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Abstract

The aim of this paper is to propose a new network measure of systemic risk
contributions that combines the pair-wise Granger causality approach with the
leave-one-out concept. This measure is based on a conditional Granger causality
test and consists of measuring how far the proportion of statistically significant
connections in the system breaks down when a given financial institution is ex-
cluded. We analyse the performance of our measure of systemic risk by considering
a sample of the largest banks worldwide over the 2003-2018 period. We obtain
three important results. First, we show that our measure is able to identify a large
number of banks classified as global systemically important banks (G-SIBs) by the
Financial Stability Board (FSB). Second, we find that our measure is a robust and
statistically significant early-warning indicator of downside returns during the last
financial crisis. Finally, we investigate the potential determinants of our measure
of systemic risk and find similar results to the existing literature. In particular,
our empirical results suggest that the size and the business model of banks are
significant drivers of systemic risk.
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1 Introduction
The US financial market turmoil that began in August 2007 and was amplified by the
collapse of Lehman Brothers spread to the global financial market and had a severe
impact on the real economy around the world. The size of the negative impact and
the related social costs in most countries made new macro-prudential devices more
necessary for systemic risk in the financial sector to be stabilised more efficiently. The
Financial Stability Board (FSB) and the Basel Committee on Banking Supervision
(BCBS) as regulatory authorities responded to these challenges with a number of re-
forms, where the main element was the identification of global systemically important
financial institutions (G-SIFIs). This allocates G-SIFIs into buckets according to the
level of additional loss absorbency they require. A set of principles was also estab-
lished at country level to allow national authorities to identify domestic systemically
important financial institutions (D-SIFIs).

Methodologically, a deep knowledge of the nature of systemic risk is needed for
SIFIs to be identified, and suitable tools need to be developed to measure it. The
academic literature in this area has evolved over recent years, offering different mod-
els or methodologies for evaluating the level of systemic risk for financial institutions.
The profusion of different methodologies springs from the range of different sources
or facets that systemic events can have, including size, contagion or interconnected-
ness, lack of substitute financial products, global cross-jurisdictional activity, and the
complexity of business models. Indeed Bisias et al. (2012), in their survey of systemic
risk analytics, identify 31 quantitative measures of systemic risk in the economics and
finance literature, which can be classified in six homogeneous groups as macroeconomic
measures like credit-gap indicators; cross-sectional measures, including the delta con-
ditional value-at-risk (CoVaR) of Adrian and Brunnermeier (2016) and the systemic
expected shortfall (SES) of Acharya et al. (2017); forward-looking risk measures like
contingent claims analysis; measures of illiquidity and insolvency; stress tests scenarios;
and network measures.

In this article, our interest is in the last of these, network measures that are based
on the interconnections between financial institutions. Although this group of mea-
sures represents only a small part of the literature, it has always been, and still is, the
subject of major studies. From the theoretical side, the literature on network measures
of systemic risk is related to financial contagion with major contributions from Allen
and Gale (2000), Freixas et al. (2000), Dasgupta (2004), Acemoglu et al. (2015) and
Glasserman and Young (2015) among others. The core of these papers is their analysis
of the role played by the linkages between financial institutions in amplifying exogenous
shocks that hit the system. The analyses generally consider various angles, looking at
either the shape of the network and whether it is complete or incomplete, the level of
uncertainty prevailing in the financial markets, or the complexity and concentration of
the network (for a recent review, see Chinazzi and Fagiolo, 2015). Empirical papers on
network measures of systemic risk contributions are also broad and can be categorised
in two main groups by whether the input data sets are private or public. The first cate-
gory of measures uses private data on contractual obligations to measure counterparty
connections and establish a counterparty network graph. An illustrative example of
such a graph is described in IMF (2009), where the systemic importance of a financial
institution is approximated by the degree of connectivity of its associated node in the
graph. The second category is based on publicly available data such as asset returns or
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credit default swaps. The differences between the many contributions arise from the
econometric or statistical methodologies used to establish the network, which range
from variance decomposition (Diebold and Yılmaz, 2014; Demirer et al., 2018) to tail
risk dependencies (Hautsch et al., 2015; Betz et al., 2016), to a combination of both
approaches (Härdle et al., 2016), and to Granger-causality inference (Billio et al., 2012;
Basu et al., 2017; Etesami et al., 2017).

This article is specifically devoted to the last group of contributions, which try
to evaluate contributions to systemic risk using a Granger-causality network. The
seminal paper is Billio et al. (2012), who propose that the systemic risk contribution of
a given financial institution can be evaluated by its importance in a network built from
pair-wise Granger-causality tests. More precisely, they define a statistic that is equal
to the frequency of the statistically significant pair-wise Granger-causality relations,
regardless of the direction of causality, in which an institution is involved. Thus higher
values for this statistic correspond to more systemic financial institutions and lower
values to less systemic ones. This statistic can be further disentangled by focusing on
the direction of causality. With empirical applications using monthly returns data for
hedge funds, broker/dealers, banks and insurers, the authors show that these statistics
help in identifying periods of financial crisis, and have good out-of-sample predictive
powers.

Nevertheless, some recent papers give a critical assessment of Granger-causality
networks as used by Billio et al. (2012) for measuring systemic risk contributions (Basu
et al., 2017; Etesami et al., 2017). The focal point of the criticism is the pair-wise
Granger-causality inference that underlies this approach, which can lead to spurious
causalities that arise because of indirect contagion effects. Indeed, as underlined by
Basu et al. (2017), the pair-wise approach evaluates the statistical association between
any two institutions A and B, focusing on the direct connectivity between them and
also on the indirect connectivities through all the other nodes, or institutions, in the
network. Therefore, Granger-causality networks that are based on the direct and
indirect effects do not reveal which institutions are the most systemic. Indeed, systemic
institutions are central in spreading shocks through the whole system. The consequence
on the empirical side is that the pair-wise approach generally leads to networks that
are highly dense due to spurious causalities, with a potentially misleading ranking of
the systemic importance of financial institutions. This stylised fact is well known in
the statistical literature about Granger-causality inference and is usually tackled using
conditional Granger-causality (Geweke, 1984) in a vector autoregressive (VAR) model.
More precisely, the autoregressive equations of the bivariate Granger-causality tests,
are extended using controlling variables that correspond to the lagged values of the
returns on the other n− 2 institutions, where n is the total number of institutions in
the system. However, with realistic large values of n, a large dimensional VAR model
is subject to overfitting with traditional estimation methods such as the least squares
approach. Penalised least squares methods can be used to overcome the curse of
dimensionality as proposed by Basu et al. (2017), but there is then a no less important
challenge in the choice of the penalty parameter. Indeed there are many methods
available for calibrating the penalty parameter, such as information criteria or cross-
validation, and it is known from the statistical literature that the estimation results
can be sensitive to the retained choice.

Our main goal in this article is to rehabilitate the pair-wise Granger-causality
approach for the evaluation of systemic risk contributions by addressing these two
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shortcomings of indirect causalities and the curse of dimensionality. We show that
when combined with the leave-one-out (LOO) concept, this approach is still valuable
in providing consistent measures of contributions to systemic risk. Formally, for a given
financial institution A, we introduce a new measure of systemic risk importance, which
evaluates how far the total number of significant Granger-causalities breaks down when
this institution is excluded from the system. We control for causalities between the
remaining n−1 institutions that arise from the indirect effect of financial institution A
being excluded, using a conditional Granger-causality test. It may be noted that using
the conditional version for each of the (n− 1)(n− 2) pair-wise Granger-causality tests
in the system, that excludes the financial institution A, allows us to clean all spurious
causalities between the remaining n− 1 institutions that arise from the indirect effect
of the institution A. Moreover, and importantly, this conditional version is free of the
curse of dimensionality, as it only involves lagged values of the returns for financial
institution A.

Empirical applications are conducted using daily market returns for a sample of
90 large banks from around the world. The data run from 12 September 2003 to
19 February 2018, and include the global financial crisis of 2007-2008. The dataset
includes almost every global systemically important bank (G-SIBs) identified by the
Financial Stability Board (FSB). The results show that our measure gives a mean-
ingful ranking of the systemic importance of financial institutions that is found to be
consistent with the ranking of G-SIBs provided by the FSB. Moreover, the new mea-
sure of systemic importance from the viewpoint of interconnectedness is shown to be
a robust and significant early-warning indicator of large losses from a systemic event.
The predictive power is larger than that associated with the measures in Billio et al.
(2012). These results demonstrate that the pair-wise approach is more valuable when
the effects of indirect causalities are cleaned out in a meaningful way.

Lastly we search for the economic contents of our measure by estimating panel
regression models with balance-sheet variables as predictors. The results show that
our measure of systemic risk importance is strongly related to the size, the business
model and the profitability of banks. In line with the existing literature on systemic
risk, we find a positive and significant relationship between size, as measured by the
logarithm of total assets, and our measure of systemic risk contribution. We also
assess whether the business model of banks drives our measure of systemic risk. Like
those of Brunnermeier et al. (2012) and Laeven et al. (2016), our results suggest that
banks specialising in market-based activities tend to have a higher level of systemic
risk than do banks specialising in traditional intermediation activities. Furthermore,
we investigate the link between the profitability of banks, proxied by the return on
equity, and their contribution to systemic risk. We find a positive and statistically
significant relationship between these two variables.

It is worth noting that using the LOO approach is not new in the literature on
systemic risk measures. Indeed, Zedda and Cannas (2017) employ this methodology to
analyse systemic risk and the determinants of contagion in a banking system. Formally,
they base their approach on a simulated distribution of the losses of the entire system,
and of each subsystem in which one bank was removed. Recently, Li et al. (2017) also
use the LOO concept applied to the z-score, as measured by return on assets (ROA)
plus the equity-to-assets ratio divided by the standard deviation of ROA. They define
an aggregate z-score for the whole system, and the "Minus one bank z-score", which is
the z-score of the system when one bank is removed. The difference between these two
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measures is the contribution of the removed bank to the systemic risk of the system.
Note that as underlined by Zedda and Cannas (2017), the LOO methodology has some
similarities to the Shapley value (Shapley, 1953), which is used by many authors to
measure systemic risk contributions (Tarashev et al., 2010; Drehmann and Tarashev,
2013). Nonetheless, to the best of our knowledge, our paper is the first to mobilise
the LOO concept for measuring systemic risk contributions using Granger-causality
networks.

The remainder of the article is structured as follows. Section 2 is devoted to a
review of the literature on network measures of systemic risk, covering both theoretical
and empirical issues. Second 3 provides, in the line of Basu et al. (2017), a critical
assessment of measures of systemic risk contributions based on pair-wise Granger-
causality tests. In Section 4, we present the new measure based on the LOO approach,
and we assess its reliability using real datasets in Section 5. Section 6 searches for the
micro-economic determinants of the LOO measure using balance-sheet data, and the
last section concludes the article.

2 Literature Review

2.1 Theoretical Literature

The theoretical literature on network measures of systemic risk covers contagion in-
duced from direct or indirect linkages. Most of the works1 on network contagion focus
on risk channels issued from direct linkages such as credit exposures or financial mar-
ket relationships (Allen and Gale, 2000; Freixas et al., 2000; Eisenberg and Noe, 2001;
Dasgupta, 2004; Leitner, 2005; Vivier-Lirimont, 2006; Brusco and Castiglionesi, 2007;
Nier et al., 2007; Gai et al., 2011; Acemoglu et al., 2015; Glasserman and Young,
2015). The literature can be categorised by the dimension of the contagion analysed,
such as the density of the network and whether it is complete or incomplete, the level
of uncertainty in the markets, or the complexity and concentration of the network.

Pioneering works from Allen and Gale (2000) and Freixas et al. (2000) focus on the
first dimension, studying the effect of the density of the network on how resilient the
system is to the insolvency of an individual bank. For instance, Allen and Gale (2000)
set up a basic network structure involving four banks in a model like in Diamond and
Dybvig (1983). In order to protect themselves against liquidity shocks, the timing of
which is uncertain, banks hold inter-regional claims on each other. While those cross-
holdings of deposits increase the resilience of the network, since a proportion of the
losses of one bank is spread across multiple agents, it exposes the system to contagion.
More precisely, the degree of contagion depends on the pattern of interconnectedness
between the banks. A fully connected network spreads the liquidity shock across
the network and reduces its impact, while an incomplete network that is not fully
connected increases the impact and leads to contagion. Freixas et al. (2000) also
propose a model in the tradition of Diamond and Dybvig (1983) with banks facing
liquidity shocks. However, the banks are connected through interbank credit lines
because of uncertainty about the location of withdrawals of deposits. As in Allen and
Gale (2000), they find that interconnections make the network more resilient to the
insolvency of a single bank.

1See Allen and Babus (2009), Chinazzi and Fagiolo (2015) and Hüser (2015) for surveys on contagion
in financial networks.
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Nevertheless, these theoretical predictions should be contrasted with those of
Vivier-Lirimont (2006) and Brusco and Castiglionesi (2007), whose results indicate
the opposite. Considering network structures like in Allen and Gale (2000) with mul-
tiple regions and one representative bank per region, Brusco and Castiglionesi (2007)
study the contagion of financial crises across regions in which banks are connected
through cross-holdings of deposits. However, unlike Allen and Gale (2000), they find
that bankruptcies are caused by the moral hazard problem rather than by a liquidity
shock. They find that a more connected interbank deposit market means more regions
are hit by bankruptcies than when an incompletely connected market is considered.
Similar conclusions can be found in Vivier-Lirimont (2006), who analyses the optimal
network architecture, where transfers through the interbank market improve the utility
of the depositors. He finds that the higher the network density is, the higher is the
likelihood of the system collapsing.

Acemoglu et al. (2015) try to reconcile these opposite results by analysing the
network as a contagion mechanism in which institutions can be exposed to counterparty
risk from the unsecured debt contracts they share among themselves. They observe
that the resilience of the network depends on an endogenous threshold for the number
of shocks. More precisely, the more interconnected the network is, the less fragile the
system will be as long as the magnitude or the number of shocks remains below this
threshold. However, the opposite result appears when the magnitude or the number
of shocks becomes higher than the threshold, meaning more financial interconnections
make the system more sensitive and more prone to contagion.

This branch of the literature about contagion arising from direct linkages has
evolved over the years. The debate around the connectivity of the network and its
resilience to negative shocks has spread beyond the form of the network as complete or
incomplete, and other features of the network have been studied, such as its complex-
ity, concentration or leverage (Gai and Kapadia, 2010; Nier et al., 2007; Glasserman
and Young, 2015). For example, Gai et al. (2011) observe that complexity and con-
centration are important characteristics. They propose a network of 250 banks linked
through unsecured claims and subject to funding liquidity shocks. From different sim-
ulation scenarios, they find that complex and concentrated networks are more sensitive
to financial shocks and may amplify their effects.

Another part of the literature studies the contagion process of a negative shock
through indirect linkages arising from exposure to common assets and mark-to-market
losses from fire sales (Lagunoff and Schreft, 2001; De Vries, 2005; Elliott et al., 2014;
Cabrales et al., 2014; Caccioli et al., 2015). For instance, Lagunoff and Schreft (2001)
build a model in which agents have portfolios whose returns depend on the portfolio
allocations of others. Some agents are subject to shocks which lead them to reallocate
their portfolios and consequently to break the links between them. They exhibit two
types of crisis. The first one happens gradually as agents do not anticipate the possible
losses and thus do not instantaneously break links. Losses spread across the network
and break more and more links. The second type of crisis happens instantly, as agents
foresee losses and pre-emptively break links to avoid losses from contagion. More re-
cently, Elliott et al. (2014) propose a model in which institutions are linked through
cross-holdings of shares, debt or liabilities. If the value of an institution becomes low
enough that it falls below a failure threshold, that institution fails and affects its coun-
terparties, which then propagate the initial failure. The authors identify that the two
main features of cross-holdings that impact the probability of cascades occurring and
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the size of them are integration and diversification. Integration corresponds to how
much an institution is privately cross-held by other institutions, while diversification
represents how much the cross-holdings of a single institution are spread out through
the network, and whether they are held by only a few institutions or a large num-
ber. Another example is Cabrales et al. (2014), who analyse the trade-off between risk
sharing and contagion. They consider a model in which firms are linked through the
exchanges of assets they are endowed with, and more precisely through the securitisa-
tion of mortgage loans sold to other firms. These exchanges allow firms to diversify,
but expose them to default by counterparties. They stress two alternatives that allow
them to reduce the contagion. The first is to isolate the firms in each component,
making a region of the network, and the second is to reduce the number of firms to
which a firm is linked. They observe that when the probability distribution of the
shocks has fat tails (i.e. a high probability of large shocks), the optimal network is the
most segmented one, i.e. characterized by small components. However, when the tails
are thin, the best network is a single component with the minimum segmentation in
order to maximise risk sharing.

It is worth noting that the analysis of only direct or indirect linkages is not realistic,
as in practice banks have many simultaneous direct and indirect linkages. Drawing
on this stylised fact, some authors have incorporated both type of linkages in their
models (Cifuentes et al., 2005; Nier et al., 2007; Gai and Kapadia, 2010; Caballero
and Simsek, 2013; Glasserman and Young, 2015; Caccioli et al., 2015). Cifuentes et al.
(2005) build a complete network combining direct linkages via mutual credit exposures,
and indirect linkages through the overlapping asset portfolios of banks. They find that
the effect of an initial shock can be substantial and amplified if the prices of fire-sale
assets can change endogenously. The initial failure of one bank leads to the sale of
the remaining assets of that bank, and under certain conditions, this can reduce the
market prices of those assets and thus spread the initial shock across the network,
particularly to banks that hold the same assets. Finally, Gai and Kapadia (2010)
propose an interbank network with direct exposures based on the models used in the
epidemiological literature. They make two interesting discoveries. First, rare shocks
can have significantly large impacts on the network when they occur, and second, the
impact of a shock depends on which node of the network it hits, regardless of its size.
Indeed, more central nodes, which are the more interconnected ones, facilitate and
amplify the contagion. To take into account indirect linkages, they also include the
setup used in Cifuentes et al. (2005). However, they find that it does not modify the
result of their initial model.

2.2 Empirical Literature

On the empirical side, the many contributions available in the literature differ by
whether they use private or public data and by the econometric or statistical methods
they mobilise to construct the network and to extract measures of contributions to
systemic risk. Drehmann and Tarashev (2013) for instance follow the spirit of theo-
retical works and use direct and indirect linkages to measure the systemic importance
of banks in a network. More precisely, they propose two measures. The first is the
participation approach, which quantifies the losses that a bank imposes on its non-
bank investors, and the second is the contribution approach, which corresponds to the
degree of connectedness of the bank, or its contribution to the contagion of an idiosyn-
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cratic shock. Using balance sheet data from 20 international banks, they highlight that
interconnectedness is an important feature as it increases the systemic importance of
banks, and that both approaches allocate risk differently between banks.

Another representative paper is that of Diebold and Yılmaz (2014). They develop
networks based on variance decompositions and propose various measures of intercon-
nectedness. They focus on major American financial institutions from May 1999 to
April 2010 and show that Citigroup has the highest value of connectedness, and more
generally the largest commercial banks are the most interconnected. However, their
methodology is sensitive to the curse of dimensionality, and they limit the sample to
only a small part of G-SIBs. Demirer et al. (2018) extend this methodology to compute
high-dimensional networks. Using penalisation methods to reduce the dimensionality
of the network, they render the model estimable even when there are a large number
of banks. Thus they consider a sample of 96 international banks from the world’s top
150 in their empirical applications, and find that there are strong clusters within and
between countries.

Other studies focus on the tail risk of firms in building networks. Hautsch et al.
(2015), for example, initially propose the "realised systemic risk beta", which corre-
sponds to the marginal effect of the value-at-risk of a given institution on the value-
at-risk of the network. Using the 57 largest financial institutions from North America,
they find a high degree of interconnectedness and a rise in their measure of systemic
risk contributions during the 2007-2008 financial crisis. This work is extended to a dy-
namic setup by Hautsch et al. (2014) to compute time-varying realised systemic risk.
Their empirical results from a sample of 20 banks and insurers from Europe highlight
country-specific risk channels, as well as cross-country and industry-specific channels.
Betz et al. (2016) extend both previous papers by allowing their methodology to be
feasible for high-dimensional financial systems. They apply their model to European
banks and show that the network’s density increases during the financial crisis but
decreases afterwards, and that the size, leverage and degree of interconnectedness in-
crease the systemic importance of banks. In the same vein, Härdle et al. (2016) combine
the tail risk of firms with variance decomposition. They build their network by using
the approach of Diebold and Yılmaz (2014), but their adjacency matrix, which has
elements indicating whether pairs of vertices are adjacent or not in the graph, is based
on the value-at-risk of institutions instead of conditional correlations. Using 100 US
financial institutions, including depositories, insurers, broker-dealers and others, they
find that the banking sector supplies more of the pace in risk transmission and the
insurance sector supplies less.

Another empirical approach that has gained interest in recent years is Granger-
causality networks. A representative contribution is Billio et al. (2012), who use pair-
wise Granger-causality tests to measure the systemic risk contributions of financial
institutions. To build their network, they consider linear and non-linear versions of
these tests and develop several measures of interconnectedness. Using data from the 25
largest banks, hedge funds, broker-dealers and insurers, they show that these sectors
are strongly interconnected, and that the connections are dynamic. Moreover, their
findings suggest that the banking and insurance sectors might have a central position
in the network. The pair-wise approach has recently been extended to a multivari-
ate setting to deal with indirect causalities (Basu et al., 2017; Etesami et al., 2017;
Barigozzi and Brownlees, 2013). These works consider large dimensional vector autore-
gressive models estimated with penalisation to deal with the issue of dimensionality.
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For instance, Barigozzi and Brownlees (2013) propose two network representations for
large sparse VARs and a new algorithm based on the Lasso method. The first one is a
combination of directed linkages, represented through Granger-causality connections,
and undirected ones corresponding to partial contemporaneous correlation connections.
The second one is made up of undirected linkages that represent long-run partial cor-
relation connections. Considering 90 US blue-chip companies, they find that the most
interconnected institutions are the largest ones, such as AIG, Bank of America or Cit-
igroup. As already stressed, our paper focuses on this last group of works containing
measures of contributions to systemic risk based on Granger-causality networks.

3 Measuring Systemic Risk via a Granger-Causality Net-
work: a Critical Assessment

This section motivates our contribution to the literature on network systemic risk
contributions. The first part of the section describes the concept of Granger-causality
inference, the building block of Granger-causality networks, and the second part shows
through an illustrative example and Monte Carlo simulations, the negative effect of in-
direct causalities in measuring contributions to systemic risk through Granger-causality
networks.

3.1 Granger-Causality Inference

Consider a system of n interconnected financial institutions, and denote by yk,t ≡
∆ logPk,t = logPk,t − logPk,t−1 the market returns as measured by the log-difference
of market prices for the financial institution number k, with k = 1, ..., n. With two
financial institutions i and j, the Granger-causality test as formalised by the seminal
paper of Granger (1969) can be used to check whether information conveyed by yj,t,
the returns of the financial institution j, helps predict the dynamics of yi,t, the returns
of the financial institution i. The null hypothesis corresponds to

H0 : Pr (yi,t < y |Ft−1 ) = Pr (yi,t < y |Fi,t−1 ) , (1)

for all values of y, where the information sets Ft−1 and Fi,t−1 are given by

Ft−1 =
{

(yi,s, yj,s)′ , s ≤ t− 1
}
, (2)

Fi,t−1 = {yi,s, s ≤ t− 1} . (3)
The concept of causality carried out by this null hypothesis is strong as it aims

to test for the lack of predictive content over the whole distribution. Since the sem-
inal paper of Granger (1969), the academic literature has evolved, focusing on some
weak versions of the concept, through causality in specific moments of the conditional
distribution such as mean, variance or tail. For instance, the well-known concept of
Granger-causality in mean (Granger, 1980, 1988; Sims, 1972, 1980) is based on the
following modified null hypothesis

H0,1 : E (yi,t |Ft−1 ) = E (yi,t |Fi,t−1 ) , (4)

which can be tested in a parametric framework using the following test statistic

Uj→i = T log(
σ̂2
i,2
σ̂2
i,1

), (5)
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where T is the sample length, σ̂2
i,1 and σ̂2

i,2 are respectively the sample variances of the
fitted residuals ε̂i,1 and ε̂i,2, from the following autoregressive models

yi,t = c1 +
M∑
s=1

φsyi,t−s +
M∑
s=1

γsyj,t−s + εi,1,t, (6)

yi,t = c2 +
M∑
s=1

αsyi,t−s + εi,2,t, (7)

with M the lag-order, c1, c2, φs, γs, αs, s = 1, ...,M some parameters. Under the null
hypothesis H0,1 of the absence of Granger-causality in mean, the test statistic Uj→i
has an asymptotic chi-square distribution with a degree of freedom equal to M . So,
if Uj→i > χ2

1−η(M), one rejects the null hypothesis of no Granger-causality in asset
returns from financial institution j to financial institution i, with χ2

1−η(M) the fractile
of order 1 − η of the chi-square distribution with M degree of freedom, η being the
nominal significance level.

Note that Granger et al. (1986) also introduce the concept of Granger-causality in
variance to test for transmission in the second order moment.2 More recently, some
papers have focused on testing for Granger-causality in extreme quantiles or tail-events
to capture spillover effects on higher-order moments like skewness and kurtosis (Hong
et al., 2009; Jeong et al., 2012; Han et al., 2016; Candelon and Tokpavi, 2016). In
this paper, our contribution to the literature on network systemic risk contributions is
developed without loss of generality around the concept of Granger-causality in mean
as described above.

3.2 Indirect Causalities and Network Systemic Risk Contributions

For a system of n financial institutions, Granger-causality tests can be used for all
pairs of financial institutions to assess the existence of interconnectedness. This issue
is investigated in the literature by Billio, Getmansky, Lo and Pellizon (2012) (hereafter
BGLP) to establish the network of a financial system and derive both a global measure
of systemic risk and an institution-specific measure. Following their approach, we can
measure the systemic importance of a financial institution k by its contribution to the
Granger-causality network as follows

InOutk = 1
2 (n− 1)

n∑
j=1
j 6=k

[
I
(
Uk→j > χ2

1−η(M)
)

+ I
(
Uj→k > χ2

1−η(M)
)]
, (8)

where Uk→j corresponds to the statistic of the Granger-causality test in mean from
financial institution k to financial institution j, as defined in Eq. (5), and χ2

1−η(M)
is the fractile of order 1 − η of the chi-square distribution with M degree of free-
dom. The first term in the bracket measures the number of financial institutions that
are significantly Granger-caused by the reference institution k (the Out-part of the
measure), while the second term measures the number of financial institutions that
significantly Granger-causes the institution k (the In-part of the measure). Hence the
statistic InOutk measures the fraction of the total number of financial institutions

2See also Engle and Ng (1988), Engle et al. (1990), Cheung and Ng (1996), Hong (2001), Sensier
and van Dijk (2004), to cite but a few.
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that are involved in a significant connection with the financial institution k. Note that
higher values of the statistic InOutk correspond to a more systemic institution from
the viewpoint of interconnectedness and lower values to a less systemic institution.

A central point that motivates our paper, is that the statistic InOutk can lead
to inconsistent rankings of financial institutions for systemic risk because of indirect
causalities. To give more insight on this statement, let us consider a simple financial
system with n = 3 institutions 1, 2 and 3. The connections between the three financial
institutions are displayed in Figure 1. In this simplified financial system, there is
transmission in asset returns from financial institution 2 to financial institution 3 and
from institution 3 to institution 1.

Figure 1: True network for a system of three financial institutions

Statistically, such a financial system can be represented using the following data
generating processes of asset returns for our three financial institutions 1, 2 and 3 as
follows 

y2,t = 0.5y2,t−1 + u2,t

u2,t = σ2,tv2,t

σ2
2,t = 0.05 + 0.85σ2

2,t−1 + 0.1u2
2,t−1,

(9)


y3,t = 0.5y3,t−1 + 0.2y2,t−1 + u3,t

u3,t = σ3,tv3,t

σ2
3,t = 0.05 + 0.85σ2

3,t−1 + 0.1u2
3,t−1,

(10)


y1,t = 0.5y1,t−1 + 0.2y3,t−1 + u1,t

u1,t = σ1,tv1,t

σ2
1,t = 0.05 + 0.85σ2

1,t−1 + 0.1u2
1,t−1,

(11)

where y1,t, y2,t and y3,t are the returns on the assets of the financial institutions 1, 2 and
3, and each vk,t, k = 1, 2, 3, follows a Student-t distribution with degree of freedom
equal to 5. Hence, we assume that each series of asset returns follows an AR(1)-
GARCH(1,1) model, and that there is causality in mean from financial institution 2
to financial institution 3, and from financial institution 3 to financial institution 1.
Hence with the application of the Granger-causality test in mean, we should detect a
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significant connection from 2 to 3 and from 3 to 1. Note that these specifications are
calibrated to capture important stylised facts in the dynamics of asset returns such as
autocorrelation, heteroskedasticity, and fat tails.

Economically, this form of network can arise from indirect contagion through com-
mon assets (Greenwood et al., 2015), overlapping portfolios (Caccioli et al., 2014, 2015)
and linked portfolio returns (Lagunoff and Schreft, 2001), with propagation of shocks
driven by fire sales. More precisely, institution 2 faces an idiosyncratic shock that im-
pacts its equity negatively, so it sells its assets to maintain its target level of leverage.
If the assets are illiquid, fire sales depress prices, and this in turn can impact the equity
of financial institution 3 because of its common exposures to those assets. The same
phenomenon involving institutions 3 and 1 would take place, with common exposures
to other assets setting up this type of network.

Based on this simplified network and using Eq. (8), the true levels of the contri-
bution of each financial institution to the Granger-causality network are thus equal
to

InOut2 = 1
4 = 0.25, InOut3 = 2

4 = 0.5, InOut1 = 1
4 = 0.25. (12)

From this, financial institution number 3 is the most systemic. However, the net-
work that would arise most often from the application of the Granger-causality test
is depicted in Figure 2. In fact, an indirect spillover effect should be detected from
financial institution 2 to financial institution 1, running through financial institution
3.3 The information that can be extracted from this network is that all three financial
institutions are systemically equivalent, because we have

InOut2 = 2
4 = 0.5, InOut3 = 2

4 = 0.5, InOut1 = 2
4 = 0.5. (13)

Figure 2: Detected network using Granger-causality tests

Using the data generating processes of Eq. (9) to (11), the following Monte Carlo
experiments give more insights about this point. We generate asset returns for the three
financial institutions, and run the Granger-causality test in mean from the financial
institution 2 to the financial institution 1. As we stress above, although there is no

3Note that the probability of this indirect effect being detected is theoretically equal to the power
of the Granger-causality test.
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connection between 2 and 1, the Granger-causality test in mean should detect an
indirect spillover effect from financial institution 2 to financial institution 1. Figure 3
reports the rejection frequencies over 1, 000 simulations of the Granger-causality test in
mean from 2 to 1, at the nominal significance level η = 5%. The results are displayed
for different values of the sample size T ∈ {100, 250, 500, 1000, 1500, 2000, 2500, 3000}.
The lag-order M for the computation of the test statistics in Eq. (5) is set to M = 5.4
We observe in Figure 3 that the rejection frequencies of the test are high and increase
with the sample size. To summarise, the outcomes from our Monte Carlo experiments
show that the ranking of financial institutions using the statistic InOutk can indeed
be misleading because of the detection of spurious causalities in the network.

Figure 3: Rejection frequencies of the Granger-causality test from 2 to 1

Note: The null hypothesis corresponds to the absence of Granger causality from bank 2 to bank 1.

A traditional solution for dealing with this is to consider a network based on a
conditional Granger-causality test. Indeed, the conditional Granger-causality test in-
troduced by Geweke (1984) is able to resolve whether the interaction between two
time series is direct or is mediated by another time series. From a computational point
of view, the test statistic Uj→i|k for the Granger-causality test in mean from j to i
conditionally on k is identical to its unconditional version Uj→i in Eq. (5), that is

Uj→i|k = T log(
σ̃2
i,2
σ̃2
i,1

), (14)

where again T is the sample length, and σ̃2
i,1 and σ̃2

i,2 are respectively the sample
variances of the fitted residuals ûi,1 and ûi,2, from the autoregressive models

yi,t = c1 +
M∑
s=1

φsyi,t−s +
M∑
s=1

γsyj,t−s +
M∑
s=1

ψsyk,t−s + ui,1,t, (15)

4We make the same exercise for different lag structures by considering M ∈ {1, 2, 3, 4}. Results
that we obtain are very similar to those reported below with M = 5.
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yi,t = c2 +
M∑
s=1

αsyi,t−s +
M∑
s=1

θsyk,t−s + ui,2,t, (16)

with ψs, θs, s = 1, ...,M , as some additional parameters. These two specifications
are the extended versions of the autoregressive models in Eq. (6) and (7), where the
residuals are cleaned out from the effect of the time series yk,t that is suspected to
drive the causality.

Figure 4: Comparison of conditional and unconditional Granger-causality tests

Note: The null hypothesis corresponds to the absence of Granger causality from bank 2 to bank 1.

To illustrate the relevance of the conditional test in managing indirect causalities,
we consider once again the simplified network depicted in Figure 1 along with the
associated data generating processes in Eq. (9) to (11). The rejection frequencies (at
the nominal risk level η = 5%) over 1, 000 simulations of the Granger-causality test
from financial institution 2 to institution 1 conditional on institution 3 are displayed
in Figure 4. The lag-order is set to M = 5 and we consider different sample sizes
T ∈ {100, 250, 500, 1000, 1500, 2000, 2500, 3000}. For comparison, we also report the
rejection frequencies of the unconditional test for the same experiments. We observe
that while the rejection frequencies of the unconditional test are high and increase with
the sample size, the rejection frequencies of the conditional test are low and converge
to the nominal significance level η = 5% at the highest sample length. So based on the
statistic InOutk, the conditional test would give a consistent ranking of the systemic
importance of the three financial institutions, as it is designed to exclude the spurious
causality from institution 2 to institution 1 that comes from the indirect contagion.

The conditional test described above is also adapted to manage another form of
indirect causality resulting from the joint exposure of financial institutions 1 and 2 to
institution 3. The related true network is depicted in Figure 5, where institution 3
Granger-causes both institutions 1 and 2, but with a time-delay. The following data
generating processes are consistent with this network, with y1,t, y2,t and y3,t simulated
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Figure 5: True network for a system of three financial institutions: second scenario

as 
y3,t = 0.5y3,t−1 + u3,t

u3,t = σ3,tv3,t

σ2
3,t = 0.05 + 0.85σ2

3,t−1 + 0.1u2
3,t−1,

(17)


y2,t = 0.5y2,t−1 + 0.2y3,t−1 + u2,t

u2,t = σ2,tv2,t

σ2
2,t = 0.05 + 0.85σ2

2,t−1 + 0.1u2
2,t−1,

(18)


y1,t = 0.5y1,t−1 + 0.2y3,t−2 + u1,t

u1,t = σ1,tv1,t

σ2
1,t = 0.05 + 0.85σ2

1,t−1 + 0.1u2
1,t−1,

(19)

where again vk,t, k = 1, 2, 3, follows a Student-t distribution with degree of freedom
equal to 5. Using these data generating processes, rejection frequencies (over 1000
simulations) of the conditional and unconditional Granger-causality tests from financial
institution 2 to financial institution 1 are displayed in Figure 6. We observe once again
that the conditional version of the test helps to control for the spurious causality
arising from indirect contagion, while the unconditional test fails to do so, with strong
rejections of the null hypothesis.

Nevertheless, it can be seen that though the conditional test is simple to implement
in our simplified financial system with n = 3 institutions, its implementation for a real
system with many institutions will lead to the curse of dimensionality. Indeed, the
conditional Granger-causality test from financial institution j to institution i should
be run by controlling for the potential indirect effects coming from all the other n− 2
institutions. This leads to the following two autoregressive models

yi,t = c1 +
M∑
s=1

φsyi,t−s +
M∑
s=1

γsyj,t−s +
n−2∑
k=1

M∑
s=1

ψk,syk,t−s + ui,1,t, (20)

yi,t = c2 +
M∑
s=1

αsyi,t−s +
n−2∑
k=1

M∑
s=1

θk,syk,t−s + ui,2,t, (21)
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Figure 6: Comparison of conditional and unconditional Granger-causality tests: second
scenario

Note: The null hypothesis corresponds to the absence of Granger causality from bank 2 to bank 1.

with ψk,s, θk,s, s = 1, ...,M , k = 1, ..., n − 2, as the parameters of the controlling
autoregressive terms. These specifications involve many explanatory variables. Indeed,
in each model, the number of controlling variables is equal to M(n−2), and even with
a financial system of limited size, the estimation of both equations will be subject
to multicollinearity and over-fitting. As analysed by Basu et al. (2017), these issues
can be handled within a lasso penalised vector auto-regressive (LVAR) model, which
is designed to provide estimates of a large dimensional vector autoregressive model
with sparse coefficients. Their empirical applications on a set of large US financial
institutions show indeed that the LVAR succeeds in controlling for spurious causalities,
and hence helps recover less dense networks than those in the BGLP approach. Note
that in their work, a multivariate approach is adopted instead of the pair-wise approach,
with a VAR model specified for all firms simultaneously, taking all the interactions in
the system into account. See also Etesami et al. (2017) for a similar approach in the
context of systemic risk, and Barigozzi and Brownlees (2013) in a more general context
of network modelling.

4 Breaking the Curse of Dimensionality: a Leave-One-
Out Approach

In this section, we show that the pair-wise approach of BGLP when combined with
the leave-one-out (LOO) concept can still be used to estimate Granger-causality net-
work systemic risk contributions consistently. As will be made clearer later, the LOO
methodology allows us to deal with the issue of indirect causalities, without facing the
inherent curse of dimensionality that arises in the multivariate approach (Basu et al.,
2017; Etesami et al., 2017).

To present our LOO measure of systemic risk contributions, let us first define
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the following statistic which summarises the level of Granger-causality (LGC) in the
system, meaning the number of statistically significant Granger-causality relationships
among all n(n− 1) pairs of financial institutions in the system

LGC =
n∑
i=1

n∑
j=1
j 6=i

I
(
Uj→i > χ2

1−η(M)
)
. (22)

This statistic can be seen as a global measure of the systemic risk in the system,
from the viewpoint of interconnectedness. For a given financial institution k, consider
a system of size n−1 that includes all the n institutions except the institution number
k. We can define the level of Granger-causality in this system in a similar way to Eq.
(22), yielding

LGC(−k) =
n−1∑
i=1
i 6=k

n−1∑
j=1

j 6=k,j 6=i

I
(
Uj→i > χ2

1−η(M)
)
. (23)

The statistic LGC(−k) measures the number of significant connections in asset
returns remaining when the financial institution k is excluded from the system. It
may be noted however that this statistic removes direct causalities in the network that
come from the financial institution k, but fails to clean indirect causalities between the
remaining n − 1 financial institutions that are due to the financial institution k. To
overcome this shortcoming, we re-define the statistic LGC(−k) as

LGC(−k) =
n−1∑
i=1
i6=k

n−1∑
j=1

j 6=k,j 6=i

I
(
Uj→i|k > χ2

1−η(M)
)
, (24)

where Uj→i|k is the conditional Granger-causality test as defined in Eq. (14). Observe
that using the conditional version for each of the (n − 1)(n − 2) pair-wise Granger-
causality tests in the system that excludes the financial institution k, lets us clean all
the spurious causalities that exist in the remaining n − 1 institutions and that arise
from the indirect effect of the institution k. Moreover, and importantly, this conditional
version is free of the curse of dimensionality, as it only involves lagged values of the
returns on the financial institution k as controlling variables (see equations 15-16).

Starting from the two statistics LGC and LGC(−k), we define our LOO measure of
the systemic importance of the financial institution k as

∆LGCk =

(
LGC− LGC(−k)

)
LGC . (25)

This statistic evaluates how far the total number of significant Granger-causalities
breaks down when the institution k is excluded from the system, and hence appears
as a proxy of its systemic importance. Note that the statistic ∆LGCk takes positive
values, and higher values correspond to more systemic institutions and lower values to
less systemic ones. Moreover, as it deals with spurious causalities arising from indirect
contagion effects, it should lead to consistent ranking of the systemic importance of
financial institutions.

To provide some support to the relevance of the LOO approach, we consider the
true network depicted in Figure 1 along with the associated data generating processes
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in Eq. (9) to (11). It may be recalled that in this simplified financial system with three
institutions, the most systemic in terms of interconnectedness is the third (3), and the
other two (1 and 2) are systemically equivalent. Following the true data generating
processes, we simulate the returns of the three financial institutions, and compute
both measures of systemic risk contributions InOutk and ∆LGCk, k = 1, 2, 3. Figure
7 displays the box plots of these measures obtained over 1, 000 simulations.

Figure 7: Box plots of alternative measures of systemic risk contributions

The first panel of the figure that displays the measures InOutk for the three in-
stitutions shows that the median values, highlighted in red, are equal, which confirms
that this measure leads to inconsistent ranking of the financial institutions. Indeed,
the equality of the median values means that the three institutions are systemically
equal. In contrast, the box plots of our statistic ∆LGCk confirm the relevance of
the LOO approach. Here, the median values are equal for the institutions 1 and 2.
This means that these two institutions are found to be systemically equivalent most
frequently across the 1000 simulations. Importantly, the median value for institution
3 takes the highest value, with the consequence that this institution is diagnosed as
the most systemic in most simulations. Hence these Monte Carlo experiments show
that the ranking from the LOO measure is consistent, as least for the simulation setup
considered. The next section gives a thorough analysis of the new measure of systemic
risk contributions using real data.

5 Reliability of the New Measure
In this section, we first present the data used to illustrate our new measure and give
some summary statistics. Then, we compare the new measure to that of BGLP and
highlight the differences between the two measures. Finally, we evaluate its predictive
power, which shows how far it can be taken as an early-warning indicator of the fragility
of financial institutions in response to a systemic event.

5.1 Data and Summary Statistics

We analyse the performance of our measure using the daily asset returns denominated
in local currency of 90 banks from 28 countries around the world. The data are
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downloaded from Datastream and run from 12 September 2003 to 19 February 2018,
with a total of 3766 daily observations. The banks are mostly from developed countries,
as 80 are from 21 advanced countries and 10 are from seven emerging countries. The
sample of banks considered is the one used by Demirer et al. (2018), except for six
banks: CIMB Group Holdings (Malaysia), Pohjola Bank (Finland), Woori Finance
Holdings (Korea), Bank of Yokohama (Japan), Banco Popular (Spain), and Banco
Espirito Santo (Portugal). These banks are excluded for various reasons including
data availability, failure, or merger and acquisition. Table B1 in Appendix B displays
the list of banks with their country and label.

One important feature of our dataset is that it includes almost every G-SIB iden-
tified by the Financial Stability Board (FSB). This will allow us to compare the banks
that we identify as the most systemic using our new measure with those identified by
the FSB. Running from September 2003 to February 2018, our dataset is large enough
for sub-samples to be analysed, so we will consider three sub-periods for further anal-
ysis: pre-crisis, crisis and post-crisis. We follow Laeven et al. (2016) by setting the
beginning of the crisis period as July 2007 and the end of the crisis as June 2009, which
corresponds to the recovery of financial markets. Table B2 in Appendix B reports the
mean, the standard deviation, the skewness and the kurtosis of the asset returns of
the banks regrouped by continent for the full sample and for each sub-sample. As
expected, the average returns fell sharply for all regions during the crisis period and
became negative everywhere except Africa. The standard deviation also increased
during this period, particularly for American and European banks.

5.2 Comparative Assessment

As underlined in the previous sections, spurious causalities arising from indirect con-
tagion can severely impair the results of Granger-causality tests, and can lead the
Granger-causality network to produce inconsistent rankings of the systemic impor-
tance of financial institutions. This is particularly the case for the measure InOutk
of BGLP. We thus introduced a new measure we denoted ∆LGCk that is based on
the LOO concept. The goal of this section is to highlight the differences between our
measure and that of BGLP, and to this end, we compute these two measures for our
three sub-periods.5

Note that both the BGLP measure InOutk and our LOO measure ∆LGCk are
summaries of outcomes from multiple pair-wise Granger-causality tests and hence are
subject to data snooping (White, 2000), a phenomenon that occurs when the same
dataset is used more than once for inference. Data snooping should be treated with
caution, since with multiple testing there is an increased probability of the null hy-
pothesis, which here is the absence of causality, being rejected just by chance, with
an inflation of the overall significance level. Hence we correct both measures for the
multiple testing problem using the two-stage linear step-up procedure of Benjamini
et al. (2006). Appendix A is devoted to a brief review of the data snooping problem,
along with the motivation underlying our choice for this procedure.

Tables 1-3 show the ten most systemic banks identified by the two measures and
the ten least systemic for the three sub-periods. For the pre-crisis period (see Table 1),

5Following BGLP and Basu et al. (2017), we control the two measures for the presence of het-
eroskedasticity in asset returns, basing both the unconditional and conditional Granger-causality tests
on the innovations or the filtered returns obtained from the estimation of GARCH models.
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JPMorgan Chase & Co is identified by our LOO approach as the most systemic bank,
with the value of 0.938 for the measure ∆LGCk. This means that when this institution
is excluded from the system and the impact of spurious causalities is controlled for,
the number of significant connections in the system drops by 93.8%. This decline is
notable and reflects the importance of this institution in the network. Figure 8 displays
the network for the whole system for the pre-crisis period, including all the 90 banks in
the sample. The number of significant connections given by the statistic LGC is 1312.
The same network excluding JPMorgan Chase & Co is exhibited in Figure 9, with
the statistic LGC(−k) equal to 81. This means that when this institution is excluded
from the system, the number of significant connections drops from 1312 to 81, with
our measure ∆LGCk taking the value (1312 − 81)/1312 = 93.8%. This result may
be contrasted with the one obtained for the least systemic institution, Ping An Bank,
for which the statistic ∆LGCk equals 0.031. Figure B1 in Appendix B displays the
network that excludes this institution. As we can see, the network is indistinguishable
from the one that includes all the institutions (see Figure 8). Indeed the number of
statistically significant connections in the system that excludes Ping An Bank is 1271
and therefore very close to 1312.

The results in Table 1 also indicate that the most systemic banks identified are
mostly American for both measures, while the least systemic are from Japan and China
for the measure ∆LGCk, but from China, Europe and Canada for the measure InOutk.
The differences between the most systemic institutions are thus weak, but when all of
the 90 financial institutions are considered, some divergences appear between the two
measures of contributions to systemic risk, as illustrated in Figure 10, which displays
the scatter plot of the ranks of financial institutions. The most systemic institution is
ranked one for both measures, and the least systemic is ranked 90. We observe that
although both measures identify American banks as the most systemic during the pre-
crisis period, some differences exist for the rest of the sample.6 Indeed, banks from Asia
and the Pacific other than China and India are identified as much more systemic by
the InOutk measure than by the ∆LGCk measure. This difference arises mainly from
the negative impact of spurious indirect causalities on the measure InOutk. In other
words, the unconditional Granger-causality test that underlies the measure InOutk
detects many spurious causalities involving many banks from Asia and the Pacific.

The patterns found from analysis of the results for the crisis period displayed
in Table 2 are different. While our measure still identifies American banks as the
most systemic, the measure InOutk from BGLP identifies banks from the US and
Canada. Moreover, banks from China, India, Europe and Canada are ranked as the
least systemic by the BGLP measure, while our measure still identifies banks from
China and Japan. The overall picture of the differences between the two measures is
displayed in Figure 11, which represents the scatter plot of the ranks. The figure shows
a clear-cut divergence between the two measures as the value of the correlation between
the ranks drops from 0.423 in the pre-crisis period to 0.127. As already stressed, this
result arises from indirect spurious causalities, which seem to be most prominent in
the crisis period. Lastly, the results in Table 3 (see also Figure B2 in Appendix B)
confirm the divergence between the two measures of systemic risk, with an overall rank
correlation of 0.058.

6The overall correlation between the ranks is 0.423.
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Figure 8: Network for all 90 banks: pre-crisis period

Note: List of labels can be found in Table B1 in Appendix.

Figure 9: Network for the system excluding JPMorgan Chase & Co: pre-crisis period

Note: List of labels can be found in Table B1 in Appendix.

As the true levels of the contributions to systemic risk are latent, the question
may be posed whether our measure is more accurate than that of BGLP. One way to
answer this question is to compare both rankings with the one provided by the Financial
Stability Board (FSB). Since 2011, this institution has published a ranking each year of
the most systemic banks worldwide, denoted as G-SIBs (global systemically important
banks), organised in buckets. These buckets differ in the level of additional common
equity loss absorbency they require as a percentage of the risk-weighted assets that
each G-SIB will be required to hold. We thus consider the last ranking of G-SIBs
published in 2017 by the FSB and make a comparison with our ranking and with that
from the BGLP approach over the period 2016-2017. We consider this period as it
covers the time-span over which the 2017 FSB ranking is generated. As our sample
does not include four Chinese banks from among the G-SIBs identified in 2017 by the
FSB (Bank of China, China Construction Bank, Industrial and Commercial Bank of
China Limited, and Agricultural Bank of China) because of a lack of data over the
whole sample, we do not consider these banks for the purpose of comparison. This
leads to a total of 26 G-SIBs over the 30 identified by the FSB.
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The first two columns in Table 4 display these 26 G-SIBS, along with the associated
buckets of the FSB, while the third column indicates whether each G-SIB is identified
as systemic by the ∆LGCk measure and the fourth by the InOutk measure, with the
related rankings from 1 to 26 in parentheses. Our measure identifies 16, or 61.54% of
the 26 banks, which is a large proportion, especially as most of those not identified
(Mizuho Financial Group, Nordea Bank, Royal Bank of Canada, Royal Bank of Scot-
land, Standard Chartered, State Street Corporation, and Sumimoto Mitsui Financial
Group) are classified by the FSB as the least systemic institutions among the 26 banks
and are in the bottom bucket. In contrast, the measure from BGLP only identifies 6
of these G-SIBs, which is a low level of accuracy at 23.08%. Moreover, those not iden-
tified come not only from the bottom bucket, but also from the top buckets containing
the most systemic banks. One illustrative example is JPMorgan Chase & Co, which
is a top systemic institution according to the FSB, but is not identified, while Bank of
America, another top systemic institution, is only just present by a small margin as it
is identified in 23rd place. These stylised facts are in accordance with the results in Ta-
ble 3 for the post-crisis period, which show that the most systemic banks identified by
the ∆LGCk are mostly from the US, while those identified by the InOutk measure are
mainly from Japan. As the G-SIBs, and especially the most systemic ones, are mostly
American banks, our measure appears to be a more reliable indicator of systemic risk.
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Figure 10: Comparison of the ranks of InOutk and ∆LGCk: pre-crisis period

Note: This figure represents the ranks of banks for both measures over the pre-crisis period. Banks
from the US are filled in blue, those from Australia, Japan, Korea, Malaysia and Singapore in red,
those from China and India in green, and the others are not filled.

Figure 11: Comparison of the ranks of InOutk and ∆LGCk: crisis period

Note: This figure represents the ranks of banks for the two measures over the crisis period. Banks
from the US are filled in blue, those from Australia, Japan, Korea, Malaysia and Singapore in red,
those from China and India in green, and the others are not filled.
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Table 4: Comparison of G-SIBs identifid by InOutk and ∆LGCk

Bucket G-SIBS 2017 ∆LGCk InOutk

(∆LGCk’s rank) (InOutk’s rank)

4 JPMorgan Chase & Co X
(5)

3

Bank of America X X
(1) (23)

Citigroup X
(10)

Deutsche Bank X
(16)

HSBC Holdings X
(9)

2

Barclays

BNP Paribas X
(12)

Goldman Sachs Group X
(21)

Mitsubishi UFJ Financial Group X
(8)

Wells Fargo X
(7)

1

Bank of New York Mellon X
(25)

Credit Suisse Group X
(20)

Credit Agricole X
(23)

ING Groep X
(9)

Mizuho Financial Group X
(5)

Morgan Stanley X
(2)

Nordea Bank X
(22)

Royal Bank of Canada

Royal Bank of Scotland

Banco Santander X
(15)

Societe Generale X
(13)

Standard Chartered

State Street Corporation

Sumimoto Mitsui Financial Group X
(3)

UBS X
(6)

Unicredit X
(26)

Number of G-SIBS identified Number of G-SIBS identified

16 6
[61.54%] [23.08%]

Note : This Table displays the G-SIBs identified by the FSB with their respective buckets. We also re-
port those identified by the systemic risk contributions statistics InOutk and ∆LGCk over the period
2016-2017 followed by their ranking in parentheses, and the total number identified as a percentage in
brackets.
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5.3 Predictive Power

As stressed by Sedunov (2016), an institution-level measure of systemic risk should be
a good forecast of a financial institution’s performance in crisis. In other words, any
consistent measure of the systemic risk profile of an institution should be an early-
warning indicator of losses in a systemic event. In this section, we check whether this
characteristic is fulfilled by our measure ∆LGCk of systemic risk contributions. More
precisely, we focus on the crisis period from July 2007 to June 2009, with a total of
Tc = 522 daily observations. Over the crisis period, we compute the performance for
each bank given by the average of downside returns. For a given financial institution
k = 1, ..., 90, the performance is given by

Perfk = 1
m

Tc∑
t=1

yk,tZk,t, (26)

for t = 1, ..., Tc, where yk,t is the return at time t on the asset of bank k, Zk,t is a
downside indicator at time t defined as

Zk,t =
{

1 if yk,t < δ
0 else, (27)

with δ < 0 as a threshold. The parameter m is the number of times Zk,t takes the
value one over the crisis period, so

m =
Tc∑
t=1

Zk,t. (28)

The performance measure in Eq. (26) gives the average value of the losses expe-
rienced by the bank k in the crisis period. Since our goal in this section is to check
whether banks with high levels of systemic risk perform more poorly out-of-sample
than banks with low levels of systemic risk, we consider the following regression

[Perfk] = β0 + β1 [InOutk] + β2 [Ink] + β3 [Outk] + β4 [∆LGCk] + εk, (29)

where [Perfk] is the rank in ascending order of the performance of bank k, with the
worst performing bank taking the value one, and the best performer ranked 90. The
variable [∆LGCk] is the rank in descending order of our measure ∆LGCk for the bank
k over the pre-crisis period from September 2003 to June 2007, with the most systemic
bank taking the value one, and the least systemic ranked 90. So with predictive content,
we expect a positive sign for β4, meaning more systemic institutions in the pre-crisis
period have higher realised losses in the crisis period and less systemic institutions
have lower losses.

It should be remembered that our institution-level measure of the contribution
to systemic risk is built on the weakness of the measure InOutk of BGLP in ranking
institutions, as we argued that the ranking of financial institutions by that measure can
be misleading in the presence of spurious indirect causalities. Therefore, to evaluate
the relevance of this statement, we include in the regression the rank in descending
order of the measure InOutk. We also consider the two components of that measure
separately, the statistics Ink and Outk, with their ranks in descending order. Therefore,
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as for the parameter β4, the other slope parameters should also take positive values
with predictive content.7

Table 5 exhibits the estimation results for δ = −3%. The estimations are performed
using ordinary least squares with inference based on White’s robust method (White,
1980). We consider three values of the lag-order M in running the Granger-causality
tests, with M ∈ {3, 5, 10}. For each value of M we display the results of nine different
specifications. In specifications [1] to [4] we consider each of the alternative measures
of systemic risk separately. In specifications [5] to [7] we include our measure of
systemic risk and each of the three measures of BGLP. In column [8], we report the
results from a specification that includes the four alternative measures of systemic
risk. Finally, to take into account a potential multicollinearity problem, we estimate
the same specification using a ridge regression approach. As usual in the literature,
the tuning parameter is calibrated via cross-validation. Results that we obtain are
reported in column [9].

First, specifications [1] to [4] show the slope parameter associated with each mea-
sure of systemic risk to be statistically significant at the conventional levels. This
means that individually, each measure of systemic risk contributions is significantly
related to the losses suffered by the banks from a systemic event. The BGLP measures
InOutk and Outk and our measure ∆LGCk appear with the expected sign, so the
riskier a bank is in the pre-crisis period, the more severe its losses are during the crisis
period. Surprisingly, the measure Ink of BGLP appears with a negative sign, which
indicates that banks with a higher level of systemic risk are more resilient during the
crisis. Furthermore, it is worth noting that our measure seems to predict a larger part
of the variance of those losses than do the three measures of BGLP, and the values
of the adjusted R-squared are always higher. For instance, with M = 3, the adjusted
R-squared is 31.3% with our measure ∆LGCk, while it is 28.2%, 7.5% and 3.2% for the
BGLP measures Outk, InOutk and Ink. Second, we can see from specifications [5] to
[7] that the coefficients associated with the three measures of BGLP lose their statis-
tical significance, while the one associated with our measure remains significant. This
result is very important, as it suggests that all the information conveyed by the three
measures of BGLP is included in our measure, together with additional information
which probably comes from our methodology for cleaning indirect spurious causalities.
This result is robust when we consider jointly the four measures of systemic risk (see
specifications [8] and [9]).

Table 6 presents the same results with δ = −5%. The results are qualitatively
similar to those obtained in Table 5. Through Tables 5 and 6, we observe that the
lag-order M does not seem to have a substantial impact on either the estimated pa-
rameters or the adjusted R-squared. This is also the case for the parameter δ, which
measures the severity of the losses. Figures B3 and B4 in the Appendix represent the
performance of each bank for the case (δ,M) = (−5%, 3) as measured by the mean
of realised losses as a function of the measures of systemic risk contributions InOutk
and ∆LGCk respectively. We observe that there is almost no correlation between the
average realised losses and the measure InOutk, whereas our new measure ∆LGCk can
predict the average realised losses relatively well.

7We consider using the ranks of the variables instead of their true values to avoid possible multi-
collinearity between the measures InOutk, Ink and Outk. See Billio et al. (2012) for a similar approach.
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Table 5: Predictive content of systemic risk measures for realized mean losses below
−3%

[1] [2] [3] [4] [5] [6] [7] [8] [9]

M = 3

Constant 32.173*** 54.876*** 21.014*** 19.796*** 17.693*** 10.725 19.515*** 4.961 4.992
(4.485) (4.646) (4.232) (3.898) (3.997) (7.994) (4.052) (10.452) (10.477)

InOutk 0.293*** 0.078 -0.045 -0.044
(0.088) (0.090) (0.119) (0.132)

Ink -0.206** 0.130 0.217 0.216
(0.102) (0.107) (0.159) (0.157)

Outk 0.538*** 0.090 0.303 0.298
(0.074) (0.249) (0.275) (0.283)

∆LGCk 0.565*** 0.534*** 0.634*** 0.481** 0.416* 0.420*
(0.068) (0.078) (0.092) (0.231) (0.233) (0.247)

R2 0.075 0.032 0.282 0.311 0.309 0.316 0.305 0.309 0.309

M = 5

Constant 32.607*** 54.786*** 21.432*** 19.907*** 19.445*** 13.716* 19.725*** 7.400 7.027
(4.587) (4.606) (4.194) (3.889) (3.955) (7.494) (4.023) (9.584) (10.268)

InOutk 0.283*** 0.019 -0.123 -0.127
(0.090) (0.102) (0.135) (0.146)

Ink -0.204* 0.092 0.216 0.222
(0.102) (0.103) (0.150) (0.160)

Outk 0.529*** 0.055 0.239 0.236
(0.074) (0.224) (0.251) (0.269)

∆LGCk 0.562*** 0.553*** 0.607*** 0.512** 0.505** 0.515**
(0.067) (0.084) (0.087) (0.207) (0.231) (0.239)

R2 0.070 0.031 0.272 0.309 0.301 0.307 0.301 0.300 0.302

M = 10

Constant 35.927*** 53.117*** 23.941*** 20.243*** 20.666*** 13.345* 21.007*** 10.212 10.052
(4.788) (4.809) (4.230) (3.910) (4.093) (7.597) (3.982) (9.271) (9.514)

InOutk 0.210*** -0.016 -0.167 -0.169
(0.094) (0.094) (0.122) (0.150)

Ink -0.167 0.104 0.222 0.225
(0.108) (0.105) (0.155) (0.159)

Outk 0.474*** -0.190 -0.027 -0.0241
(0.080) (0.229) (0.242) (0.244)

∆LGCk 0.555*** 0.561*** 0.602*** 0.728*** 0.748*** 0.747***
(0.069) (0.079) (0.087) (0.218) (0.230) (0.215)

R2 0.033 0.017 0.216 0.300 0.292 0.301 0.298 0.298 0.300

Note : This Table displays the results (parameter estimates followed by the standard errors in parentheses) of various
predictive regressions, with the dependent variable measuring the rank of realised losses for each of the 90 financial
institutions in the crisis period of July 2007-June 2009. We approximate the realised losses by the average value of
returns below a given threshold δ = −3%. The regressions differ by the number of predictors considered, from among
a set including the ranks of systemic risk contributions statistics InOutk, Ink, Outk and ∆LGCk, measured over the
pre-crisis period of September 2003-June 2006. We consider different configurations of the lag-order M for causality
tests, with M ∈ {3, 5, 10}. For the causality tests used to compute the predictors, inference is based on the two-stage
linear step-up procedure of Benjamini et al. (2006). Significances at 1%, 5% and 10% are marked by ***, ** and *.
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Table 6: Predictive content of systemic risk measures for realized mean losses below
−5%

[1] [2] [3] [4] [5] [6] [7] [8] [9]

M = 3

Constant 32.122*** 54.554*** 21.218*** 20.252*** 17.982*** 11.011 19.857*** 4.495 4.572
(4.543) (5.059) (4.203) (3.926) (3.944) (7.652) (4.074) (9.710) (10.544)

InOutk 0.294*** 0.084 -0.044 -0.045
(0.086) (0.092) (0.129) (0.133)

Ink -0.199* 0.133 0.228 0.227
(0.104) (0.099) (0.148) (0.158)

Outk 0.534*** 0.127 0.351 0.345
(0.076) (0.230) (0.243) (0.285)

∆LGCk 0.555*** 0.521*** 0.625*** 0.437** 0.367* 0.373
(0.068) (0.085) (0.083) (0.208) (0.200) (0.248)

R2 0.076 0.029 0.277 0.300 0.298 0.305 0.294 0.301 0.300

M = 5

Constant 32.151*** 53.971*** 22.363*** 20.245*** 19.365*** 12.786* 20.383*** 8.774 8.3167
(4.471) (5.014) (4.169) (3.884) (3.932) (7.175) (4.007) (9.418) (10.339)

InOutk 0.293*** 0.037 -0.094 -0.096
(0.086) (0.103) (0.146) (0.147)

Ink -0.186* 0.110 0.196 0.202
(0.103) (0.095) (0.147) (0.161)

Outk 0.509*** -0.041 0.128 0.126
(0.078) (0.233) (0.257) (0.271)

∆LGCk 0.555*** 0.537*** 0.609*** 0.593*** 0.577*** 0.585**
(0.066) (0.090) (0.078) (0.211) (0.222) (0.241)

R2 0.076 0.024 0.250 0.300 0.293 0.302 0.292 0.289 0.292

M = 10

Constant 35.254*** 52.346*** 24.231*** 20.642*** 20.471*** 12.668* 21.367*** 9.854 9.673
(4.801) (5.242) (4.296) (3.897) (4.089) (7.162) (4.042) (9.005) (9.578)

InOutk 0.225*** 0.006 -0.148 -0.150
(0.091) (0.099) (0.146) (0.151)

Ink -0.150 0.121 0.226 0.228
(0.110) (0.097) (0.150) (0.160)

Outk 0.467*** -0.180 -0.020 -0.020
(0.085) (0.237) (0.268) (0.246)

∆LGCk 0.546*** 0.544*** 0.601*** 0.710*** 0.726*** 0.729***
(0.068) (0.086) (0.076) (0.211) (0.215) (0.217)

R2 0.040 0.012 0.210 0.291 0.282 0.294 0.288 0.288 0.290

Note : This Table displays the results (parameter estimates followed by the standard errors in parentheses) of various
predictive regressions, with the dependent variable measuring the rank of realised losses for each of the 90 financial
institutions in the crisis period of July 2007-June 2009. We approximate the realised losses by the average value of
returns below a given threshold δ = −5%. The regressions differ by the number of predictors considered, from among
a set including the ranks of systemic risk contributions statistics InOutk, Ink, Outk and ∆LGCk, measured over the
pre-crisis period of September 2003-June 2006. We consider different configurations of the lag-order M for causality
tests, with M ∈ {3, 5, 10}. For the causality tests used to compute the predictors, inference is based on the two-stage
linear step-up procedure of Benjamini et al. (2006). Significances at 1%, 5% and 10% are marked by ***, ** and *.
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6 Determinants of Network Systemic Risk Contributions
Following the existing empirical literature on the determinants of systemic risk, we
attempt in this last section to understand why some banks tend to contribute more
to the global systemic risk than others do. Since the last financial crisis there has
been a lot of debate about the potential channels and drivers of the transmission of
financial distress between banks. In particular, some recent studies have investigated
whether the size and business models of banks drive their contributions to systemic
risk significantly. They have found strong evidence that large and market-oriented
financial institutions are more prone to contributing to the build-up of systemic risk
in the financial system than their peers are.

Against this background, we check whether we find results in line with the existing
literature when we consider our measure of systemic risk as a dependent variable. This
issue is particularly interesting in our case as our measure of systemic risk is a measure
of the interconnections between financial institutions, and so is more likely to be driven
by the size and activities of banks than other more traditional measures of systemic
risk such as the marginal expected shortfall (MES), the SRISK or the ∆CoVaR. In
consequence, we consider a panel data framework and regress different balance-sheet
variables on our measure of systemic risk. We consider annual data over 2004-2017,
or more precisely, we consider seven non-overlapping sub-periods: 2004-05, 2006-07,
2008-09, 2010-11, 2012-13, 2014-15, and 2016-17. For each bank in our sample, we
then compute our systemic risk measure for these different sub-periods, using a two-
year average for balance sheet data. The individual balance sheet data are taken from
Thomson Reuters Worldscope.

We start our empirical investigation by assessing the link between bank size and our
measure of systemic risk. As noted above, a number of recent empirical studies have
found strong evidence that systemic risk increases with bank size (see, e.g., De Jonghe,
2010; Brunnermeier et al., 2012; Kleinow and Nell, 2015; Black et al., 2016; Laeven
et al., 2016; Varotto and Zhao, 2018). As is usual in the literature, bank size is
measured by the logarithm of total assets. Specifically, we estimate the following
benchmark regression specification

∆LGCk,t = α+ β1Sizek,t−1 + µk + γt + λc + εk,t (30)

where k and t are respectively the bank and time period indicators, ∆LGCk,t is our
measure of systemic risk contribution, and Sizek,t−1 is the size of the bank. Following
Brunnermeier et al. (2012) and Laeven et al. (2016), the right-hand side variable is
lagged one period to reduce the potential endogeneity bias associated with reverse
causality. The term µk is an individual specific effect, γt is an unobserved time effect
included to capture common time-varying factors, λc is a country fixed effect, and εk,t
is the random error term. Country-specific effects are included to control for cross-
country differences in financial regulation and supervision. Because bank fixed effects
and country fixed effects are perfectly collinear, we cannot use a fixed effects (FE)
estimator, and so we estimate Eq. (30) using the random effects (RE) estimator.

The results that we obtain are reported in the first column of Table 7. We find a
positive and significant relationship between bank size and our measure of systemic risk.
As higher values for our statistic mean more systemic institutions, this result suggests
that the systemic risk contributions of banks increase with their size. As Laeven et al.
(2016) argue, this result is consistent with the view that large banks enjoy subsidies
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for being "too big to fail", letting them pay less attention to the risks they take, and
then creating strong externalities in the market when they are distressed. Moreover,
as larger banks are often highly interconnected with their competitors, this result is
consistent with the measure of network systemic risk that we propose in this paper.

In a second step, we extend our previous findings by investigating whether the
business models of banks drive their contribution to systemic risk. To this end, we
augment our benchmark regression specification by considering an additional regres-
sor capturing differences in banking activities. More precisely, we distinguish between
traditional intermediation activities and non-traditional banking activities such as in-
vestment banking, venture capital and trading activities. In this way we distinguish
between retail-oriented and market-oriented banks, and then assess the effect of the
asset structure of the banks on systemic risk. We proxy the importance of traditional
activities by the loans-to-assets ratio, while the share of non-interest income to total
income is used as a proxy for non-core activities. As shown by Laeven et al. (2016),
the loans-to-assets ratio is negatively related to systemic risk, while Brunnermeier
et al. (2012) find that banks with higher non-interest income tend to make a higher
contribution to systemic risk than traditional banks do.

Our results are reported in columns [2] and [3] of Table 7. Similarly to Laeven
et al. (2016), column [2] shows that the relationship between the loans-to-assets ratio
and our measure of systemic risk is negative and statistically significant. This suggests
that traditional intermediation activities tend to reduce the contribution of banks to
systemic risk as lending-based activities make banks less exposed to common shocks.
In contrast to this, the results reported in column [3] show a positive and significant
relationship between the share of non-interest income in total income and our mea-
sure of systemic risk. This result is consistent with the view that banks with more
market-based activities are more likely to contribute to systemic risk. In contrast to
lending exposures, market-based exposures are relatively more correlated across banks,
increasing the risk of contagion from a distressed bank.

Finally, we assess the influence of the profitability of banks on systemic risk. We
proxy the profitability of a bank using the return on equity (ROE). However, as Weiß
et al. (2014) and Kleinow and Nell (2015) argue, the link between the profitability of
a bank and its contribution to systemic risk remains unclear. One argument is that
higher profitability may shield banks from the risk of defaulting, and so it should be
associated with a lower contribution to systemic risk, but the counter-argument is that
higher profitability could be the result of the bank engaging in risky side activities
such as market-based investment and trading activities. Furthermore, our previous
results suggest that profits from non-lending activities significantly drive our measure of
systemic risk. As a consequence, higher profitability could induce a larger contribution
to systemic risk. As we can see in column [4] of Table 7, the estimated coefficient
associated with ROE comes out positive and statistically significant, confirming that
the profitability of a bank increases its contribution to systemic risk.
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Table 7: Determinants of systemic risk
(1) (2) (3) (4)

Dependent variable ∆LGC ∆LGC ∆LGC ∆LGC
Size (t− 1) 2.931*** 2.290** 2.233*** 2.921***

(0.858) (0.944) (0.861) (0.880)
Loans to assets ratio (t− 1) -0.114*

(0.063)
Non-interest income (t− 1) 0.213***

(0.060)
ROE (t− 1) 0.074***

(0.017)
Constant -43.262*** -24.218 -36.306** -44.279***

(16.200) (18.857) (15.977) (16.521)

Individual FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Country FE Yes Yes Yes Yes
Nb. of observations 621 557 570 605
Nb. of banks 90 85 84 90
R-squared 0.781 0.778 0.789 0.781

Note: Robust standard errors clustered at bank level are reported below their coefficient estimates.
*, ** and *** indicate statistical significance at the 10%, 5% and 1% levels, respectively. Due to the
magnitude of the estimated coefficients, the dependent variable ∆LGCk,t is multiplied by 100.

To conclude, our results suggest strong evidence that bank size is one of the key
drivers of systemic risk. This result is not surprising if we look at the recent academic
literature on systemic risk (see e.g. Laeven et al., 2016). In line with the existing
literature, we also find that the specialisation of banks, their business model, and also
their profitability, are significant drivers of systemic risk. Our results give particular
support to the argument that traditional lending activities reduce the risk of contagion.

7 Conclusion
In the wake of the recent global financial crisis, a wide variety of systemic risk measures
have been proposed for quantifying the risk contribution of financial institutions to
the financial system, and then identifying the global systemically important banks or
G-SIBs. Some of these measures focus on one fundamental aspect of systemic risk,
which is the connectedness of financial firms, as the linkages between banks can act
as a channel for contagion during a crisis. However, measuring interconnectedness in
relatively large and complex financial systems is empirically challenging, especially as
it is of critical importance that linkages between firms and contagion in the financial
system can stem from both direct and indirect exposures to counterparties.

However, to the best of our knowledge, there are few measures in the existing
literature on systemic risk that explicitly try to take the existence of indirect contagion
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effects into account. In their seminal paper, Billio et al. (2012) propose evaluating the
contribution of a given financial institution to systemic risk using a pair-wise Granger
causality approach. Within this framework, a financial institution is defined as highly
systemic if a large number of firms in the network have a significant connection with
this financial institution. The main shortcoming of such an approach is that the
existence of indirect contagion effects can lead to spurious causalities, and then a
misleading ranking of systemically important financial institutions. More recently,
Basu et al. (2017) propose addressing this shortcoming of the pair-wise approach by
estimating a large dimensional VAR model that includes all firms simultaneously and
so take into consideration all the interactions in the system. An inherent computational
difficulty with this type of modelling is the curse of dimensionality, since the number
of parameters grows quickly with the size of the system.

Against this background, the aim of this paper is to propose an alternative measure
for the contribution to systemic risk that overcomes these two shortcomings. It for-
mally manages indirect causalities between firms in the network and breaks the curse
of dimensionality. To do this, we combine the pair-wise Granger-causality approach
with the leave-one-out (LOO) concept. More precisely, our approach is based on a
conditional Granger causality test and consists of measuring how far the proportion of
statistically significant connections in the system breaks down when a given financial
institution is excluded, controlling for the indirect effects of that institution. This
means the systemic risk contribution of that institution is high when the proportion
is large.

We use daily asset returns for a sample of the world’s largest banks from 12 Septem-
ber 2003 to 19 February 2018 to assess the reliability of our systemic risk measure in
different ways. First, we rank the systemic importance of each bank in our sample
using our measure of systemic risk and that developed by Billio et al. (2012). The
results that we obtain show substantial differences between the two rankings. More
importantly, when we compare both the rankings with the ranking of G-SIBs published
in 2017 by the Financial Stability Board (FSB), we observe that our measure is better
able to identify the G-SIBs than that proposed by Billio et al. (2012) is. Our measure
identifies 16 of the 26 G-SIBs in our sample, or 61.54%, while the measure of Billio
et al. (2012) identifies six, or 23.08%. Second, we assess the predictive power of our
measure of systemic risk and show that our measure is a robust and significant early-
warning indicator of downside returns during the last financial crisis. Its predictive
power is larger than that associated with the measure of Billio et al. (2012). These
findings reinforce the idea that a pair-wise Granger causality approach is more reliable
when the effects of indirect causalities are cleaned out in a meaningful way.

Finally, as is usual in the literature on systemic risk, we empirically investigate the
potential drivers of the contribution of banks to systemic risk. To this end we consider
a panel data framework and regress different balance-sheet variables on our measure of
systemic risk. Following the previous results in the literature, we primarily focus our
analysis on the size of the banks. Our results suggest that systemic risk increases with
bank size. This result clearly indicates that the largest banks tend to contribute more to
systemic risk. We also find that the degree of specialisation in non-traditional banking
activities is an important driver of systemic risk, and indeed our results indicate that
the systemic risk contribution is higher for banks with more market-based activities.
Supporting this, we find a negative relationship between specialisation in lending-based
activities and our measure of systemic risk. Furthermore, we find that the profitability
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of a bank significantly increases its contribution to systemic risk.
Of course, a systemic event like the last global financial crisis is a rare phenomenon.

Consequently, an interesting extension of this work would be to consider a Granger-
causality network based on the transmission of tail risks. More specifically, our leave-
one-out (LOO) metrics for measuring contributions to systemic risk could be extracted
from a network generated using Granger-causality tests in tail events or extreme risk.
An example of such a test can be found in Hong et al. (2009). In this context, the
main challenge to resolve is the extension of this test to a conditional setup. We leave
this as an issue for future research.
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Appendix

Appendix A: The Multiple Testing Problem
The measures InOutk and ∆LGCk are summaries of outcomes from multiple pair-wise
Granger-causality tests and are obviously subject to the multiple testing problem,
which arises when several hypotheses are tested simultaneously. Among the different
hypotheses tested, some of the null hypotheses are false and thus some will be rejected.
In a perfect world, every false hypothesis, and only those, would be rejected. However,
in reality, not all false hypotheses will be rejected and some of those that are rejected
will be rejected mistakenly. This issue is of great interest because it can mislead authors
so that they arrive at the wrong conclusions. To solve this problem, the number of
false rejections should be reduced and as many correct rejections as possible should
be made. The literature provides many methods for controlling for the problem of
multiplicity in statistical inference, and the two main alternative controlling methods
are the Family Wise Error Rate (FWE) and the False Discovery Rate (FDR).

The FWE is defined as the probability of at least one of the true null hypotheses
being rejected. The FWE is controlled by requiring its value to be lower than or equal
to the significance level α, at least asymptotically. Different methodologies have been
developed for controlling FWE and the most widely used is the Bonferroni method.
There are two main reasons for its popularity. First, it is really simple as it consists
only of comparing all p-values to a single critical value. More precisely, each null
hypothesis is rejected if the p-value is no bigger than α/M , with M the total number
of hypotheses tested. Second, this method can be applied to any statistical test.

However, the FWE, and therefore the Bonferroni correction as well, loses power as
the number of hypotheses increases. Indeed the critical values become very small,
making it difficult to reject clearly even one hypothesis. Say for example that
(n− 1) (n− 2) hypotheses are tested for each institution using our LOO measure,
resulting in M = 7832 hypotheses for our sample of n = 90 institutions. Applying
the Bonferroni correction in this set-up would lead to compare every p-value to the
threshold 0.05/7832, and obviously some false null hypotheses will not be rejected
because of the very low significance level. Some less conservative methods have been
developed in the literature (S̆idák, 1967; Holm, 1979; Hommel, 1988; Hochberg, 1988),
but they have failed to improve much as they are still conservative. Thus the tra-
ditional approach is to control the FWE when the number of hypotheses tested is
relatively small, and to control the FDR when this number becomes very large.

The FDR is defined as the expected proportion of false rejections among all the
hypotheses tested. Indeed in some applications, a certain number F of false positives is
tolerable if there is a large number R of total rejections. The main idea is to relax the
worst-case approach underlying the FWE methodology by allowing a small proportion
of false rejections. In this case, the error control can be based on the False Discovery
Proportion (FDP) defined as FDP = F/R if R > 0, and 0 otherwise. In this way the
FDR is finally the expected value of the FDP. The most popular method for controlling
the FDR is the linear step-up procedure from Benjamini and Hochberg (1995), which
is very simple. First, order each individual p-value from the smallest to the largest
: p1 ≤ p2 ≤ . . . and define i? = max{i : pi ≤ γi}, with γi = γi/M , and with γ the
level of control. If such i? exists, reject the i? hypotheses for each p-value below γi? ,
otherwise do not reject any hypothesis.
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Benjamini and Hochberg (1995) show that under p-values independence, their lin-
ear step-up procedure controls the false discovery rate at precisely γM0/M , where
the unknown parameter M0 is the number of true null hypotheses among the M hy-
potheses.8 From this result, it is obvious that if the true value of M0 is known, a
more powerful linear step-up procedure can be obtained using the level of control
γ? = γM/M0. Indeed the FDR bound in this case will be equal to γ?M0/M = γ.
Benjamini et al. (2006) suggest using as an estimate for M0, M̂0 = M − R, with R
the number of rejected hypotheses in the linear step-up procedure. This leads to their
two-stage linear step-up procedure which works as follows:

• Use the linear step-up procedure at level γ′ = γ/(1 +γ). Let R be the number of
hypotheses rejected. If R = 0 do not reject any hypothesis and stop; if R = M
reject all M hypotheses and stop; otherwise continue.

• Let M̂0 = M −R.

• Use the linear step-up procedure with γ? = γ′M/M̂0.

We use this two-stage linear step-up procedure for both measures InOutk and
∆LGCk, to correct the many pair-wise Granger-causality tests for multiple testing.
We prefer this method because it is less conservative and more powerful than the
FWE methods as the number of hypotheses tested is very large, and for its better
power property (as discussed above) than that of the one-step procedure of Benjamini
and Hochberg (1995). Moreover, Monte Carlo simulations in Stevens et al. (2017) show
that the two-stage linear step-up procedure of Benjamini et al. (2006) performs better
than the alternative FDR procedures under various forms of p-value dependences.

It is worth mentioning that with both types of methodology, FWE and FDR, there
is a class of controlling methods that is based on resampling procedures. To control for
the FWE, White (2000) for example proposes the Bootstrap Reality Check (BRC) and
Romano and Wolf (2005) the StepM method. See also Lehmann and Romano (2005)
who develop a bootstrap method to control for the FDR. However, the deployment of
such approaches can be computationally demanding when the number of hypotheses
tested is very large. As this is the case for both the measures used in this paper, we
cannot use such an approach. For each institution, (n− 1)×(n− 2) = 7832 hypotheses
are tested for our LOO measure, and n× (n− 1) = 8010 for the BGLP measure.

8Note that Benjamini and Yekutieli (2001) also show that the bound γM0/M holds under some
types of positive dependences.
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Appendix B: Additional Tables and Figures

Figure B1: Network for the system excluding Ping An Bank: pre-crisis period

Note: List of labels can be found in Table B1 in Appendix.

Figure B2: Comparison of the ranks of InOutk and ∆LGCk: post-crisis period

Note: This figure represents the ranks of banks for both measures over the post-crisis period. Banks
from the US are filled in blue, those from Australia, Japan, Korea, Malaysia and Singapore in red,
those from China and India in green, and the others are not filled.
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Figure B3: Systemic risk contributions ∆LGCk and mean of realized losses: δ = −5%

Figure B4: Systemic risk contributions InOutk and mean of realized losses: δ = −5%
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Table B2: Summary Statistics
Full sample

Mean (%) St.dev (%) Skewness Kurtosis

Africa 0.07% 1.82% 0.145 6.217
America 0.05% 2.30% 0.948 35.402
Asia and Pacific 0.04% 2.06% 0.296 10.341
Europe 0.02% 2.78% 0.483 22.707

Pre-Crisis

Mean (%) St.dev (%) Skewness Kurtosis

Africa 0.13% 1.73% 0.208 4.469
America 0.05% 1.09% 0.121 7.178
Asia and Pacific 0.10% 1.87% 0.159 7.155
Europe 0.08% 1.29% 0.012 5.646

Crisis

Mean (%) St.dev (%) Skewness Kurtosis

Africa 0.03% 2.74% 0.349 4.291
America -0.01% 4.92% 0.726 11.167
Asia and Pacific -0.03% 3.32% 0.312 5.770
Europe -0.11% 4.26% 0.508 10.154

Post-Crisis

Mean (%) St.dev (%) Skewness Kurtosis

Africa 0.05% 1.59% -0.139 6.659
America 0.06% 1.60% -0.054 7.336
Asia and Pacific 0.03% 1.72% 0.211 7.969
Europe 0.02% 2.71% 0.216 11.193
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