7+ p)\B(z, 7 — p)) < r %p”.
In fact, we will show in the proof of the next theorem that (HA) implies (H2). Analogous
conditions to (HA) have already appeared in the literature (e.g. [28, 48, 17, 31]) but in a
local version. Here, we need a stronger global version. Nevertheless, one can easily observe

that this assumption is still satisfied if the measure is Lebesgue or absolutely continuous with
respect to Lebesgue with a bounded density.

Theorem 6. Let (X, A, 1, T) be a measure preserving system, such that C,, > 0 and such that
(X,d) is tight, satisfying (H1) with C = H*(X,R) and (HA) or (H2). Then for u® p-almost
every (z,y) € X x X,
i 8M(Y) 2
n—+oo 1Og n CH
Here are some interesting examples where Theorem 6 applies: planar dispersing billiard
maps (with finite and infinite horizon) and Lorenz maps (see [28] Section 4 and the references
therein), expanding maps of the interval with a Gibbs measure associated to a Hélder potential
(see [48] where (HA) is proved in Lemma 44) and C? endomorphism (of a d-dimensional com-
pact Riemannian manifold) admitting a Young tower with exponential tail (see [23] Section
6 and [18]).

3. LONGEST COMMON SUBSTRING PROBLEM

As explained in the introduction, finding the shortest distance between two orbits corre-
sponds, when working with symbolic dynamical systems, to a sequence matching problem:
finding the size of the longest common substrings between two sequences.

We will consider the symbolic dynamical system (€2, P, o) where Q = AN for some alphabet
A, o is the (left) shift on Q and P is an invariant probability measure. For two sequences
x,y € ), we are interested in the behaviour of

M, (z,y) = max{m : xj1 = yj+r for k =1,...,m and for some 1 <4,j <n —m}.

We will show that the behaviour of M, is linked with the Rényi entropy of the system.
For y € Q we denote by C(y) = {z € Q: z; = y; for all 0 < i < n — 1} the n-cylinder
containing y. Set F{' as the sigma-algebra over ) generated by all n-cylinders.
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We define the lower and upper Rényi entropy as the following limits:
1 P(Cy)? — — 1 P(Cy,)?

Hy— lim og > P(Ck) and  Hy— Tm 082P(Ck) 7
k—400 —k k—+o00 —k
where the sums are taken over all k-cylinders. When the limit exists, we will denote it Ha.

The existence of the Rényi entropy has been proved for Bernoulli and Markov measures,
Gibbs states of a Holder-continuous potential, weakly ¢-mixing processes [30] and recently
for 1g4-regular processes [1].

We say that our system is a-mizing if there exists a function a : N — R satisfying a(g) — 0

when g — 400 and such that for all m,n € N, A € F' and B € F™:
|1P’(A No 9 "B)— P(A)IP’(B)‘ < a(g).

It is said to be a-mizing with an exponential decay if the function a(g) decreases exponentially
fast to 0.

We say that our system is ¢-mizing if there exists a function ¢ : N — R satisfying ¢(g) — 0
when g — 400 and such that for all m,n € N, A € F' and B € F™:

[P(AN0~9""B) — P(A)P(B)| < v(g)P(A)F(B).

Now we are ready to state our next result.
Theorem 7. If Hy, > 0, then for P ® P-almost every (x,y) € Q x ,

tm Malzy) o 2
n—+co  logn H,

(1)

Moreover, if the system is a-mixing with an exponential decay or if the system is -mizing
with ¥(g) = g=* for some a > 0 then, for P @ P-almost every (x,y) € Q x Q,
i Me(@y) S 2
n——+oo 10g n Hs
Furthermore, if the Rényi entropy exists, then for P ® P-almost every (z,y) € Q x Q,
My (z,y) _ 2

lim ——% = —.
n—l>r-|{loo logn Hy

(2)

Remark that Theorem 7 generalizes the results in [5] since the processes treated there (i.i.d.
and independent irreducible and aperiodic Markov chains on a finite alphabet) are a-mixing
with an exponential decay and their Rényi entropies exist. Moreover, in [5] the authors used
a different proof for each case, while here we present a single and simpler proof. Our proof
which will be presented in Section 7 is an adaptation to symbolic dynamical systems of the
results presented in Section 2.

One can apply our results to the following examples (which cannot be obtained from [5]).

Example 8 (Gibbs states). Gibbs states of a Holder-continuous potential ¢ are y-mixing with
an exponential decay [14, 49]. Moreover, the Rényi entropy exists and Hy = 2P(¢) — P(2¢)
where P(¢) is the pressure of the potential ¢ [30].

Example 9 (Renewal process). Let 0 < ¢; < 1 for any i € N. Consider the Markov chain
(Yy)n with the following transition probabilities

i ifj=0
Qy(i,j)=4q 1—q ifj=i+1
0 otherwise
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foranyi e N, j € N.

Let (X,,)n be the process defined by X, =1 when Y, =0 and X,, =0 when Y,, # 0 and let
P be its stationary measure. This process is called a binary renewal process.

Assuming that there exists a € (0,1/2) such that a < ¢; < 1 —a for any i € N, then
this process is a-mizing with exponential decay 2], thus we have the inequalities (1) and (2).
However, we observe that the existence of the Rényi entropy in this case is not known.

4. TRRATIONAL ROTATIONS

In this section we consider the irrational rotations. For 6 € R\ Q, let Ty be the irrational
rotation on the unit circle T = R/Z defined by

Tgl‘ =x+40.
Then for any n € Z, we have Tj'x = x + nf and the shortest distance becomes

The limit behavior of my,(z,y) is thus linked to the inhomogeneous Diophantine approxima-
tion.
Let

n=n(0) := sup{B > 1 : liminf j°||j0|| = 0}
]HOO

be the irrationality exponent of #. Now we will show that the result of Theorem 3 does not
hold for Ty.

Theorem 10. For n € N and (x,y) € T?, let my(z,y) be the shortest distance between the
orbits of x and y defined as above. Then for Lebesgue almost all (z,y) € T?, we have

1 1
liminf 287n@Y) L i up 128 (®2Y)
oo - IOg n n n—00 — IOg n

Proof. Let
Whar(x) :=1inf{n > 1: Ty (z) € B(y,r)}

be the waiting time for = € T entering the ball B(y,r) of center y € T and radius r > 0. Kim
and Seo ([35]) proved that for almost all z and y in T,

log Wpy,r log Wy
liminfogB—(y’)(x) =1 and limsupOgB—(y’)(:E)

=1. 3
r—0 —logr r—0 —logr ! ¥

Let us denote WB(%T) (x) the waiting time under the action of the irrational rotation of angle
—0. Since n(0) = n(—0), (3) is also satisfied for Wp(, ,)(z).

By definition, for the time k = Wpg, ) (z), Téfcz: firstly enters the ball B(y,r). So, we
have my(z,y) < r, when Wg(, () < n. On the other hand, when Wg(, . (z) > n and
WB(W) (z) > n, we have m,(z,y) > r.

By the first equality of (3), there is a sequence (r) tending to 0 such that

log Wh(yr,) (2)

lim ———==—~ =1.
k—o0 —logry,
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Let ng = Wg(yr,) (). Then my, (z,y) < ri. Thus,

1 1 1
lim sup log mn (@, y) > lim sup 0 11, (2, y) > lim O8 Tk =1. (4)
n—00 —logn koo —logny k—o0 — log Wp(y v (T)
Using again the first equality of (3), for any 0 < € < 1, we have
Wy (@) > (1/r)7¢  and  Wpm(z) > (1/r)'7F
provided r > 0 is small enough.
Therefore, taking 0 < € < 1 and defining r = n=/079 for n > 1, we get
Wayr(x) >n and Wa(ym(T) > n,
which implies
mp(z,y) >r=n"1079,
Thus
1 1
lim sup 08 71n (2, ) < .
n—oo —logn 1—¢
By the arbitrariness of € > 0, we have
1
lim sup og 1 (@, y) <1 (5)
n—00 —logn

From the inequalities (4) and (5) we get the second part of the theorem.
By the same arguments and the second equality of (3), we deduce that for any € > 0

WB(y,r)(x) < (1/7.)7]+€7
provided r > 0 small enough.
Hence, defining r = n~Y+9 1> 1, we have Wh(y,r (7) < n, which implies

M (x,y) <7 =n"Y0F,

Thus
1 1
lim inf —2 M (2, Y) > )
n—00 —logn n+e

By the arbitrariness of € > 0, we then obtain

1 1

lim inf 128 (TY) S 1

n—00 —logn n

From the inequalities (5) and (6) we see that for n = 1 the following result holds

i 108 my (2, Y)

=1
n—oo  —logn

Thus, from now on we can suppose n > 1 and it only remains to show

1 1
lim inf 27 Y) (2, 9) < -.
n—00 —logn n

(7)

We remark that the results of Kim and Seo ([35]) are not applicable for proving (7), so we
will give a direct proof.
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Let g = qx(0) be the denominators of the k-th convergent of the continued fraction of 6.
Then (see for example Khintchine’s book [34])

1 1
< < |lgnf|l < :
2Gn+1 n+1 1 Gn dn+1

(8)
By the theorem of best approximation (e.g. [45]), we have
: log gn+1
#) = lim sup ———. 9
n(0) = lim sup o8 (9)
First note that since
mn(if,y) = mn(07x - y)7
it is enough to show that for almost all y € [0, 1]

1 1
Jim inf 1087 (0:y) 1
n—00 —logn n

Second, we consider the following function
1
fiy €01~ liming 28720(08),
n—00 —logn
Observing
< = i 10| <
mnt1(0,y) <ma(0, Toy) = | min -y + 50 < mn-1(0,9),

we see that f is a Tp-invariant function. By the ergodicity of the Lebesgue measure with
respect to the irrational rotations, we conclude that f is a constant for almost all y € [0, 1].
Since we have already proved that

1 1
lim inf —2 /"m0 Y) mn (0, y) -,
n—00 —logn n

v

we only need to show that for any ¢ > 0, the set

1 0 1
Es5:= <y €[0,1] : there exists a sequence { Ny} such that Vk, log mu (0,4) <—+6
log Ni 1

has positive Lebesgue measure. By the definition of m,,(x,y), we can rewrite Ej as

Es;=1{y€[0,1]: 3 {Np}pst. Vk, Vj=-Np+1,...Ne—1, [0 —yll > ——
Ny

Let 7 = % + 6 and take 0 < € < 1‘1—’7(52”. From the identity (9) there exists a subsequence
{ni}x such that

_€ —_
Qi1 > Qng 2 > 4G > qn", since g > 1.
Without loss of generality, we still write {k} this subsequence.
Take N = [¢] ] and define the following decreasing sequence of sets

. . 1
Esj = {y €[0,1]:Vj=—=Nr+1,...., Ny — 1, ||70 — y|| > NT} .
k
Since Es = N> Es i for any kg € N, we only need to show that UkaOEg’k has Lebesgue
measure strictly less than 1 for some ky € N.
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Now observing that Ef, = U_Nk<j<Nk B(j@, %), we only have to estimate the Lebesgue
’ k

measure of the following set
1

U U BGO5)
k>ko —Nyp<j<Ny k
Let us first consider the union Uy, y, B (59, NT)
By the definition of Nj and the facts n —e > 1 and that {qr} C N is increasing we have
e < N < g1

Therefore

ak—1 [Ni/qx]

U B cJ U (Z+JQk)9 ]\}T) (10)

0<j< Ny i=0 j=0
Moreover, we have
1 1 1 1 1
NI = QT T 9y Teem—d(30)  gltear .
Uk 4y, 4y, F

where €; := 0n — e(% + ) > 0.
To estimate the measure of the following set

[Ni/ax]

U B((ZJFJ%)@ ];T>
=0

one can observe that the distance between two consecutive centers of the balls in the union is

1+ (G + Dar)0 — (i + jar )0l = lar0]l

Thus
[Nk/ar]
| Ny 2
< [ XF
Leb jl 0| B(z—i—jqk)ﬁ NT) _(qk+2> ]l + -

From the inequalities (8) and (11) we have

N, 2 A | 1 2 3¢)7¢ 1 2

<k+2> ||qk9||—|— 7_7 %7-1—2 7+7T§qL _£+77_

qr N; q qk+1 N W gl N}
3 2 5

= 1+5 + 1+e; — 1+e2?
q; 4y, d

where 0 < ea < min{e/2,¢;}.
Let 8 > 1. For k large enough we obtain

1 5 5 ok
Leb U B(jeaﬁ) SO T = & SO,
0<j< Ny k 9y, ,

where the last inequality comes from the assumption n(6) > 1.
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By symmetry, we also deduce that

Leb U B < 532k,

1
7?)
— N <j<0 k

Therefore

. 1 —ek
Leb U B(39, NTQ <1087k,
—Np<j<Ng

Note that there exists kg > 1, such that

o0 —esk
1 2R0
102ﬂ—€2’f:L<1.

k=ko 1-p==
Thus )
U E§. = U U B(j@, F)
k>ko k>ko —Np, <j<Np k

has Lebesgue measure strictly less than 1. Therefore, (7) follows.

Hence, finally, we conclude that for almost all x and y,

1 1 1
liminf 287 Y) L s 087 (5Y)

=1.
n—00 — log n n n—00 - 10g n

5. MULTIDIMENSIONAL PIECEWISE EXPANDING MAPS

In this section, we will apply our main result to a family of maps defined by Saussol [46]:
multidimensional piecewise uniformly expanding maps. It was observed in [4] that these maps
generalize Markov maps which also contain one-dimensional piecewise uniformly expanding
maps.

Let N > 1 be an integer. We will work in the Euclidean space RY. We denote by B.(z)
the ball with center z and radius e. For a set E C RV, we write

B(E) = {y € R : sup |z — y| < €},
relR

Definition 11 (Multidimensional piecewise expanding systems). Let X be a compact subset
of RN with X° = X and T : X — X. The system (X,T) is a multidimensional piecewise
expanding system if there exists a family of at most countably many disjoint open sets U; C X
and Vi such that U; C Vi and maps T; : V; — RN satisfying for some 0 < a < 1, for some
small enough eg > 0, and for all i:

(1) T|Ui = TZ|U1 and BeO(TUi) - TZ(VZ)f

(2) T; € CY(V;),T; is injective and Tl-_1 € CH(T;V;). Moreover, there exists a constant c,

such that for all € < €,z € T;V; and x,y € Be(z) NT;V; we have

|det D, T; ! — det D, T, | < ce®|det D, T, ;

(3) Leb(X \U; Ui) = 0;
(4) there exists s = s(T) < 1 such that for all u,v € TV; with d(u,v) < €y we have
AT, 0, T, 40) < sd(u,v);
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(5) let G(e, €9) := sup, G(z,¢€,€y) where

= Leb(T7 ' BA(OTU;) N B(y_g)¢, (7))
G(z,€,€60) = Z (B (1 —syeq () )

7

then the number n = 1(5) := s + 2sup.<; G}f) 0% satisfies sups<., n(6) < 1.

We will prove that the multidimensional piecewise expanding systems satisfy the conditions
of Theorem 3.

Proposition 12. Let (X,T) be a topologically mixing multidimensional piecewise expanding
map and p be its absolutely continuous invariant probability measure. If the density of u is
bounded away from zero, then for p ® p-almost every (z,y) € X x X,

_ logmp(z,y) 2
lim ————= = —.
n—+oo —logn N

First of all, we define the Banach space involved in the mixing conditions. Let I' C X be
a Borel set. We define the oscillation of ¢ € L!(Leb) over T as

osc(p.T) = ess-sup(p) — esscint(p).

Now, given real numbers 0 < aw < 1 and 0 < ¢y < 1 consider the following a-seminorm

|la = sup e_o‘/ osc(p, Be(x))dx.
0<e<eg X

We observe (see [46]) that X 5 z — osc(p, Be(x)) is a measurable function and

supp(0sc(p, Be(x))) C Be(supp ¢).
Let V,, be the space of L!(Leb)—functions such that ||, < co endowed with the norm

lella = NIl zer) + ¢la-

Then (Vu, || - ||a) is a Banach space which does not depend on the choice of ¢y and V,, C L™
(see [46]).

Saussol ([46]) proved that for a piecewise expanding map 7' : X — X, where X C R¥ is
a compact set, there exists an absolutely continuous invariant probability measure p which
enjoys exponential decay of correlations against L' observables on V,. More precisely, for all
Y € Vg, for all ¢ € L'(p) and for all n € N*, we have

‘/X¢-¢OT"du—/X¢du/X¢dﬂ‘§||¢||a\|¢||19n,

with 6, = a™ (0 < a < 1). This means that the system (X, T, u) satisfies the condition (H1)
with C = V,.

It remains to show that the system also satisfies the conditions (H2) and (H3) (with ro = o).
To this end, we need to estimate the norms |[11]|o and |[12]|«, where 1; and 1y are the
functions defined in (H2) and (H3). Since v; and 15 are both in L!(Leb) we just need to
estimate their a-seminorms.

From the above observation we notice that

supp osc(¥;, Be(1)) C Xe, j=1,2,
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where X, = {z € RY d(z, X) < €} is a compact set. Therefore

jla = sup €@ / osc(iyj, Be(x))dz, j =1,2.
Xe

0<e<eg

To estimate [¢j|q, j = 1,2 we define
S5 = eo‘/X osc(1pj, Be(x))dz,

and prove that S;. is bounded from above by Cje(l)_o‘, for some C; >0, j =1,2.
Let us start with S| = e~ er osc(p(B(+,r), Be(x))dz. Suppose r < €. Since p is absolutely
continuous and its density is bounded away from zero, we can write

1) = u(Bly,r)) = /B RS (12)

where the density h belongs to V, C L. It means that 0 < ¢; < h < ¢y for some constants
c1 and cs.
By (12) we have

osc(91, Be(x)) =  ess-sup / h(z)dz — ess-inf / h(z)dz.
yeB(z,e)NX J B(y,r) geB(z,NX JB(g,r)

Therefore S} becomes

Selze_o‘/ ess-sup / h(z)dz — ess-inf / h(z)dz | dx.
¢ \WeB(z,0)nX JB(y.r) §eB(z.0)0X JB(g,r)

Since ¢1 < h < ¢,

ST < e_a/ ess-sup / codz —  ess-inf / c1dz | dx
e \yeB(z,e)nX J B(y,r) g€ B(z,e)NX B(g,r)
< Coe_o‘/ (co — cl)rNdx < Colcg — cl)e_o‘+NLeb(Xe),
Xe

where Cj is the Lebesgue measure of the unit ball in RY. Using the facts that X, C X, and
that X, is compact, we have

S5 < (e —e1)e ™V Leb(X,,) < Ceg ™™, (13)
Now suppose 7 > €. Then for each y € B(x,€) we have
B(z,r —€) C B(y,r) C B(z,r +¢).
Therefore

osc(ifn, Be(x)) < /

h(2)dz — / h(2)dz = / h(=)dz < ||BllLeb(D),  (14)
B(x,r+e¢) B(z,r—e) D

where D = B(z,r +¢) \ B(x,r —€). It is easy to see that

N—-1 N
Leb(D) < 2Cye Z <k:> < N+ (e, (15)
k=0
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From the inequalities (14) and (15) we deduce that
S5 < e || hllooLeb(D) Leb(X,) < 2N eh ™ ||| oo Leb(Xe,) < Ceg™™. (16)
Combining (13) and (16), we obtain
[Y1]a < Creg @ (17)

for some constant C.
It remains to estimate S5. First, let us estimate the oscilation of 2(2) = 1, ) (2) over
the set B(z,€) when r < e:

B = - 1 — -inf 1 z
ose(t, Bz, <) z:;?:gmpx B) (%) ZG%S&,Ier)lmX By (%)

< ]lB(ym-i-E) (x) .
Thus,

S5 = eo‘/ 0sc(tha, Be(z))dax < Coe *(r + )NV < 2Neb = (18)
When r > €, we have 6
osc(i2, B(x,€)) < Lp(yrte)\B(yr—e) (T)-
Using the same ideas as in the estimation of ||1)1], and the last inequality, we obtain
5§ < 2Neb ™ Leb(X,,). (19)

Thus, (18) and (19) give us
[¥2]a < Caeg™® (20)

for some constant Cs.
From the inequalities (17) and (20), we get (H2) and (H3).
Finally, a straightforward calculation leads to C, = N.

6. PROOFS OF THE MAIN RESULTS

Proof of Theorem 1. For € > 0, let us define

kn = C'Ml— 5(2 logn +loglogn) and r, =e .

We also define
Aij(y) = T™'B(Ty, e ")
and
Sulw,y) = D Layp(@).
4,§=0,....,n—1

Observe that

{(z,y) : ma(z,y) <rn} ={(z,y) : Sn(x,y) > 0}. (21)

Thus, we have

p@p((z,y) mp(z,y) <rm) =p@p((z,y): Su(z,y) >0)=pp((z,y): Sul(z,y) > 1).
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Then, using Markov’s inequality, we obtain

pe ()i moy) <) < BS)= [ Liyp@dis )

’L,j:O,...ﬂ’L—l

- Y ([ rw@d) dw

1,7=0,...,n—1
= > [u @) du.
i,j=0,...,n—1

since y is invariant.
Using again the invariance of u, we get

1@ 1 ((2) : mn(2,y) < 1) < / w(B(y, rm)dp(y).

By the definition of the lower correlation dimension and the definition of k,, for n large
enough, we have

C,— 1
p®p((@,y)  ma(z,y) <r) <nret = logn’
Finally, choosing a subsequence ny, = (eﬁ], we have
1 1
p® p((@,y) cmn,(z,y) <rp,) < ogns <

Thus Y, p@p ((z,y) : mp,(z,y) < rp,) < +00. By the Borel-Cantelli Lemma, for p®p-almost
every (z,y) € X x X, if £ is large enough then

Moy (2, Y) 2 T,

and
log my,, (z,y) < 1 54 log log ny .
—logny c,—¢ log ny
Finally, taking the limit superior in the previous equation and observing that (ny), is increas-
. . . . 1
ing, (my,)y is decreasing and Zginoo logi ’Z - =1, we have
Tm egmn(®.y) _ g logma(ny) 2

n—+oo  —logn t—+oo  —logmy C,—¢

Then the theorem is proved since € can be chosen arbitrarily small. (|

Before proving Theorem 5 we state a few facts in order to simplify the calculations. At
first let us recall the notion of (A, r)-grid partition.

Definition 13. Let 0 < A < 1 and r > 0. A partition {Q;}2, of X is called a (\,r)-grid
partition if there exists a sequence {x;}°, such that for any i € N

B(zi, A\r) C Qi C B(x;,r).
Now we prove a technical lemma.

Lemma 14. Under the hypotheses of Theorem 5, there exists a constant K > 0 such that

3/2
/ p(B(y,ra))? dply) < K </ M(B(y,rn))du(y)> ,  for n large enough.
X X
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Proof. Since X is a metric space, there exist 0 < A < % and R > 0 such that forany 0 <r < R
there exists a (A, r)-grid partition (see Proposition 2.1 in [29]).
Let us choose n large enough so that 7, < min{R,r¢/2} (r¢ as in Definition 2). Let {Q;}°,
be a (A, )-grid partition and {z;}$2, be such that
B(2.25) € Qi B (v 7).

Then we have

/XM(B(ZN%) Z/ B(y,ra))” du(y). (22)

Now, fix a ball B(x;,2r,) and consider the set
D, = {ﬂj‘j : Qj N B(l’i,QTn) 75 @}

Since the space is tight, one can conclude that (see the proof of Theorem 4.1 in [29] ) there
exists a constant K depending only on Ny such that the cardinality card(D;)< Ky. Therefore

U B yaTn) C B -771;27’71 U Ql,j7

yeQ;

where Q; ; are elements of the partition.
By (22) we have

Ko
/X (Bl du) < 3 /Q | ;“(Q“) dpu(y)
Ko 2 Ko 3 Ko
Su@) > 1@ | <D D k@) <KD n(@iy)?,
i j=1 i \J=1 i j=1

where the last inequality is deduced from Jensen’s inequality. Now, since the elements Q; ;
cannot participate in more than K different sums (one can see the arguments leading to (12)
in [29]) and since z +— 2%/3 is a countably subbadditive function, we have

[ B duty )< KFSon (@)

3/2
K (ZM(Qi))2> = K§ (Z/Q'M(Qi)du(yo

Finally, note that for any y € @Q;, we have Q; C B(y,r,). Thus

3/2
[ B duty <K0<Z/ By, ) du(y >) |

and the result follows with K = Kg. O

3/2

We are now ready to prove Theorem 5.
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Proof of Theorem 5. Without loss of generality, we will assume in the proof that 8, = e™".

For € > 0, let us define

1
kn == (2logn + bloglogn) and r, =e .

Cu+e
Using the same notation as in the proof of Theorem 1, we recall that
B(S,) =1 [ u(By.ra))duty). 23)
Moreover, using (21) and Chebyshev’s inequality, we obtain

p@p((,y) ma(r,y) =) <p@p((z,y) : Suz,y) =0)

var(.S,
<p @ (@) ¢ [Sa(e.) ~ B(S)| > [E(S,)]) < Tn) (21)
E(Sh)
Thus, we need to control the variance of S,. First of all, we have
var(Sy,) = Z cov(La,;,1a,,)
1<4,¢,5,5'<n
= Z // lAij ]lAi/j/ - // ﬂAij // ]lAi/j/
1<i,i 5,5’ <n
= D // gz (T'2) U gty g,y (T ) = 1 (/M(B(y,rn)du(y)> :
1<i,,5,5'<n

Let g = g(n) = log(n**+4¢/ (6#+8)). We will split the last sum into the following four parts:

D= >t > )
1< g3’ S |i—d|>g,li—5'|>g  i=7|>g,li—j'|<g  |i=|<g,li—i'[>g |i=i|<g,|j—j'I<g
=I+1T+1IIT+1V.

At first we observe that if i — /| > g, then by (H1) and (H3),

// Lp(Tiy,r,) (Ti_i/iv) ILJse(Tj’y,rn) (z)dp(x)dp(y)

/(/ RB(ij’r”)(x)du(x)/]lB(Tj’y,rn)(x)dN(x)

+0g |1 Lpriy,rllc - ||]lB(Tf’y7rn)”C> Aly)

10,4 [ (BTy.r) i (B 1) duty). (25)

IN

IN

Therefore
[+11<n*@r 0, +n" Y | p(B(Ty,m)) p (B(Tj'y, rn)> dp(y)

l7—3"1>g

w0 S [ u(B@y, ) u (B y. 1)) duty)

li—Ji'I<g
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Now, in the case where |[j — j'| > g, we use (H1) and (H2) to get

/u (B(T7y, 7)) 1 (B(Tj'ywn)) du(y)

IN

2
(/u (B(y;mn)) dﬂ(?/)) + 0y -l (B ) lle -l (B ) lle

IN

( [ B dﬂ(@/)) Tt (26)

Otherwise we use Holder’s inequality and the invariance of the measure to obtain

[ (B@ )0 (BE ) duty

</u(B(ij, Tn))Qdu(y)>l/2 </u (B(Tj'yarn))Zdu(yO

- / 1 (B(y,ra))? dpu(y). (27)

1/2

IN

So the first two terms can be estimated as below
2
I+ 1T <2n*¢*r, 0, +n? </M(B(y,rn)) dﬂ(?J))

andg / 1 (Bly, ) duly). (25)

The third term can be treated exactly as the second one using the following symmetry on
x and y:

[ U130 @2 L1 (T D))

= [ b T g (T )i )

Finally, for the last term we use the boundedness of the indicator function and the invariance
of the measure to obtain

[ 151500 @2 1,y (T D))
/ / L p(riy, ey (T'2)dp(x)dp(y)
< /M(B(yﬁn))du(y)- (29)

IA

Therefore,
[T+ IV <n'¢®r, %6, + 2gn3/ﬂ (B(y,rn))* dus(y)

T an?g? / 1 (B(y, ) du(y). (30)
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Combining together the estimates (23), (24), (28) and (30), we obtain
var(S,) _ 30t 6, +4n’g? [ 1 (B(y, ) duly)
(E(S2))? ~ (2 [ p(B(y. rn)dp(y))’
A% [ p(B(y,a))” dpu(y)
(n2 [ w(B(y, r)dp(y))”

To estimate the first term, we use the information on the decay of correlations (H1) and
the choice of g to obtain

3ntc?r, 2599

5 < 302997’;2@““)74_25
(n? [ w(B(y,ra))dp(y))
— 2¢b
< 3%0yn* (log n)*'n**/(©u¥e) (log n) e
2b( 1+=2
< se(ogn(1755). (31)

For the second term, we use again our choice of g to get

An?g® [ (B(y,mn)) du(y) ot — 4 (4 € \2 N N
(HQIM(B(y7rn))du(y))2 g-(logn) ( +Cu+5> (logn)=™. (32)

For the last estimate, we use Lemma 14 to obtain

4n’g [ 1 (By,r))* dpy) _ 4Kg
2 —
(n2 [ p(Blyra))dps(w)” ([ u(Bly,ra)dp(y)
g _ Cu+e
< 4K=r, *2
n
= 4Kg- (logn)%
45 142
= 4K [4+ = 1 t2, 33
(14 5 ) tosm) 3
Now, taking b < —2, and combining (24), (31), (32) and (33), we have

1@ p (@), mn(z,y) =) < m < K (logn)'t2,

for large enough n, and for some constant K.

Thus, choosing b < —4 and the subsequence ny, = [662], we can apply the Borel-Cantelli
Lemma as in the proof of Theorem 1. Moreover, since by Theorem 1 m,(x,y) > 0 a.e., we
can consider the quantity logm,(z,y) and we obtain

i 08Ma(@y) _ . logmn,(zy) 2

n—too —logn l—foo log g a 6;; +e€ '
Then the theorem is proved since € can be chosen arbitrarily small. (|

Now we explain how to modify the proof of Theorem 5 to prove Theorem 6.

Proof of Theorem 6. When our Banach space C is the space of Holder functions, (H3) cannot
be satisfied since the characteristic functions are not continuous. Thus the only difference in
the proof will be in (25) and (26) where we use the mixing hypothesis.
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First, one can easily adapt (25) in this setting approximating the characteristic functions
by Lipschitz functions exactly as in the proof of Lemma 9 in [47].

Then, to obtain (26) we just need to prove that if (HA) is satisfied then the function
x +— pu(B(z,r)) is Holder, i.e. (H2) is satisfied.

In fact, let z,y € X and 0 < r < rg. If ||x — y|| < r then by (HA),

|u(B(z,r)) = w(B(y, )| < p(Bla,r+ ||z —y\B(z,r — [z —yl]))
< e -yl
If |z — y[| = 7 then

(B, 1) ~ (Bl <2 < o~y

Thus, the function z — p(B(z,r)) is Holder, one can applied (H1) and (H2) to obtain (26)
and the theorem is proved. ]

7. PROOF OF THE SYMBOLIC CASE

The proof of the first part of Theorem 7 is a simple adaptation of the proof of Theorem
1 and a simpler version was also proved in [5]. To do this adaptation, one must substitute
—logmyu(z,y) by M,(z,y) and the balls B(x,e™*) must be substituted by cylinders Cj, ().

We will just focus on the second part of the theorem and explain the main differences
with Theorem 3. We will assume that the system is a-mixing with an exponential decay, the
1-mixing case can be easily deduced using the same ideas.

Proof of Theorem 7. For € > 0, let us define

1
k, = = 2logn + bloglogn).
n H2+€( g glogn)

We also define ' ‘
Aij(y) = 0 "Cy, (oY)
and

Sn(l"y) = Z :H'Aij(y)(x)’
i j=

1,...,n
We observe that
E(Sn) =n*> P(Ck,)?, (34)
Ch,,
where the sum is taken over all the cylinders of size k.
Following the lines of the proof of Theorem 3, we have

var(Sy)
PP s My(z,y) < kyp) < :
QP ((2,y) : Mn(z,y) ) E(S,)? (35)
Again, we will estimate the variance dividing the sum of var(S,,) into 4 terms. Let g = log(n*).

(
For i —i' > g + k,,, we have the equivalent of equation (25):
[ 1 0mle0)1e,, oy (o D))

< a(g) + /P(Ckn(ajy))P (Ckn(aj/y)) dP(y).
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If, moreover, j — j' > g + k;,, we have the equivalent of (26), that is
2 (@1 to) B (G (o) de ()
= [ (Cr e ) B (G, ) dB)

= > P(CLIB(CL P (Cr, N0 G, )
Crp:Cy.

> P(Ck,)P(CY,) (P(Ck, )P(Ch,) + a(g))
Cron Ch

IN

2

< alg)+ [ D_P(Ch,)?

Chn

However, if j — j' < g + ky,, we obtain the following inequality, equivalent of (27):

[B(Cio)® (Cuto?) o) < Y PG

As in the proof of Lemma 14, using the subbaditivity of z — 2%/3

ZP(Ckn)B < <Z P(Ckn)2>3/2 '

Finally, when |i — | < g + k,, and |j — j'| < g + ky, we have the equivalent of (29):

, we have

] 16 0m(00)16, oy (o D)) < 37 BC, )
Then, one can gather these estimates to obtain

PRP((x,y): My(z,y) <k

)
_2ntalg) +20%(g + ku) (CP(Cr,)?) ™ 4+ n?(g + ka)* S P(Ch, )
- (n* Y P(C, %) |

Thusa for b < —2,

To conclude the proof, we use the Borel-Cantelli Lemma, exactly as in the proof of Theorem
3. O
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