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Abstract. In our work we present the energy transfer phenomenon observed in poly(methyl methacrylate) co-

doped by Tb(tmhd)3 and Rhodamine B. The optical properties characterization (recorded luminescence spectra 

and decay time measurements) indicate efficient energy transfer (up to 67%) between used complexes. 

Additionally, the developed matrix was used for luminescent polymeric fiber fabrication. The co-doped PMMA 

fiber allows significant luminescence spectrum modification by using energy transfer and optical radiation 

reabsorption phenomena. Presented lanthanide-organic dye co-doped  poly(methyl methacrylate) fiber can be 

used for new photonic applications of polymeric optical fibers.  

 

1. Introduction 

The luminescent properties of polymeric materials are attractive for numerous applications in optoelectronics. 

Nowadays, organic light-emissive compounds are intensively investigated for OLED (Organic Light Emitting 

Devices), fluorescent markers, illuminators, and sensors [1-12]. New luminescent properties can be obtained by 

using co-doping by lanthanides and organic dyes. Főrester Resonant Energy Transfer (FRET) between organic 

dyes has been intensively investigated for sensing applications. Super-resolution bioimaging and single molecule 

interactions are the most spectacular applications of organic dyes based FRET [13-16]. On the other hand, the 

lanthanide-based energy transfer is commonly used for effective excitation of rare earth ions for fiber lasers and 

upconversion emission [17-19]. The using of organic-inorganic dopants in the optical fiber structure imposes 

restrictions on properties of the optical host material. The simultaneous incorporation of lanthanides and organic 

dyes for optical fiber technology is possible by using polymeric host due to the low synthesis and thermoforming 

temperatures as well as various methods of doping with functional compounds (organic and inorganic) [20-23]. 

Also, doped polymers optical planar structures had found applications in new amplifiers constructions [24]. The  

several advantages of polymeric optical fibers such as: high elastic strain limits giving the ability to produce 

flexible optical fibers with significantly larger diameters (up to several mm), high numerical aperture, 

significantly lower manufacturing costs (extrusion and drawing processes are carried out temperatures below 300 

°C) have been reported so far [25]. Among different polymeric materials, the poly(methyl methacrylate) 

(PMMA) is commonly used due to excellent optical properties and well-developed processing technology. High 

flexibility of poly(methyl methacrylate), wide doping possibility and biocompatibility can significantly extend 

the polymeric optical fibers applications fields [26, 27]. Among the functional organic compounds, the effective 

luminescence processes was reported in xanthene, oxazine, aminocoumarins dyes, and aromatic hydrocarbons 

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0167931719300085
Manuscript_2aa57da596fef2fede12177c38129434

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0167931719300085
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0167931719300085


[28-33]. Typically they are characterized by broad bands of excitation and emission spectra resulting from the 

partial disappearance of the oscillation structure as a result of interactions between the fluorophores and the 

surrounding medium. Most of the organic dyes are also characterized by a short luminescence time of 

nanoseconds [28]. Lanthanides, thanks to well-defined emission bands, long decay times, have found wide 

application in the construction of wavelength converters, laser systems, sensors, optical amplifiers and radiation 

sources [34-39]. The electrons in the 4f shell of lanthanides are shielded from the surroundings by the filled 5s 

and 5p states [40]. Due to the small influence of the matrix on the optical transitions within the 4f shell, the 

narrow absorption and emission bands occur. The effective excitation of rare earth ions requires well spectrally 

fitted sources with high power density (e.g. laser diodes). In polymeric materials, increasing the cross-section of 

absorption is possible by using organometallic lanthanide compounds. The broad absorption spectrum of ligand 

enables effective transfer of absorbed energy to the rare earth ion by using energy transfer antenna effect. 

Moreover, its shielding properties limit the possibility of nonradiative transition and luminescence quenching by 

polymeric matrix and obtaining the decay times an order of ms [41]. The compositions of lanthanides and 

organic dyes, due to their significantly different optical properties, can be used for fabrication of new functional 

optical polymers. One of the most interesting phenomenon for luminescence spectrum modifications in optical 

fibers is energy transfer between rare earth ions and organic dyes. The article presents the FRET phenomenon 

investigation for Terbium(III)-tris-(2,2,6,6-tetramethyl-3,5-heptanedionate) (Tb(tmhd)3) and Rhodamine B 

(RhB) in poly(methyl methacrylate) matrix. 

 

2. Theory of FRET 

The energy transfer theory was reported in literature [42-47]. The FRET between molecules of donor D 

(Tb(tmhd)3) and acceptor A (RhB) is obtaining according to equation: 

      D' +A→ D + A'   (1) 

      A' → A + hν    (2) 

According to Förster theory the rate of energy transfer for is described by: 
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where: r – distance between donor and acceptor molecules, QD – quantum yield of donor in the absence of 

acceptor, n – refractive index of medium, N is Avogadro’s number, τD is the lifetime of the donor in the absence 

of acceptor; FD(λ) is the fluorescence intensity of the donor in the wavelength range λ to λ + Δλ, with the total 

intensity normalized to 1, εA(λ) is the extinction coefficient of the acceptor and R0 called Förster distance in Å: 
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R0 is distance when 50% of energy transfer efficiency occurs. The J(λ) is a degree of spectral overlap between 

the donor emission and the acceptor absorption (Fig. 1a): 
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The efficiency of energy transfer is the ratio of the transfer rate to the total decay rate of the donor and can be 

expressed using the equation: 
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or 
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where: FDA and FD is the luminescence intensity of the donor in the presence and absence of 
acceptor respectively, and accordingly τDA and τD is decay time of the donor in the presence and absence of 
acceptor.  

a)  b) 

  

Fig. 1. a) Normalized absorption/emission spectra of Tb(tmhd)3 and Rhodamine B, b) The energy transfer 

scheme of Tb(tmhd)3 to Rhodamine B. 

 

Assuming the FRET efficiency depends on the quantum emission efficiency of the donor in absorption region of 

the acceptor, donor and acceptor emission and absorption spectrum overlap integral and the distance between 

energy exchanging molecules. Proposed energy transfer mechanism is presented in Fig.1b. 

 

3.  Research methodology 

The specimens were fabricated in Bialystok University of Technology laboratory. The methyl methacrylate 

(MMA), Benzoyl Peroxide (BP), Rhodamine B, and Terbium(III)-tris-(2,2,6,6-tetramethyl-3,5-heptanedionate) 

(Tb(tmhd)3) were supplied by Sigma-Aldrich with standard >99% purity. The chemicals were used without 

additional purification except for MMA (stabilizer agent has been removed before polymerization). The 

specimens and polymeric fiber preforms were polymerized at 30 h at 65-80 °C. The used lanthanide (Tb(tmhd)3) 

and organic dye (RhB) doping process were performed directly during PMMA polymerization. The terbium ions 

concentration was constant while RhB varies to obtain several energy transfer rates (Tab. 1).  

 

Table 1.  The concentrations of Tb(tmhd)3 - RhB used in experiment 

 

No. 

Tb(tmhd)3 

molar concentration 

·10-3 

Rhodamine B 

molar concentration 

·10-6 

1 1.57 0.00 

2 1.58 0.48 

3 1.58 0.84 

4 1.56 1.04 

5 1.57 1.34 



Uniform distribution of dopants with no PMMA defects were observed in the fabricated specimens. PMMA 

specimens were prepared by cutting (10 mm diameter preform) into 2.8 mm thick discs and polishing. The 

characterized fiber was fabricated using optical fiber drawing tower (furnace temperatures T=170-200 °C, 

preform feeding 0.5 cm/min, drawing speed 20-32 cm/min, complexes concentrations: pos. 5 in Tab. 1). The 

fibers diameters range 0.4 – 2.1 mm were produced. The fiber diameter chosen for characterization was 1.8 mm 

since glass transition temperature of PMMA is c.a. 105 °C and low excitation laser power density is required. 

The well known cut-back method was used for photoluminescence spectra recording in fiber structure. 

Additionally, the collimator lens was used for efficient coupling of laser radiation into the fiber. The spectra 

were recorded using Stellarnet Green Wave spectrometer (300-900 nm). The absorption spectra of bulk 

specimens were measured using deuterium halogen Stellarnet SL5 lamp (UV+VIS). The luminescence spectra 

and lifetime measurements were performed using Q-switched laser systems Continuum Minilite1 (third 

harmonic 355 nm) and Acton Spectra Pro 2300i monochromator.  All measurements have been performed at 

temperature 20 °C. 

4. Results 

The Tb3+ doped PMMA properties were investigated so far [48]. A colorless and mild red color was observed for 

samples Tb(tmhd)3 and Tb(tmhd)3-RhB, respectively. The Rhodamine B absorption band with a maximum at 

530 nm can be noticed for Tb(tmhd)3-RhB specimen (Fig. 2a) which is in good agreement with literature data 

[49, 50]. The absorption edge below 350 nm confirms effective excitation possibility by using third harmonic 

(355 nm) of Nd:YAG laser.   

a)        b) 

 

Fig. 2. The Tb3+- RhB doped PMMA optical measurements: a� absorbance spectra measured for specimens no. 1 and 5, 
b� emission spectra at excitation 355 nm. 
 
The luminescence spectra of fabricated specimens for RhB molar concentration range 0-1.34·10-6 are presented 

in Fig. 2b. The luminescence of terbium ions due to the fact of polymeric host is limited to high-intensity peaks 
5D4 →7F6 (486 nm), 5D4 →7F5 (548 nm), 5D4 →7F4 (583 nm), 5D4 →7F3 (622 nm). The recorded spectra are in 

good agreement with those reported in aqueous solution and glasses [41, 43, 44]. The hypersensitivity of the 5D4 

→7F6 terbium transition can be used for lanthanide environment characterization. The antenna effect in 

Tb(tmhd)3 complex causes that no broadband fluorescence peak can be observed in the recorded spectrum 

(effective energy transfer from ligand triplet state to 5D4 of terbium). The single state S1 can also directly transfer 



the energy to higher energy levels of the lanthanide ion and next to the 5D4 level by non-radiative relaxations. 

The well known Rhodamine B fluorescence spectrum with its maximum c.a. 550 nm is noticeable in recorded 

spectra (Fig. 2b). The luminescence decay curve was measured at 355 nm excitation and 5D4 →7F5 transition 

monitoring (Fig. 3a). The double exponential phase decay curve (adjusted R-squared above 0.98 for all 

calculated curves) can be used for decay character estimation [51]:  
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where:  
A1 and A2 are the amplitudes, and τ1 and τ2 are the rate constants of decay respectively of the two 
exponentials. The average decay time constant �τavg� was calculated using:  
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The character of bi-exponential shape observed also for single dopant Tb(tmhd)3 suggest the dynamic quenching 

by terbium ions concentration (existence of the strong Tb–Tb interaction and energy exchange in the solid state 

matrix) [52]. An intense luminescence and relatively long measured decay time of Tb(tmhd)3 equals 0.42 ms 

(5D4) confirms that used terbium complex can be successfully used for PMMA doping [40, 41]. The energy 

transfer from trivalent terbium to Rhodamine B is noticeable by shortening of terbium ions decay time and 

changing the luminescence spectrum (the intensity of terbium luminescence content decrease vs. RhB 

concentration).   

 

a)  b) 

  

Fig. 3. a) The luminescence decay time curve at exc. 355 nm, monitoring at 542 nm, b) The FRET efficiency vs. 

RhB concentration.  

 

The energy transfer efficiency was calculated using decay time measurements using equation 7. Calculated the 

high efficiency of energy transfer observed for low RhB concentration is related to high absorption cross section 

of Rhodamine B (max σa=3.4·10-20 m2) [53]. In such circumstances, much lower RhB concentration (maximum 

used RhB molar concentration 1.34·10-6, c.a. 1000 times less than Tb(tmhd)3 significantly change the energy 

transfer efficiency). This phenomenon is one of the advantages of using lanthanide markers for fluorescence-

based FRET microscopy since extremely low acceptor concentration can be detected using this technique [13-

16]. The obtained results show that the energy transfer efficiency from 35.2 to 67.0 % can be obtained by 



changing the RhB molar concentration 0.48-1.34·10-6. The lanthanides and organic dyes in polymeric optical 

fibers offer different luminescence spectrum modification possibility. The large Stokes shift which is 

characteristic for trivalent lanthanide ions (typically above 150 nm) [44] causes the spectral attenuation of 

polymeric fiber is dominant for changes observed in luminescence spectrum. No maximum emission bands shift 

vs. fiber length can be observed. The Tb3+ and Eu3+ doped PMMA fiber were previously investigated by the 

authors [48, 54, 55]. On the other hand, overlapping of absorption and emission spectra in organic fluorophores 

causes efficient reabsorption of radiation propagating in the polymeric fiber. In such circumstances, significant 

typically red shift direction is observed in organic dyes doped polymeric fibers [56]. Measured spectra in 

Tb(tmhd)3-RhB doped fiber are presented in Fig. 4a.  
a)  b) 

 

Fig. 4. a) The luminescence spectra for several fiber lengths at exc. 355 nm, b) The intensity of 5D4 →7F5 �548 
nm� and 5D4 →7F3 �622 nm� vs. fiber length, inset: Tb(tmhd)3-RhB doped fiber under 365 nm excitation 

(mercury vapor black light). 

 

The recorded spectra (Fig. 4a) are the composition of characteristic terbium (identified transitions marked on the 

graph) and Rhodamine B (wide emission band). No spectrum shift can be observed for the terbium luminescence 

spectrum according to large Stokes shift. The emission bands which correspond to 5D4 →7F6 (486 nm), 5D4 →7F5 

(548 nm), 5D4 →7F4 (583 nm) are strongly absorbed in the fabricated fiber structure according to the high 

overlapping integral of emission terbium and absorption of Rhodamine B (Fig. 1a). Additionally, red shift is 

observed for RhB luminescence. The maximum of its emission was identified as 560 nm for thin specimens and 

590-620 nm for fiber length 40-140 mm respectively. The comparison of 5D4 →7F5 (548 nm) and 5D4 →7F3 (622 

nm) intensity emission bands vs. fiber length are shown in Fig. 4b. The most insensitive terbium emission band 

at 548 nm (5D4 →7F5) is fully absorbed for fiber length 120 mm in opposite to 622 nm (5D4 →7F3) which can be 

observed in the luminescence spectrum for longer distances. Additionally, the chromaticity coordinates CIE 

1931 were calculated and presented in Fig. 5. Presented results show luminescence color modification from 

amber (l=40 mm, x=0.50, y=0.47) to red (l=140 mm, x=0.64, y=0.35) and potential applications in lightening 

technology.  



 

Fig. 5. The chromaticity coordinates of Tb3+- RhB doped PMMA fiber, exc. 355 nm. 

 

The Tb(tmhd)3-RhB energy transfer and reabsorption process can be used for luminescence spectrum 

modification in the cylindrical structure of poly(methyl methacrylate) fiber. The compositions of lanthanides and 

fluorophores, due to their optical properties, different mechanisms of luminescence spectra modification in 

optical fibers, and energy transfer between rare earth ions and organic dyes can be used for obtaining new 

luminescent properties of polymeric optical fibers.  

 
 
5. Summary 

The fabrication and optical properties characterization of PMMA co-doped by Tb(tmhd)3-RhB. The recorded 

luminescence spectra and decay time of terbium-Rhodamine B co-doped specimens confirm FRET mechanism 

between used complexes. The energy transfer has been characterized in terms of RhB molar concentration range 

0-1.34·10-6. The maximum energy transfer efficiency 67% was observed for highest used RhB concentration. 

The Tb(tmhd)3-RhB co-doped PMMA fiber shown significant luminescence spectrum modification resulting 

from energy transfer and reabsorption phenomena. Presented properties of lanthanide-organic dye co-doped 

PMMA can be used for developing new applications in optical fiber technology (e.g. amplifiers, lasers, sensors). 
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Figures captions: 

Fig. 1. a) Normalized absorption/emission spectra of Tb(tmhd)3 and Rhodamine B, b) The energy transfer 

scheme of Tb(tmhd)3 to Rhodamine B. 

Fig. 2.  Fig. 2. The Tb3+- RhB doped PMMA optical measurements: a� absorbance spectra measured for specimens no. 1 
and 5, b� emission spectra at excitation 355 nm. 

Fig. 3. a) The luminescence decay time curve at exc. 355 nm, monitoring at 542 nm, b) The FRET efficiency vs. 

RhB concentration. 

Fig. 4. a) The luminescence spectra for several fiber lengths at exc. 355 nm, b) The intensity of 5D4 →7F5 �548 
nm� and 5D4 →7F3 �622 nm� vs. fiber length, inset: Tb(tmhd)3-RhB doped fiber under 365 nm 

excitation (mercury vapor black light). 

 

Table 1.  The concentrations of Tb(tmhd)3 - RhB used in experiment 

 



After LPE

Cl2p

Cl2p3/2

198.4 eV

200.1 eV




